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Planar maps

We glue polygons (with even perimeter) in order to obtain a topological
sphere :

Up to orientation-preserving homeomorphisms of the sphere ;

A distinguished half-edge ;

A root : the starting point of the distinguished half-edge.
Models without mass : without Ising or loops configurations (as in Opnq
models).
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Planar maps

Model of pointed compact metric spaces :
`

m, dm, ρm
˘

,

where ρm is the root of m.

Boltzmann measures

‚ Let q “ pqkqkě1 be a non-zero sequence of non-negative numbers.

‚ The q-Boltzmann measure wq is defined by

wqpmq :“
ź

f PFacespmq
qdegpf q{2 ,

where m is any finite bipartite map.
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Scaling limit in the generic case

Theorem (Le Gall 2013, Miermont 2013)
Let mn be a uniform quadrangulation of the sphere with n vertices.
Then we have the following result :

pmn, n´
1
4 dmn , ρmnq

pdq
ÝÑ pS, ∆, ρ˚q

Universality : Addario-Berry, Albenque, Marzouk ...
Quantum gravity : Gwynne, Holden, Miller, Shefield, Sun ...
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Scaling limit in the stable case
Stable maps :

qk „ cq κk
q k´α´

1
2 as k Ñ8,

for α P p1, 2q.

Figure – Simulations of large non-generic critical random Boltzmann planar maps
of index α P t1.9, 1.8, 1.7, 1.6, 1.5, 1.4u from top left to bottom right

Le Gall – Miermont (2009) : tightness.
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Main result
From now on : Mn is a stable map conditioned to have n vertices.

Theorem (Curien-Miermont-R. 2022+)
We have the following convergence in distribution for the
Gromov–Hausdorff topology :

ˆ

Mn, n´
1

2α ¨ dMn
gr , ρn

˙

pdq
ÝÝÝÑ
nÑ8

pSα, cq ¨ ∆α, ρ˚q ,

where the random compact metric space pSα, ∆αq is called the α-stable
carpet if α P r3{2, 2q and the α-stable gasket if α P p1, 3{2q.

We also show that Sα verifies the following properties :

Faces Topology
All α Dimension 2 Planar

α P r3{2, 2q Simple loops Sierpinski carpet
α P r1, 3{2q self and mutually intersecting ? ?
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II. Construction of the scaling limit
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Main discrete ingredient
Bouttier – Di Francesco – Guitter encoding :
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The scaling limits of the encoding processes
Scaling limits (Le Gall - Miermont)

Discret Continuous

Sn

Ln
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Two building blocks

First building block

The α-stable Loop tree or the loop tree encoded by an α-stable Lévy
excursion pXtqtPr0,1s :

Roughly speaking, the jumps encode the loops. We write s „X t if s and t
are the same points for the loop tree.
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Two building blocks
Second building block

We equip our loop tree with a Gaussian Free Field that we denote
pΛtqtPr0,1s :

Some properties of Λ

Cyclically invariant Distinct local miminum

Strong control of its Markovian with respect
module of continuity to the loop tree.
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Construction of Sα

∗ For every s, t P r0, 1s, we introduce the quantity :

∆˝αps, tq :“ Λs `Λt ´ 2max
`

min
rs,ts

Λ, min
rt,ss

Λ
˘

,

where we write ra, bs “ r0, bs Y ra, 1s if b ď a.

∗ We then define ∆α as the biggest pseudo-distance on r0, 1s,
such that :

∆α ď ∆˝α and ∆αps, tq “ 0 if s „X t.

∗ We write s „∆α t if and only if ∆αps, tq “ 0.
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Construction of Sα

Definition
Sα is the space

`

r0, 1s{ „∆α , ∆α

˘

.

labels

ρ∗ ↔ t∗

t∗

∆(t, t∗) = Λt − Λt∗

For every t ∈ [0, σ]

There exists a unique

such that

Λt∗ = min Λ

The Lebesgue measure induces a volume measure.
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III. Some ideas of the proof : Topology
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A useful representation

(
Mn, d

Mn
gr

) {1, ..., n} vertices in clockwise order

0 1

For every s, t P r0, 1s, set dnps, tq :“ dMn
gr pns, ntq.

`

Mn, dMn
gr

˘

»
`

r0, 1s{tdn “ 0u, dn
˘

.

Convergence of n´ 1
2α ¨Mn ðñ Convergence of n´ 1

2α ¨ dn

Topology of Mn ðñ
 

ps, tq : dnps, tq “ 0
(

.
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Topology
n´ 1

2α ¨ dn Ñ D a.s. in Cpr0, 1s2, R`q (at least along a subsequence).

Easy D ď ∆α and Dpt˚, ¨q “ ∆αpt˚, ¨q.

Theorem (Curien – Miermont – R. 2022+)
The following equivalence hold a.s.

Dps, tq “ 0 ðñ ∆αps, tq “ 0 ðñ

$

&

%

s „X t
or

∆˝
αps, tq “ 0.

ρ∗

distances to the root
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Points identification

Points identified by „X Points identified by ∆˝
α
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IV. Some ideas of the proof : Geodesics
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Simple geodesics
A special type of geodesics in the discrete :

i i− 1 i− 2 min

labels

ρ∗ ↔ t∗

t∗

∆(t, t∗) = Λt − Λt∗

For every t ∈ [0, σ]

There exists a unique

such that

Λt∗ = min Λ

In the continuum : we construct geodesics to ρ˚ following the running
infimum.
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Simple geodesics
A special type of geodesics in the discrete :

i i− 1 i− 2 min

In the continuum : we construct geodesics to ρ˚ following the running
infimum.

There is only one geodesic
from a leave to the root

There are two geodesics from
points with multiplicity 2

Simple geodesics hit the faces

labels

ρ∗

All the geodesics to ρ∗
are simple geodesics
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Thank you for your attention

Armand Riera Scaling limit of stable maps
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