The scaling limit of random planar maps with large faces

Armand Riera
joint work with Nicolas Curien and Grégory Miermont

CIRM: Random Geometry

Sommaire

I Random planar maps and scaling limits
II Construction of the scaling limit
III Some ideas of the proof: Topology
IV Some ideas of the proof: Geodesics

I. Planar maps and scaling limits

Planar maps

We glue polygons (with even perimeter) in order to obtain a topological sphere :

Planar maps

We glue polygons (with even perimeter) in order to obtain a topological sphere :

Planar maps

We glue polygons (with even perimeter) in order to obtain a topological sphere :

- Up to orientation-preserving homeomorphisms of the sphere;

Planar maps

We glue polygons (with even perimeter) in order to obtain a topological sphere :

- Up to orientation-preserving homeomorphisms of the sphere;
- A distinguished half-edge;

Planar maps

We glue polygons (with even perimeter) in order to obtain a topological sphere :

- Up to orientation-preserving homeomorphisms of the sphere;
- A distinguished half-edge;
- A root : the starting point of the distinguished half-edge.

Planar maps

We glue polygons (with even perimeter) in order to obtain a topological sphere :

- Up to orientation-preserving homeomorphisms of the sphere;
- A distinguished half-edge;
- A root : the starting point of the distinguished half-edge.

Models without mass : without Ising or loops configurations (as in $\mathcal{O}(n)$ models).

Planar maps

Model of pointed compact metric spaces :

$$
\left(\mathrm{m}, d_{\mathrm{m}}, \rho_{\mathrm{m}}\right)
$$

where ρ_{m} is the root of m .

Planar maps

Model of pointed compact metric spaces :

$$
\left(\mathrm{m}, d_{\mathrm{m}}, \rho_{\mathrm{m}}\right)
$$

where ρ_{m} is the root of m .
Boltzmann measures

Planar maps

Model of pointed compact metric spaces :

$$
\left(\mathrm{m}, d_{\mathrm{m}}, \rho_{\mathrm{m}}\right)
$$

where ρ_{m} is the root of m .

Boltzmann measures

- Let $\mathbf{q}=\left(q_{k}\right)_{k \geqslant 1}$ be a non-zero sequence of non-negative numbers.

Planar maps

Model of pointed compact metric spaces :

$$
\left(\mathrm{m}, d_{\mathrm{m}}, \rho_{\mathrm{m}}\right)
$$

where ρ_{m} is the root of m .

Boltzmann measures

- Let $\mathbf{q}=\left(q_{k}\right)_{k \geqslant 1}$ be a non-zero sequence of non-negative numbers.
- The \mathbf{q}-Boltzmann measure $w_{\mathbf{q}}$ is defined by

$$
w_{\mathbf{q}}(\mathfrak{m}):=\prod_{f \in \operatorname{Faces}(\mathfrak{m})} q_{\operatorname{deg}(f) / 2}
$$

where \mathfrak{m} is any finite bipartite map.

Scaling limit in the generic case

Theorem (Le Gall 2013, Miermont 2013)

Let m_{n} be a uniform quadrangulation of the sphere with n vertices. Then we have the following result :

$$
\left(\mathfrak{m}_{n}, n^{-\frac{1}{4}} d_{\mathfrak{m}_{n}}, \rho_{\mathfrak{m}_{n}}\right) \xrightarrow{(d)}\left(\mathcal{S}, \Delta, \rho_{*}\right)
$$

Scaling limit in the generic case

Theorem (Le Gall 2013, Miermont 2013)

Let m_{n} be a uniform quadrangulation of the sphere with n vertices.
Then we have the following result :

$$
\left(\mathfrak{m}_{n}, n^{-\frac{1}{4}} d_{\mathfrak{m}_{n}}, \rho_{\mathfrak{m}_{n}}\right) \xrightarrow{(d)}\left(\mathcal{S}, \Delta, \rho_{*}\right)
$$

Scaling limit in the generic case

Theorem (Le Gall 2013, Miermont 2013)

Let m_{n} be a uniform quadrangulation of the sphere with n vertices.
Then we have the following result :

$$
\left(\mathfrak{m}_{n}, n^{-\frac{1}{4}} d_{\mathfrak{m}_{n}}, \rho_{\mathfrak{m}_{n}}\right) \xrightarrow{(d)}\left(\mathcal{S}, \Delta, \rho_{*}\right)
$$

Universality : Addario-Berry, Albenque, Marzouk ...

Scaling limit in the generic case

Theorem (Le Gall 2013, Miermont 2013)

Let m_{n} be a uniform quadrangulation of the sphere with n vertices.
Then we have the following result :

$$
\left(\mathfrak{m}_{n}, n^{-\frac{1}{4}} d_{\mathfrak{m}_{n}}, \rho_{\mathfrak{m}_{n}}\right) \xrightarrow{(d)}\left(\mathcal{S}, \Delta, \rho_{*}\right)
$$

Universality : Addario-Berry, Albenque, Marzouk ... Quantum gravity: Gwynne, Holden, Miller, Shefield, Sun ...

Scaling limit in the stable case

Stable maps:

$$
q_{k} \sim c_{\mathbf{q}} \kappa_{\mathbf{q}}^{k} k^{-\alpha-\frac{1}{2}} \quad \text { as } k \rightarrow \infty
$$

for $\alpha \in(1,2)$.

Scaling limit in the stable case

Stable maps:

$$
q_{k} \sim c_{\mathbf{q}} \kappa_{\mathbf{q}}^{k} k^{-\alpha-\frac{1}{2}} \quad \text { as } k \rightarrow \infty
$$

for $\alpha \in(1,2)$.

Figure - Simulations of large non-generic critical random Boltzmann planar maps of index $\alpha \in\{1.9,1.8,1.7,1.6,1.5,1.4\}$ from top left to bottom right

Scaling limit in the stable case

Stable maps :

$$
q_{k} \sim c_{\mathbf{q}} \kappa_{\mathbf{q}}^{k} k^{-\alpha-\frac{1}{2}} \quad \text { as } k \rightarrow \infty
$$

for $\alpha \in(1,2)$.

Figure - Simulations of large non-generic critical random Boltzmann planar maps of index $\alpha \in\{1.9,1.8,1.7,1.6,1.5,1.4\}$ from top left to bottom right

Le Gall - Miermont (2009) : tightness.

Main result

From now on : \mathfrak{M}_{n} is a stable map conditioned to have n vertices.

Main result

From now on : \mathfrak{M}_{n} is a stable map conditioned to have n vertices.

Theorem (Curien-Miermont-R. 2022+)

We have the following convergence in distribution for the Gromov-Hausdorff topology :

$$
\left(\mathfrak{M}_{n}, n^{-\frac{1}{2 \alpha}} \cdot \mathrm{~d}_{\mathrm{gr}}^{\mathfrak{M}_{\mathrm{n}}}, \rho_{n}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathcal{S}_{\alpha}, c_{q} \cdot \Delta_{\alpha}, \rho_{*}\right)
$$

where the random compact metric space $\left(\mathcal{S}_{\alpha}, \Delta_{\alpha}\right)$ is called the α-stable carpet if $\alpha \in[3 / 2,2)$ and the α-stable gasket if $\alpha \in(1,3 / 2)$.

Main result

From now on : \mathfrak{M}_{n} is a stable map conditioned to have n vertices.

Theorem (Curien-Miermont-R. 2022+)

We have the following convergence in distribution for the Gromov-Hausdorff topology :

$$
\left(\mathfrak{M}_{n}, n^{-\frac{1}{2 \alpha}} \cdot \mathrm{~d}_{\mathrm{gr}}^{\mathfrak{M}_{\mathrm{n}}}, \rho_{n}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathcal{S}_{\alpha}, c_{q} \cdot \Delta_{\alpha}, \rho_{*}\right)
$$

where the random compact metric space $\left(\mathcal{S}_{\alpha}, \Delta_{\alpha}\right)$ is called the α-stable carpet if $\alpha \in[3 / 2,2)$ and the α-stable gasket if $\alpha \in(1,3 / 2)$.

We also show that \mathcal{S}_{α} verifies the following properties :

	Faces	Topology
All α	Dimension 2	Planar
$\alpha \in[3 / 2,2)$	Simple loops	Sierpinski carpet
$\alpha \in[1,3 / 2)$	self and mutually intersecting	??

II. Construction of the scaling limit

Main discrete ingredient

Bouttier - Di Francesco - Guitter encoding :

Main discrete ingredient

Bouttier - Di Francesco - Guitter encoding :

Main discrete ingredient

Bouttier - Di Francesco - Guitter encoding :

Main discrete ingredient

Bouttier - Di Francesco - Guitter encoding :

Main discrete ingredient

Bouttier - Di Francesco - Guitter encoding :

Lukasiewicz path

Label path

The scaling limits of the encoding processes

Scaling limits (Le Gall - Miermont)
Discret
Continuous

Two building blocks

First building block

Two building blocks

First building block

The α-stable Loop tree or the loop tree encoded by an α-stable Lévy excursion $\left(X_{t}\right)_{t \in[0,1]}$:

Two building blocks

First building block

The α-stable Loop tree or the loop tree encoded by an α-stable Lévy excursion $\left(X_{t}\right)_{t \in[0,1]}$:

Two building blocks

First building block

The α-stable Loop tree or the loop tree encoded by an α-stable Lévy excursion $\left(X_{t}\right)_{t \in[0,1]}$:

Roughly speaking, the jumps encode the loops. We write $s \sim_{x} t$ if s and t are the same points for the loop tree.

Two building blocks

Second building block

We equip our loop tree with a Gaussian Free Field that we denote $\left(\Lambda_{t}\right)_{t \in[0,1]}$:

Two building blocks

Second building block

We equip our loop tree with a Gaussian Free Field that we denote $\left(\Lambda_{t}\right)_{t \in[0,1]}$:

Two building blocks

Second building block

We equip our loop tree with a Gaussian Free Field that we denote $\left(\Lambda_{t}\right)_{t \in[0,1]}$:

Some properties of Λ

Cyclically invariant
Strong control of its module of continuity

Distinct local miminum

Markovian with respect to the loop tree.

Construction of \mathcal{S}_{α}

* For every $s, t \in[0,1]$, we introduce the quantity :

$$
\Delta_{\alpha}^{\circ}(s, t):=\Lambda_{s}+\Lambda_{t}-2 \max \left(\min _{[s, t]} \Lambda, \min _{[t, s]} \Lambda\right)
$$

where we write $[a, b]=[0, b] \cup[a, 1]$ if $b \leqslant a$.

Construction of \mathcal{S}_{α}

* For every $s, t \in[0,1]$, we introduce the quantity :

$$
\Delta_{\alpha}^{\circ}(s, t):=\Lambda_{s}+\Lambda_{t}-2 \max \left(\min _{[s, t]} \Lambda, \min _{[t, s]} \Lambda\right)
$$

where we write $[a, b]=[0, b] \cup[a, 1]$ if $b \leqslant a$.

* We then define Δ_{α} as the biggest pseudo-distance on $[0,1]$, such that :

$$
\Delta_{\alpha} \leqslant \Delta_{\alpha}^{\circ} \text { and } \Delta_{\alpha}(s, t)=0 \text { if } s \sim_{x} t
$$

Construction of \mathcal{S}_{α}

* For every $s, t \in[0,1]$, we introduce the quantity :

$$
\Delta_{\alpha}^{\circ}(s, t):=\Lambda_{s}+\Lambda_{t}-2 \max \left(\min _{[s, t]} \Lambda, \min _{[t, s]} \Lambda\right)
$$

where we write $[a, b]=[0, b] \cup[a, 1]$ if $b \leqslant a$.

* We then define Δ_{α} as the biggest pseudo-distance on $[0,1]$, such that:

$$
\Delta_{\alpha} \leqslant \Delta_{\alpha}^{\circ} \text { and } \Delta_{\alpha}(s, t)=0 \text { if } s \sim_{x} t
$$

* We write $s \sim_{\Delta_{\alpha}} t$ if and only if $\Delta_{\alpha}(s, t)=0$.

Construction of \mathcal{S}_{α}

Definition

\mathcal{S}_{α} is the space $\left([0,1] / \sim_{\Delta_{\alpha}}, \Delta_{\alpha}\right)$.

Construction of \mathcal{S}_{α}

Definition

\mathcal{S}_{α} is the space $\left([0,1] / \sim_{\Delta_{\alpha}}, \Delta_{\alpha}\right)$.

- There exists a unique t_{*} such that

$$
\Lambda_{t_{*}}=\min \Lambda
$$

Construction of \mathcal{S}_{α}

Definition

\mathcal{S}_{α} is the space $\left([0,1] / \sim_{\Delta_{\alpha}}, \Delta_{\alpha}\right)$.

- There exists a unique t_{*} such that

$$
\Lambda_{t_{*}}=\min \Lambda
$$

For every $t \in[0,1]$

$$
\Delta_{\alpha}\left(t, t_{*}\right)=\Lambda_{t}-\Lambda_{t_{*}}
$$

Construction of \mathcal{S}_{α}

Definition

\mathcal{S}_{α} is the space $\left([0,1] / \sim_{\Delta_{\alpha}}, \Delta_{\alpha}\right)$.

The Lebesgue measure induces a volume measure.

III. Some ideas of the proof : Topology

A useful representation

$$
\left(\mathfrak{M}_{n}, \mathrm{~d}_{\mathrm{gr}}^{M_{n}}\right)
$$

$$
\{1, \ldots, n\} \text { vertices in clockwise order }
$$

A useful representation

$\left(\mathfrak{M}_{n}, \mathrm{~d}_{\mathrm{gr}}^{M_{n}}\right) \quad\{1, \ldots, n\}$ vertices in clockwise order

For every $s, t \in[0,1]$, set $d_{n}(s, t):=\mathrm{d}_{\mathrm{gr}}^{\mathfrak{M}_{n}}(n s, n t)$.

$$
\left(\mathfrak{M}_{n}, \mathrm{~d}_{\mathrm{gr}}^{\mathfrak{M}_{n}}\right) \simeq\left([0,1] /\left\{\mathrm{d}_{\mathrm{n}}=0\right\}, \mathrm{d}_{\mathrm{n}}\right) .
$$

A useful representation

$\left(\mathfrak{M}_{n}, \mathrm{~d}_{\mathrm{gr}}^{M_{n}}\right) \quad \begin{aligned} & \{1, \ldots, n\} \text { vertices in clockwise order } \\ & \\ & 0\end{aligned} \quad \ldots \bullet \bullet \bullet \ldots \ldots$
For every $s, t \in[0,1]$, set $d_{n}(s, t):=d_{g r}^{\mathfrak{M}_{n}}(n s, n t)$.

$$
\left(\mathfrak{M}_{n}, \mathrm{~d}_{\mathrm{gr}}^{\mathfrak{\mathfrak { R } _ { n }}}\right) \simeq\left([0,1] /\left\{\mathrm{d}_{\mathrm{n}}=0\right\}, \mathrm{d}_{\mathrm{n}}\right) .
$$

Convergence of $n^{-\frac{1}{2 \alpha}} \cdot \mathfrak{M}_{n} \quad \Longleftrightarrow$ Convergence of $n^{-\frac{1}{2 \alpha}} \cdot d_{n}$
Topology of $\mathfrak{M}_{n} \quad \Longleftrightarrow \quad\left\{(s, t): d_{n}(s, t)=0\right\}$.

Topology

$n^{-\frac{1}{2 \alpha}} \cdot \mathrm{~d}_{\mathrm{n}} \rightarrow \mathrm{D}$ a.s. in $\mathcal{C}\left([0,1]^{2}, \mathbb{R}_{+}\right)$(at least along a subsequence).

Topology

$$
\begin{gathered}
n^{-\frac{1}{2 \alpha}} \cdot \mathrm{~d}_{\mathrm{n}} \rightarrow \mathrm{D} \text { a.s. in } \mathcal{C}\left([0,1]^{2}, \mathbb{R}_{+}\right) \quad \text { (at least along a subsequence). } \\
\text { Easy } D \leqslant \Delta_{\alpha} \text { and } D\left(t_{*}, \cdot\right)=\Delta_{\alpha}\left(t_{*}, \cdot\right) .
\end{gathered}
$$

Topology

$$
\begin{gathered}
n^{-\frac{1}{2 \alpha}} \cdot \mathrm{~d}_{\mathrm{n}} \rightarrow \mathrm{D} \text { a.s. in } \mathcal{C}\left([0,1]^{2}, \mathbb{R}_{+}\right) \quad \text { (at least along a subsequence). } \\
\text { Easy } D \leqslant \Delta_{\alpha} \text { and } D\left(t_{*}, \cdot\right)=\Delta_{\alpha}\left(t_{*}, \cdot\right) .
\end{gathered}
$$

Theorem (Curien - Miermont - R. 2022+)

The following equivalence hold a.s.

$$
D(s, t)=0 \quad \Longleftrightarrow \quad \Delta_{\alpha}(s, t)=0 \quad \Longleftrightarrow \quad\left\{\begin{array}{c}
s \sim_{x} t \\
\text { or } \\
\Delta_{\alpha}^{\circ}(s, t)=0 .
\end{array}\right.
$$

Topology

$$
\begin{gathered}
n^{-\frac{1}{2 \alpha}} \cdot \mathrm{~d}_{\mathrm{n}} \rightarrow \mathrm{D} \text { a.s. in } \mathcal{C}\left([0,1]^{2}, \mathbb{R}_{+}\right) \quad \text { (at least along a subsequence). } \\
\text { Easy } D \leqslant \Delta_{\alpha} \text { and } D\left(t_{*}, \cdot\right)=\Delta_{\alpha}\left(t_{*}, \cdot\right) .
\end{gathered}
$$

Theorem (Curien - Miermont - R. 2022+)

The following equivalence hold a.s.

$$
D(s, t)=0 \quad \Longleftrightarrow \quad \Delta_{\alpha}(s, t)=0 \quad \Longleftrightarrow \quad\left\{\begin{array}{c}
s \sim_{x} t \\
\text { or } \\
\Delta_{\alpha}^{\circ}(s, t)=0
\end{array}\right.
$$

Armand Riera
III. Some ideas of the proof : Topology

Points identification

Points identified by $\sim x$

Points identified by Δ_{α}°

Points identified by $\sim x$

Points identified by Δ_{α}°

IV. Some ideas of the proof : Geodesics

Simple geodesics

A special type of geodesics in the discrete :

Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to ρ_{*} following the running infimum.

Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to ρ_{*} following the running infimum.

Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to ρ_{*} following the running infimum.

Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to ρ_{*} following the running infimum.

Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to ρ_{*} following the running infimum.

- All the geodesics to ρ_{*} are simple geodesics
- There is only one geodesic from a leave to the root
- There are two geodesics from points with multiplicity 2

Simple geodesics hit the faces

Geodesic trap

$\Delta_{\alpha}=$ Length of paths obtained by concatenation of simple geodesics.

Geodesic trap

$\Delta_{\alpha}=$ Length of paths obtained by concatenation of simple geodesics. Our theorem is equivalent to show that all D-geodesic are determined by : The topology and Simple geodesic.

Geodesic trap

$\Delta_{\alpha}=$ Length of paths obtained by concatenation of simple geodesics. Our theorem is equivalent to show that all D-geodesic are determined by : The topology and Simple geodesic.

Typical local landscape of D-geodesic :

Geodesic trap

$\Delta_{\alpha}=$ Length of paths obtained by concatenation of simple geodesics.
Our theorem is equivalent to show that all D-geodesic are determined by : The topology and Simple geodesic.

Typical local landscape of D-geodesic :

Geodesic trap

$\Delta_{\alpha}=$ Length of paths obtained by concatenation of simple geodesics.
Our theorem is equivalent to show that all D-geodesic are determined by : The topology and Simple geodesic.

Typical local landscape of D-geodesic :

Geodesic trap

$\Delta_{\alpha}=$ Length of paths obtained by concatenation of simple geodesics.
Our theorem is equivalent to show that all D-geodesic are determined by : The topology and Simple geodesic.

Typical local landscape of D-geodesic :

Geodesic trap

$\Delta_{\alpha}=$ Length of paths obtained by concatenation of simple geodesics.
Our theorem is equivalent to show that all D-geodesic are determined by :
The topology and Simple geodesic.

Typical local landscape of D-geodesic :

Geodesic trap

$\Delta_{\alpha}=$ Length of paths obtained by concatenation of simple geodesics. Our theorem is equivalent to show that all D-geodesic are determined by :

The topology and Simple geodesic.

Typical local landscape of D-geodesic :

To conclude we need to show that the complement of these points has dimension smaller than 1.

Thank you for your attention

