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Planar maps
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Planar maps

We glue polygons (with even perimeter) in order to obtain a topological
sphere :

@ Up to orientation-preserving homeomorphisms of the sphere;
o A distinguished half-edge;

@ A root : the starting point of the distinguished half-edge.

Models without mass : without Ising or loops configurations (as in O(n)
models).
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Planar maps

Model of pointed compact metric spaces :

(m, dm, pm),

where pn, is the root of m.
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Planar maps

Model of pointed compact metric spaces :
(m, dm, pm),
where pn, is the root of m.

Boltzmann measures
e Let g = (qk)k>1 be a non-zero sequence of non-negative numbers.

e The q-Boltzmann measure wy is defined by

wg(m) := H Qdeg()/2

feFaces(m)

where m is any finite bipartite map.
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Scaling limit in the generic case

Theorem (Le Gall 2013, Miermont 2013)

Let m, be a uniform quadrangulation of the sphere with n vertices.
Then we have the following result :

_1 d
(mp, n ‘l‘dmnypmn) Q’ (S, A, ps)
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Scaling limit in the generic case

Theorem (Le Gall 2013, Miermont 2013)

Let m, be a uniform quadrangulation of the sphere with n vertices.
Then we have the following result :

_1 d
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Scaling limit in the generic case

Theorem (Le Gall 2013, Miermont 2013)

Let m, be a uniform quadrangulation of the sphere with n vertices.
Then we have the following result :

_1 d
(mp, n ‘l‘dmnypmn) Q’ (S, A, ps)

Universality : Addario-Berry, Albenque, Marzouk ...

Quantum gravity : Gwynne, Holden, Miller, Shefield, Sun ...



Scaling limit in the stable case

Stable maps :
1
Gk ~ Cqriek ®72  as k — oo,
for a € (1,2).
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Stable maps :

1
gk ~ Cq /ff; k¥“72  as k — oo,

for a € (1,2).

F1GURE — Simulations of large non-generic critical random Boltzmann planar maps
of index « € {1.9,1.8,1.7,1.6, 1.5, 1.4} from top left to bottom right
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Scaling limit in the stable case

Stable maps :

1
gk ~ Cq /is k¥“72  as k — oo,

for a € (1,2).

F1GURE — Simulations of large non-generic critical random Boltzmann planar maps
of index « € {1.9,1.8,1.7,1.6, 1.5, 1.4} from top left to bottom right

Le Gall — Miermont (2009) : tightness.
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Main result

From now on : 901, is a stable map conditioned to have n vertices.

Armand Riera I. Planar maps and scaling limits



Main result

From now on : 901, is a stable map conditioned to have n vertices.

Theorem (Curien-Miermont-R. 2022+)
We have the following convergence in distribution for the
Gromov—Hausdorff topology :
_1 (d)
(fm,,, n 2« -dg}n, ,0”) m (Sa, Cq - Aa, p*),
where the random compact metric space (S, Ay ) is called the a-stable
carpet if @ € [3/2,2) and the a-stable gasket if a € (1,3/2).
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Main result

From now on : 9, is a stable map conditioned to have n vertices.

Theorem (Curien-Miermont-R. 2022+)
We have the following convergence in distribution for the
Gromov—Hausdorff topology :
L (d)
(im,,, n 2« .d?}nv Pn) — (Sar g Do ),
where the random compact metric space (S, Ay ) is called the a-stable
carpet if @ € [3/2,2) and the a-stable gasket if a € (1,3/2).

We also show that S, verifies the following properties :

Faces Topology
All o Dimension 2 Planar
a€[3/2,2) Simple loops Sierpinski carpet
a € [1,3/2) | self and mutually intersecting 77
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Main discrete ingredient

Bouttier — Di Francesco — Guitter encoding :
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Main discrete ingredient

Bouttier — Di Francesco — Guitter encoding :

Lukasiewicz path Label path

Sn
Lu

N

Armand Riera Il. Construction of the scaling limit



The scaling limits of the encoding processes

Scaling limits (Le Gall - Miermont)
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Two building blocks

First building block
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Two building blocks

First building block

The a-stable Loop tree or the loop tree encoded by an a-stable Lévy
excursion (Xt)¢e[o0,1]
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First building block

The a-stable Loop tree or the loop tree encoded by an a-stable Lévy
excursion (Xt)¢e[o0,1]
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Two building blocks

First building block

The a-stable Loop tree or the loop tree encoded by an a-stable Lévy
excursion (Xt)¢e[o0,1]
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Roughly speaking, the jumps encode the loops. We write s ~x t if s and t
are the same points for the loop tree.
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Two building blocks

Second building block

We equip our loop tree with a Gaussian Free Field that we denote
(At)eeo]
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Second building block

We equip our loop tree with a Gaussian Free Field that we denote
(At)eeo]
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Two building blocks

Second building block

We equip our loop tree with a Gaussian Free Field that we denote
(At)eeo]
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Some properties of A

Cyclically invariant Distinct local miminum
Strong control of its Markovian with respect
module of continuity to the loop tree.
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Construction of S,

* For every s, t € [0, 1], we introduce the quantity :

AL (s, t) := As + At — 2max (r[mr]1 A, r[nir]1A),
s, t t,s

where we write [a, b] = [0, b] U [a,1] if b < a.
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* For every s, t € [0, 1], we introduce the quantity :

AL (s, t) := As + At — 2max (r[mr]1 A, r[nir]1A),
s, t t,s

where we write [a, b] = [0, b] U [a,1] if b < a.
* We then define A, as the biggest pseudo-distance on [0, 1],

such that :
Ao <A and Ay(s, t) =0if s ~x t.
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Construction of S,

* For every s, t € [0, 1], we introduce the quantity :

AL (s, t) := As + At — 2max (r[mr]1 A, r[nir]1A),
s, t t,s

where we write [a, b] = [0, b] U [a,1] if b < a.

* We then define A, as the biggest pseudo-distance on [0, 1],
such that :

Ao <A and Ay(s, t) =0if s ~x t.

* We write s ~x_ t if and only if A, (s, t) = 0.
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Construction of S,

Definition

S, is the space ([0,1]/ ~a,, Aa).
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Construction of S,

Definition

S, is the space ([0,1]/ ~a,, Aa).

labels

ﬂl

@ There exists a unique t«
such that

Ay, = min A
@ For every t € [0,1]

Au(t,t) = A — Ay,
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Construction of S,

Definition

S, is the space ([0,1]/ ~a,, Aa).

labels

ﬂl

@ There exists a unique t«
such that

Ay, = min A
@ For every t € [0,1]

Au(t,t) = A — Ay,

The Lebesgue measure induces a volume measure.
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A useful representation

M {1, ...,n} vertices in clockwise order
(E)ﬁn, dgr")
o o o o o o o o o o ¢
0 1
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A useful representation

M {1, ...,n} vertices in clockwise order
(Dﬁn, dgr")
o o o o o o o o o o ¢
0 1

For every s, t € [0, 1], set du(s, t) := d2(ns, nt).

(9, dZ) ~ ([0,1]/{dn = 0}, dy).
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A useful representation

M {1, ...,n} vertices in clockwise order
(Dﬁn, dgr")
o o o o o o o o o o ¢
0 1

For every s, t € [0, 1], set du(s, t) := d2(ns, nt).
(90, dgt7) = ([0,1]/{d = 0}, dn).

_L _1
Convergence of n72a -9, <= Convergence of n"2a - d,

Topology of M, —  {(s,t): dn(s t) =0}
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Topology

n~2 -dy — D as. in C([0,1]?,R;) (at least along a subsequence).
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Topology

n~2 -dy — D as. in C([0,1]?,R;) (at least along a subsequence).

Easy D < A, and D(ty, ") = Aq(ts, ).
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Topology

n~2 -dy — D as. in C([0,1]?,R;) (at least along a subsequence).

Easy D < A, and D(ty, ) = Aa(ts, -).
Theorem (Curien — Miermont — R. 2022+)

The following equivalence hold a.s.

S~xt
D(s,t) =0 <= A,(s,t)=0 < or
Ag (s, t) = 0.
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Topology

n~2 -dy — D as. in C([0,1]?,R;) (at least along a subsequence).

Easy D < A, and D(ty, ) = Aa(ts, -).
Theorem (Curien — Miermont — R. 2022+)

The following equivalence hold a.s.

S~xt
D(s,t) =0 <= A,(s,t)=0 < or
Ag (s, t) = 0.

(A
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Points identification

Points identified by ~x Points identified by Ag,
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Simple geodesics

A special type of geodesics in the discrete :

Armand Riera IV. Some ideas of the proof : Geodesics



Simple geodesics

A special type of geodesics in the discrete :

(L

In the continuum : we construct geodesics to p, following the running
infimum.
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Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to p, following the running
infimum.

labels

4 @ All the geodesics to p,

are simple geodesics
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Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to p, following the running
infimum.

labels

4 @ All the geodesics to p,

are simple geodesics

@ There is only one geodesic
from a leave to the root
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Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to p, following the running
infimum.

labels

4 @ All the geodesics to p,

are simple geodesics

@ There is only one geodesic
from a leave to the root

@ There are two geodesics from
points with multiplicity 2
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Simple geodesics

A special type of geodesics in the discrete :

In the continuum : we construct geodesics to p, following the running
infimum.

labels

4 @ All the geodesics to p,

are simple geodesics

@ There is only one geodesic
from a leave to the root

@ There are two geodesics from
points with multiplicity 2

@ Simple geodesics hit the faces
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A, = Length of paths obtained by concatenation of simple geodesics.
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A, = Length of paths obtained by concatenation of simple geodesics.

Our theorem is equivalent to show that all D-geodesic are determined by :

The topology and  Simple geodesic.
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A, = Length of paths obtained by concatenation of simple geodesics.

Our theorem is equivalent to show that all D-geodesic are determined by :

The topology and  Simple geodesic.

Typical local landscape of D-geodesic :

- P2

To conclude we need to show that the complement of these points
has dimension smaller than 1.
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Thank you for your attention

Armand Riera Scaling limit of stable maps
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