Maps of unfixed genus and blossoming trees

Éric Fusy (CNRS/LIGM, Université Gustave Eiffel) joint work with Emmanuel Guitter

Random Geometry, Jan. 19 2022

The generating function of rooted 4-regular planar maps is $R_1(t)$, with $R_1(t), R_2(t), \ldots$ solutions of the system (with $R_0 = 0$)

$$R_{i}(t) = 1 + t R_{i}(t)(R_{i-1}(t) + R_{i}(t) + R_{i+1}(t)) \qquad i \ge 1 \qquad (\star)$$

$$R_{1}(t) = 1 + 2t + 9t^{2} + 54t^{3} + 378t^{4} + \cdots \qquad (f^{1})R_{1}(t) = 2$$

The generating function of rooted 4-regular planar maps is $R_1(t)$, with $R_1(t), R_2(t), \ldots$ solutions of the system (with $R_0 = 0$)

$$R_i(t) = 1 + t R_i(t)(R_{i-1}(t) + R_i(t) + R_{i+1}(t)) \qquad i \ge 1$$

 (\star)

 $[t^1]R_1(t) = 2$

 $R_1(t) = 1 + 2t + 9t^2 + 54t^3 + 378t^4 + \cdots$

tools: bijections

($R_i(t) = 2$ -point function of planar quadrangulations) (Rk: simpler expression $R_1(t) = \sum_{n \ge 1} \frac{2}{n+2} 3^n \frac{(2n)!}{n!(n+1)!} t^n$)

The generating function of rooted 4-regular planar maps is $R_1(t)$, with $R_1(t), R_2(t), \ldots$ solutions of the system (with $R_0 = 0$)

$$R_i(t) = 1 + t R_i(t)(R_{i-1}(t) + R_i(t) + R_{i+1}(t)) \qquad i \ge 1$$
 (*)

 $R_1(t) = 1 + 2t + 9t^2 + 54t^3 + 378t^4 + \cdots$

tools: bijections

($R_i(t) = 2$ -point function of planar quadrangulations) (Rk: simpler expression $R_1(t) = \sum_{n \ge 1} \frac{2}{n+2} 3^n \frac{(2n)!}{n!(n+1)!} t^n$) $\boxed{[t^1]R_1(t)} = 2$

The generating function of rooted 4-regular maps is $r_1(t)$, with $r_1(t), r_2(t), \ldots$ solutions of the system (with $r_0 = 0$)

$$r_i(t) = i + t r_i(t)(r_{i-1}(t) + r_i(t) + r_{i+1}(t)) \qquad i \ge 1 \quad (\star \star)$$

 $r_1(t) = 1 + 3t + 24t^2 + 297t^3 + 4896t^4 + \cdots$

tools: matrix integrals

The generating function of rooted 4-regular planar maps is $R_1(t)$, with $R_1(t), R_2(t), \ldots$ solutions of the system (with $R_0 = 0$)

$$R_i(t) = 1 + t R_i(t)(R_{i-1}(t) + R_i(t) + R_{i+1}(t)) \qquad i \ge 1$$
 (*)

 $R_1(t) = 1 + 2t + 9t^2 + 54t^3 + 378t^4 + \cdots$

tools: bijections

($R_i(t) = 2$ -point function of planar quadrangulations) (Rk: simpler expression $R_1(t) = \sum_{n \ge 1} \frac{2}{n+2} 3^n \frac{(2n)!}{n!(n+1)!} t^n$) $\bigcap_{[t^1]R_1(t)=2}$

 $[t^1]r_1(t) = 3$

The generating function of rooted 4-regular maps is $r_1(t)$, with $r_1(t), r_2(t), \ldots$ solutions of the system (with $r_0 = 0$)

$$r_i(t) = (i) + t r_i(t)(r_{i-1}(t) + r_i(t) + r_{i+1}(t)) \qquad i \ge 1 \quad (\star \star)$$

$$r_1(t) = 1 + 3t + 24t^2 + 297t^3 + 4896t^4 + \cdots$$

tools: matrix integrals

Question: bijective interpretation of $(\star\star)$? (unified with (\star) ?)

Planar case

Blossoming tree = rooted binary tree where each node carries an arrow, called a bud

blossoming trees on n nodes = $3^n \frac{(2n)!}{n!(n+1)!}$

Blossoming tree = rooted binary tree where each node carries an arrow, called a bud

blossoming trees on
$$n$$
 nodes = $3^n \frac{(2n)!}{n!(n+1)!}$

leaf-path
$$w(T) = 1$$

Blossoming tree = rooted binary tree where each node carries an arrow, called a bud

blossoming trees on
$$n$$
 nodes = $3^n \frac{(2n)!}{n!(n+1)!}$

leaf-path
$$w(T) = 1$$

Blossoming tree = rooted binary tree where each node carries an arrow, called a bud

A blossoming tree T is balanced if w(T) does not go below the x-axis

Blossoming tree = rooted binary tree where each node carries an arrow, called a bud

blossoming trees on
$$n$$
 nodes = $3^n \frac{(2n)!}{n!(n+1)!}$

eaf-path
$$w(T) = 1$$

A blossoming tree T is balanced if w(T) does not go below the x-axis

Blossoming tree = rooted binary tree where each node carries an arrow, called a bud

leaf-path
$$w(T) = 1$$

A blossoming tree T is balanced if w(T) does not go below the x-axis

 \Rightarrow there are $\frac{2 \cdot 3^n (2n)!}{n!(n+2)!}$ rooted 4-regular planar maps on n vertices

Blossoming tree \rightarrow bi-pointed 4-regular planar map [Bouttier-Di Francesco-Guitter'03] bi-pointed 4-regular map (marked face f+marked edge e) leaf-path d =nesting depth of ed = 2= dual distance d from e to fd is the depth (- minimal level) of leaf-path Bijection gives $3^n \operatorname{Cat}_n = \frac{n+2}{2} \cdot \#$ rooted 4-regular maps

For $i \ge 1$ let $R_i(t)$ be the counting series of blossoming trees of depth d < i

leaf-path does not go below the x-axis when vertically shifted to start at height i

 $R_i(t)$ counts those maps with dual distance d < i

For $i \ge 1$ let $R_i(t)$ be the counting series of blossoming trees of depth d < i

leaf-path does not go below the x-axis when vertically shifted to start at height i

Rk:
$$[t^n]R_1(t) = \frac{2}{n+2}3^n \operatorname{Cat}_n$$
, $[t^n]R_\infty = 3^n \operatorname{Cat}_n$

 $R_i(t)$ counts those maps with dual distance d < i

For $i \ge 1$ let $R_i(t)$ be the counting series of blossoming trees of depth d < i

leaf-path does not go below the x-axis when vertically shifted to start at height i

 $i \longrightarrow i-1$

 $R_i(t)$ counts those maps with dual distance d < i

For $i \ge 1$ let $R_i(t)$ be the counting series of blossoming trees of depth d < i

leaf-path does not go below the x-axis when vertically shifted to start at height i

 $i \longrightarrow i-1$

 $R_i(t)$ counts those maps with dual distance d < i

Cori-Vauquelin-Schaeffer bijection

Cori-Vauquelin-Schaeffer bijection

Exact expression for $R_i(t)$

[Bouttier-Di Francesco-Guitter'03]

Let $R \equiv R_{\infty}$ given by $R = 1 + 3tR^2$

Exact expression for $R_i(t)$

[Bouttier-Di Francesco-Guitter'03]

Let $R \equiv R_{\infty}$ given by $R = 1 + 3tR^2$

Let $x \equiv x(t)$ be given by $x = t R^2(1 + x + x^2)$

Exact expression for $R_i(t)$

[Bouttier-Di Francesco-Guitter'03]

Let
$$R \equiv R_{\infty}$$
 given by $R = 1 + 3tR^2$
Let $x \equiv x(t)$ be given by $x = tR^2(1 + x + x^2)$

Then

$$R_i = R \cdot \frac{(1 - x^i)(1 - x^{i+3})}{(1 - x^{i+1})(1 - x^{i+2})}$$

for all
$$i \geq 1$$

Exact expression for $R_i(t)$ [Boundary Boundary Boundar

[Bouttier-Di Francesco-Guitter'03]

Let
$$R \equiv R_{\infty}$$
 given by $R = 1 + 3tR^2$
Let $x \equiv x(t)$ be given by $x = tR^2(1 + x + x^2)$

Then

$$R_i = R \cdot \frac{(1 - x^i)(1 - x^{i+3})}{(1 - x^{i+1})(1 - x^{i+2})}$$

for all $i \geq 1$

Let $Q_n =$ random rooted quadrangulation with n faces

Let $X_n = \text{distance}(\text{root-edge}, \text{ random vertex})$ in Q_n

$$\mathbb{P}(X_n \le i) = \frac{[g^n]R_i(g)}{[g^n]R(g)}$$

Exact expression for $R_i(t)$ [Bou

[Bouttier-Di Francesco-Guitter'03]

Let
$$R \equiv R_{\infty}$$
 given by $R = 1 + 3tR^2$
Let $x \equiv x(t)$ be given by $x = tR^2(1 + x + x^2)$

Then

$$R_i = R \cdot \frac{(1 - x^i)(1 - x^{i+3})}{(1 - x^{i+1})(1 - x^{i+2})}$$

for all $i \ge 1$

Let Q_n = random rooted quadrangulation with n faces

Let $X_n = \text{distance}(\text{root-edge}, \text{ random vertex})$ in Q_n

$$\mathbb{P}(X_n \le i) = \frac{[g^n]R_i(g)}{[g^n]R(g)}$$

 $x(g) \sim \tau - c(1 - 12g)^{1/4} \quad \Rightarrow \quad X_n/n^{1/4}$ converges to explicit law

Unfixed genus

Classical counting approaches

• 1st approach: deletion of root-vertex v_0

cf [Arquès-Béraud'00, Vidal-Petitot'10, Courtiel-Yeats-Zeilberger'17]

Classical counting approaches

• 1st approach: deletion of root-vertex v_0

cf [Arquès-Béraud'00, Vidal-Petitot'10, Courtiel-Yeats-Zeilberger'17]

• 2nd approach: configuration model

Let $\mathcal{U}_n :=$ family of 4-regular maps on n vertices that are unrooted & half-edge-labeled & not necessarily connected

$$|\mathcal{U}_{n}| = \frac{1}{4^{n}n!}(4n)!(4n-1)!!$$

$$|\mathcal{U}_{n}| = \frac{1}{4^{n}n!}(4n)!(4n-1)!!$$

$$|\mathcal{U}_{0}| = 1 \text{ with convention } (-1)!! = 1)$$

$$\Rightarrow \mathsf{EGF} \text{ of } \mathcal{U} = \bigcup_{n} \mathcal{U}_{n} \text{ is } U(t) = \sum_{n \ge 0} \frac{|\mathcal{U}_{n}|}{(4n)!}t^{n} = \sum_{n \ge 0} \frac{(4n-1)!!}{4^{n}n!}t^{n}$$

Classical counting approaches

• 1st approach: deletion of root-vertex v_0

cf [Arquès-Béraud'00, Vidal-Petitot'10, Courtiel-Yeats-Zeilberger'17]

• 2nd approach: configuration model

Let $\mathcal{U}_n :=$ family of 4-regular maps on n vertices that are unrooted & half-edge-labeled & not necessarily connected

$$|\mathcal{U}_n| = \frac{1}{4^n n!} (4n)! (4n-1)!!$$

$$|\mathcal{U}_0| = 1 \text{ with convention } (-1)!! = 1)$$

$$\Rightarrow \mathsf{EGF} \text{ of } \mathcal{U} = \bigcup_n \mathcal{U}_n \text{ is } U(t) = \sum_{n \ge 0} \frac{|\mathcal{U}_n|}{(4n)!} t^n = \sum_{n \ge 0} \frac{(4n-1)!!}{4^n n!} t^n$$

$$\Rightarrow \mathsf{GF} \text{ of (rooted) 4-regular maps is } M(t) = 4t \frac{\mathrm{d}}{\mathrm{d}t} \log(U(t))$$

Another expression (via Gaussian integrals) [Bessis-Itzykson-Zuber'80] $(2 tr^4/4 - r^2/2)$

Configuration model yields M

$$(t) = \frac{\int x^2 e^{tx^4/4 - x^2/2} dx}{\int e^{tx^4/4 - x^2/2} dx} - 1$$

(uses
$$(2n-1)!! = \frac{1}{\sqrt{2\pi}} \int x^{2n} e^{-x^2/2} dx$$
)

Another expression (via Gaussian integrals) [Bessis-Itzykson-Zuber'80] essis-Itzykson-Zuber'80] Configuration model yields $M(t) = \frac{\int x^2 e^{tx^4/4 - x^2/2} dx}{\int e^{tx^4/4 - x^2/2} dx} - 1$ (uses $(2n-1)!! = \frac{1}{\sqrt{2\pi}} \int x^{2n} e^{-x^2/2} dx$) Let $p_i^{(t)}(x) = x^i + a^{(t)}x^{i-1} + \cdots$ be the unique monic polynomials orthogonal for the scalar product $\langle F, G \rangle = \int F(x)G(x)e^{tx^4/4-x^2/2}dx$ (t-deformation of Hermite polynomials)

Another expression (via Gaussian integrals) essis-Itzykson-Zuber'80] Configuration model yields $M(t) = \frac{\int x^2 e^{tx^4/4 - x^2/2} dx}{\int e^{tx^4/4 - x^2/2} dx} - 1$ [Bessis-Itzykson-Zuber'80] (uses $(2n-1)!! = \frac{1}{\sqrt{2\pi}} \int x^{2n} e^{-x^2/2} dx$) Let $p_i^{(t)}(x) = x^i + a^{(t)}x^{i-1} + \cdots$ be the unique monic polynomials orthogonal for the scalar product $\langle F, G \rangle = \int F(x)G(x)e^{tx^4/4-x^2/2}dx$ (t-deformation of Hermite polynomials) let $r_i(t) = \frac{h_i(t)}{h_{i-1}(t)}$ Let $h_i(t) := \langle p_i^{(t)}, p_i^{(t)} \rangle$ (the *i*th norm)

Another expression (via Gaussian integrals) essis-Itzykson-Zuber'80] Configuration model yields $M(t) = \frac{\int x^2 e^{tx^4/4 - x^2/2} dx}{\int e^{tx^4/4 - x^2/2} dx} - 1$ [Bessis-Itzykson-Zuber'80] (uses $(2n-1)!! = \frac{1}{\sqrt{2\pi}} \int \overline{x^2 n e^{-x^2/2} dx}$) Let $p_i^{(t)}(x) = x^i + a^{(t)}x^{i-1} + \cdots$ be the unique monic polynomials orthogonal for the scalar product $\langle F, G \rangle = \int F(x)G(x)e^{tx^4/4-x^2/2}dx$ (t-deformation of Hermite polynomials) Let $h_i(t) := \langle p_i^{(t)}, p_i^{(t)} \rangle$ (the *i*th norm) let $r_i(t) = \frac{h_i(t)}{h_{i-1}(t)}$ Then $M(t) = r_1(t) - 1$ (since $p_0^{(t)}(x) = 1$ and $p_1^{(t)}(x) = x$) and moreover $r_1(t), r_2(t), \ldots$ satisfy the recurrence $r_0 = 0$ $|r_i(t) = i + tr_i(t) \cdot (r_{i-1}(t) + r_i(t) + r_{i+1}(t))|$ for $i \ge 1$

Another expression (via Gaussian integrals) essis-Itzykson-Zuber'80] Configuration model yields $M(t) = \frac{\int x^2 e^{tx^4/4 - x^2/2} dx}{\int e^{tx^4/4 - x^2/2} dx} - 1$ [Bessis-Itzykson-Zuber'80] (uses $(2n-1)!! = \frac{1}{\sqrt{2\pi}} \int x^{2n} e^{-x^2/2} dx$) Let $p_i^{(t)}(x) = x^i + a^{(t)}x^{i-1} + \cdots$ be the unique monic polynomials orthogonal for the scalar product $\langle F, G \rangle = \int F(x)G(x)e^{tx^4/4-x^2/2}dx$ (*t*-deformation of Hermite polynomials) Let $h_i(t) := \langle p_i^{(t)}, p_i^{(t)} \rangle$ (the *i*th norm) let $r_i(t) = \frac{h_i(t)}{h_{i-1}(t)}$ Then $M(t) = r_1(t) - 1$ (since $p_0^{(t)}(x) = 1$ and $p_1^{(t)}(x) = x$) and moreover $r_1(t), r_2(t), \ldots$ satisfy the recurrence $r_0 = 0 \quad \left| r_i(t) = i + tr_i(t) \cdot (r_{i-1}(t) + r_i(t) + r_{i+1}(t)) \right| \text{ for } i \ge 1$ $\Rightarrow r_i(t) = i + 3i^2t^2 + (18i^3 + 6i)t^4 + (135i^4 + 162i^2)t^6 + \cdots$

Another expression (via Gaussian integrals) essis-Itzykson-Zuber'80] Configuration model yields $M(t) = \frac{\int x^2 e^{tx^4/4 - x^2/2} dx}{\int e^{tx^4/4 - x^2/2} dx} - 1$ [Bessis-Itzykson-Zuber'80] (uses $(2n-1)!! = \frac{1}{\sqrt{2\pi}} \int x^{2n} e^{-x^2/2} dx$) Let $p_i^{(t)}(x) = x^i + a^{(t)}x^{i-1} + \cdots$ be the unique monic polynomials orthogonal for the scalar product $\langle F, G \rangle = \int F(x)G(x)e^{tx^4/4-x^2/2}dx$ (*t*-deformation of Hermite polynomials) let $r_i(t) = \frac{h_i(t)}{h_{i-1}(t)}$ Let $h_i(t) := \langle p_i^{(t)}, p_i^{(t)} \rangle$ (the *i*th norm) Then $M(t) = r_1(t) - 1$ (since $p_0^{(t)}(x) = 1$ and $p_1^{(t)}(x) = x$) and moreover $r_1(t), r_2(t), \ldots$ satisfy the recurrence $r_0 = 0 \quad \left| r_i(t) = i + tr_i(t) \cdot (r_{i-1}(t) + r_i(t) + r_{i+1}(t)) \right| \text{ for } i \ge 1$ $\Rightarrow r_i(t) = i + 3i^2t^2 + (18i^3 + 6i)t^4 + (135i^4 + 162i^2)t^6 + \cdots$ in particular $M(t) = r_1(t) = 1 + 3t + 24t^2 + 297t^3 + \cdots$

 $N\mbox{-}{\rm face\mbox{-}{\rm colored\ map\ }=\ map\ where\ each\ face\ receives\ a\ color\ in\ [1..N]$

For $N \ge 1$, let $\overline{M}(t, N) := \text{GF}$ of N-face-colored rooted 4-regular maps i.e., each map with f faces is counted with weight N^f (**Rk**: $M(t) = \overline{M}(t, 1)$)

 $N\mbox{-}{\rm face\mbox{-}colored\ map} = {\rm map\ where\ each\ face\ receives\ a\ color\ in\ [1..N]}$

For $N \ge 1$, let $\overline{M}(t, N) := \text{GF}$ of N-face-colored rooted 4-regular maps i.e., each map with f faces is counted with weight N^f (**Rk**: $M(t) = \overline{M}(t, 1)$)

Using matrix integrals (over $N \times N$ Gaussian hermitian matrices) and orthogonal polynomials, one obtains

$$\overline{M}(t,N) = -N^2 + \sum_{i=1}^{N-1} \left(r_i(t) + r_{i+1}(t) \right)$$

 $N\mbox{-}{\rm face\mbox{-}colored\ map} = {\rm map\ where\ each\ face\ receives\ a\ color\ in\ } [1..N]$

For $N \ge 1$, let $\overline{M}(t, N) := \text{GF}$ of N-face-colored rooted 4-regular maps i.e., each map with f faces is counted with weight N^f (**Rk**: $M(t) = \overline{M}(t, 1)$)

Using matrix integrals (over $N \times N$ Gaussian hermitian matrices) and orthogonal polynomials, one obtains

$$\overline{M}(t,N) = -N^2 + \sum_{i=1}^{N-1} \left(r_i(t) + r_{i+1}(t) \right)$$

= $(2N^3 + N)t^2 + (9N^4 + 15N^2)t^4 + (54N^5 + 198N^3 + 45N)t^6 + \cdots$
 \bigcirc
 \bigcirc
 \bigcirc

 $N\mbox{-}{\rm face\mbox{-}colored\ map} = {\rm map\ where\ each\ face\ receives\ a\ color\ in\ [1..N]}$

For $N \ge 1$, let $\overline{M}(t, N) := \text{GF}$ of N-face-colored rooted 4-regular maps i.e., each map with f faces is counted with weight N^f (**Rk**: $M(t) = \overline{M}(t, 1)$)

Using matrix integrals (over $N \times N$ Gaussian hermitian matrices) and orthogonal polynomials, one obtains $\overline{M}(t,N) = -N^2 + \sum_{i=1}^{N-1} (r_i(t) + r_{i+1}(t))$ $= (2N^3 + N)t^2 + (9N^4 + 15N^2)t^4 + (54N^5 + 198N^3 + 45N)t^6 + \cdots$

Compared properties R_i vs r_i $r_0 = 0$ $R_0 = 0$ $r_i = i + t r_i (r_{i-1} + r_i + r_{i+1})$ $R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$

Compared properties R_i	VS r_i
$R_0 = 0$	$r_0 = 0$
$R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$	$r_i = \mathbf{i} + t r_i (r_{i-1} + r_i + r_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \operatorname{cst}$	

Compared properties R_i	VS r_i
$R_0 = 0$	$r_0 = 0$
$R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$	$r_i = i + t r_i (r_{i-1} + r_i + r_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \operatorname{cst}$	
$\searrow R_1 = R - tR^3$	
with $R=R_\infty=1+3tR^2$	

Compared properties R_i vs r_i $R_0 = 0$ $R_i = 1 + t R_i(R_{i-1} + R_i + R_{i+1})$ invariant: $R_i - tR_{i-1}R_iR_{i+1} = \text{cst}$ $M_1 = R - tR^3$ with $R = R_\infty = 1 + 3tR^2$ $R_1(t) \in \text{Rat}(R(t))$ is algebraic

Compared properties R_i	VS r_i
$R_0 = 0$	$r_0 = 0$
$R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$	$r_i = i + t r_i (r_{i-1} + r_i + r_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \operatorname{cst}$	diff. relation: $4t \frac{r'_i}{r} = r_{i+1} - r_{i-1} - 2$
$\blacktriangleright R_1 = R - tR^3$	
with $R=R_{\infty}=1+3tR^2$	
$R_1(t) \in \operatorname{Rat}(R(t))$ is algebraic	

Compared properties
$$R_i$$
 vs r_i
 $R_0 = 0$
 $R_i = 1 + t R_i(R_{i-1} + R_i + R_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \text{cst}$
 $R_1 = R - tR^3$
with $R = R_\infty = 1 + 3tR^2$
 $R_1(t) \in \text{Rat}(R(t))$ is algebraic
diff. relation: $4t\frac{r'_i}{r_i} = r_{i+1} - r_{i-1} - 2$
 $r_1 = 1 + 2t^2r_1 + t^2r_1^2 + 2t^3r_1'$

Compared properties R_i	VS r_i
$R_0 = 0$	$r_0 = 0$
$R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$	$r_i = \mathbf{i} + t r_i (r_{i-1} + r_i + r_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \operatorname{cst}$ $\searrow R_1 = R - tR^3$	diff. relation: $4t \frac{r'_i}{r_i} = r_{i+1} - r_{i-1} - 2$
with $R=R_{\infty}=1+3tR^2$	$r_1 = 1 + 2t^2r_1 + t^2r_1^2 + 2t^3r_1'$
$R_1(t) \in \operatorname{Rat}(R(t))$ is algebraic	$r_1(t)$ is differentially algebraic

Compared properties R_i	VS r_i
$R_0 = 0$	$r_0 = 0$
$R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$	$r_i = \mathbf{i} + t r_i (r_{i-1} + r_i + r_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \text{cst}$ $\searrow R_1 = R - tR^3$ with $R = R_\infty = 1 + 3tR^2$ $R_1(t) \in \text{Rat}(R(t))$ is algebraic	diff. relation: $4t\frac{r'_i}{r_i} = r_{i+1} - r_{i-1} - 2$ $r_1 = 1 + 2t^2r_1 + t^2r_1^2 + 2t^3r_1'$ $r_1(t)$ is differentially algebraic
iteratively, $R_i \in \operatorname{Rat}(R)$ for $i \ge 2$ is also algebraic (in same extension)	

Compared properties R_i	VS r_i
$R_0 = 0$	$r_0 = 0$
$R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$	$r_i = \mathbf{i} + t r_i (r_{i-1} + r_i + r_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \operatorname{cst}$ $\searrow R_1 = R - tR^3$	diff. relation: $4t \frac{r'_i}{r_i} = r_{i+1} - r_{i-1} - 2$ $r_1 - 1 + 2t^2r_1 + t^2r^2 + 2t^3r'_1$
with $R = R_{\infty} = 1 + 3tR$ $R_1(t) \in \operatorname{Rat}(R(t))$ is algebraic	$r_1 - 1 + 2t r_1 + t r_1 + 2t r_1$ $r_1(t)$ is differentially algebraic
iteratively, $R_i \in \operatorname{Rat}(R)$ for $i \ge 2$ is also algebraic (in same extension)	iteratively, $r_i \in \operatorname{Rat}(t, r_1)$ for $i \ge 2$ is also differentially algebraic

Compared properties R_i	VS r_i
$R_0 = 0$	$r_0 = 0$
$R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$	$r_{i} = \mathbf{i} + t r_{i}(r_{i-1} + r_{i} + r_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \text{cst}$ $\searrow R_1 = R - tR^3$ with $R = R_\infty = 1 + 3tR^2$ $R_1(t) \in \text{Rat}(R(t))$ is algebraic iteratively, $R_i \in \text{Rat}(R)$ for $i \ge 2$ is also algebraic (in same extension)	diff. relation: $4t \frac{r'_i}{r_i} = r_{i+1} - r_{i-1} - 2$ $r_1 = 1 + 2t^2r_1 + t^2r_1^2 + 2t^3r_1'$ $r_1(t)$ is differentially algebraic iteratively, $r_i \in \operatorname{Rat}(t, r_1)$ for $i \ge 2$ is also differentially algebraic
Exact expression of $R_i(t)$ $R_i = R \cdot \frac{(1 - x^i)(1 - x^{i+3})}{(1 - x^{i+1})(1 - x^{i+2})}$ where $x = t R^2(1 + x + x^2)$	

Compared properties R_i	VS r_i
$R_0 = 0$	$r_0 = 0$
$R_i = 1 + t R_i (R_{i-1} + R_i + R_{i+1})$	$r_i = \mathbf{i} + t r_i (r_{i-1} + r_i + r_{i+1})$
invariant: $R_i - tR_{i-1}R_iR_{i+1} = \text{cst}$ $\searrow R_1 = R - tR^3$ with $R = R_\infty = 1 + 3tR^2$ $R_1(t) \in \text{Rat}(R(t))$ is algebraic	diff. relation: $4t\frac{r'_i}{r_i} = r_{i+1} - r_{i-1} - 2$ $r_1 = 1 + 2t^2r_1 + t^2r_1^2 + 2t^3r_1'$ $r_1(t)$ is differentially algebraic
iteratively, $R_i \in \operatorname{Rat}(R)$ for $i \ge 2$ is also algebraic (in same extension)	iteratively, $r_i \in \operatorname{Rat}(t,r_1)$ for $i \geq 2$ is also differentially algebraic
Exact expression of $R_i(t)$ $R_i = R \cdot \frac{(1-x^i)(1-x^{i+3})}{(1-x^{i+1})(1-x^{i+2})}$ where $x = t R^2(1+x+x^2)$	Polynomiality in i of coefficients $r_i(t) = i + 3i^2t + (18i^3 + 6i)t^2$ $+(135i^4 + 162i^2)t^3 + \cdots$

Bijective proof that $M(t) = r_1(t) - 1$

The planar bijection via Eulerian orientations

Rk: via the bijection, the 4-regular map is endowed with a spanning tree T and an orientation O such that edges of T are oriented toward the root and edges not in T turn clockwise around the tree

α -orientations

[Propp'02], [Felsner'03]

For G = (V, E) a graph and $\alpha : V \to \mathbb{N}$

 α -orientation of G = orientation where every vertex v has outdegree $\alpha(v)$

α -orientations

[Propp'02], [Felsner'03]

For G = (V, E) a graph and $\alpha : V \to \mathbb{N}$

 α -orientation of G = orientation where every vertex v has outdegree $\alpha(v)$

Let $v_0 \in V$ be a marked vertex an orientation is v_0 -accessible if $\forall v \in V$ there is a path from v to v_0

α -orientations

[Propp'02], [Felsner'03]

For G = (V, E) a graph and $\alpha : V \to \mathbb{N}$

 α -orientation of G = orientation where every vertex v has outdegree $\alpha(v)$

Let $v_0 \in V$ be a marked vertex

an orientation is v_0 -accessible if $\forall v \in V$ there is a path from v to v_0

Property: either all α -orientations are v_0 -accessible or none In the first case (and non-emptiness), α is called **root-accessible**

Application to 4-regular maps

Application to 4-regular maps

Rk: different from extensions of Schaeffer's bijection with control on the genus [Lepoutre'19, Albenque-Lepoutre'20, Lepoutre-Dolega'20]

Generating function expressions

Generating function expressions

Bijection for $N \ge 2$?

Let $\widehat{M}(t, N) = \mathsf{GF}$ of fully-N-colored 4-regular maps (every color $\in [1..N]$ is used by at least one face)

a fully N-colored map, for ${\cal N}=3$

Bijection for $N \ge 2$? Let $\widehat{M}(t, N) = \text{GF of fully-N-colored 4-regular maps}$ (every color $\in [1..N]$ is used by at least one face)

a fully $N\mbox{-}{\rm colored}$ map, for N=3

N-1 marked matched pairs allowed not to be forward

Bijection for $N \ge 2$? Let $\widehat{M}(t, N) = \mathsf{GF}$ of fully-N-colored 4-regular maps (every color $\in [1..N]$ is used by at least one face)

N-1 marked matched pairs allowed not to be forward

Rk: approach extends to Eulerian maps with prescribed vertex-degrees 1-vertex case: Harer-Zagier formula (has bijective proofs)