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Éric Fusy (CNRS/LIGM, Université Gustave Eiffel)
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Blossoming trees
Blossoming tree = rooted binary tree where each node carries

an arrow, called a bud

# blossoming trees on n nodes = 3n
(2n)!

n!(n+ 1)!
T

leaf-path w(T ) = 1

A blossoming tree T is balanced if w(T ) does not go below the x-axis

1

There are
2

n+ 2
3n

(2n)!

n!(n+ 1)!
balanced blossoming trees on n nodes
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Blossoming tree → bi-pointed 4-regular planar map

leaf-path e

f

bi-pointed 4-regular map
(marked face f+marked edge e)

Bijection gives 3nCatn =
n+ 2

2
·# rooted 4-regular maps

nesting depth of e

d = 2

= dual distance d from e to f
d = 2

d is the depth (− minimal level) of leaf-path

[Bouttier-Di Francesco-Guitter’03]



Two-point function Ri(t)
For i ≥ 1 let Ri(t) be the counting series of
blossoming trees of depth d < i

m
leaf-path does not go below the x-axis
when vertically shifted to start at height i

Ri(t) counts those maps
with dual distance d < i

e

f

d = 2

i i−1



Two-point function Ri(t)
For i ≥ 1 let Ri(t) be the counting series of
blossoming trees of depth d < i

m
leaf-path does not go below the x-axis
when vertically shifted to start at height i

Ri(t) counts those maps
with dual distance d < i

e

f

d = 2

i i−1

Rk: [tn]R1(t) =
2

n+23
nCatn, [tn]R∞ = 3nCatn



Two-point function Ri(t)
For i ≥ 1 let Ri(t) be the counting series of
blossoming trees of depth d < i

m
leaf-path does not go below the x-axis
when vertically shifted to start at height i

Ri(t) counts those maps
with dual distance d < i

Equation:

Ri(t) = 1 + tRi+1(t)Ri(t) + tRi(t)Ri(t) + tRi(t)Ri−1(t)

i

e

f

d = 2

i

i i−1

i-1 i i-1 i i-1leaf-path

Rk: [tn]R1(t) =
2

n+23
nCatn, [tn]R∞ = 3nCatn



Two-point function Ri(t)
For i ≥ 1 let Ri(t) be the counting series of
blossoming trees of depth d < i

m
leaf-path does not go below the x-axis
when vertically shifted to start at height i

Ri(t) counts those maps
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Equation:

Ri(t) = 1 + tRi+1(t)Ri(t) + tRi(t)Ri(t) + tRi(t)Ri−1(t)

i

e

f

d = 2

i

i i−1

i-1 i i-1 i i-1

Ri(t) = 1 + tRi(t) · (Ri−1(t) +Ri(t) +Ri+1(t))R0 = 0 for i ≥ 1

leaf-path

Rk: [tn]R1(t) =
2

n+23
nCatn, [tn]R∞ = 3nCatn
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Cori-Vauquelin-Schaeffer bijection

conditions:

• min-label = 1
• all edges satisfy

i j |i− j| ≤ 1

v0

e

pointed quadrangulation
+ distance-labeling

Ri(t) = GF of i

> 0

bijection yields Ri(t) = GF of v

e. . .

dist(v, e) ≤ i− 1
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Exact expression for Ri(t)

Ri = R · (1− xi)(1− xi+3)

(1− xi+1)(1− xi+2)

Let R ≡ R∞ given by R = 1 + 3tR2

[Bouttier-Di Francesco-Guitter’03]

Let x ≡ x(t) be given by x = tR2(1 + x+ x2)

Then for all i ≥ 1

Let Xn = distance(root-edge, random vertex) in Qn

Let Qn = random rooted quadrangulation with n faces

P(Xn ≤ i) =
[gn]Ri(g)

[gn]R(g)

x(g) ∼ τ − c(1− 12g)1/4 ⇒ Xn/n
1/4 converges to explicit law
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1
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unrooted & half-edge-labeled & not necessarily connected

• 2nd approach: configuration model

⇒ EGF of U = ∪nUn is U(t) =
∑
n≥0

|Un|
(4n)!

tn =
∑
n≥0

(4n− 1)!!

4nn!
tn

(|U0| = 1 with convention (−1)!! = 1)

⇒ GF of (rooted) 4-regular maps is M(t) = 4t
d

dt
log(U(t))
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Extension to face-colored maps (via matrix integrals)

N -face-colored map = map where each face

4-face-coloring
4

1

1

2

For N ≥ 1, let M(t,N) := GF of N-face-colored rooted 4-regular maps

Using matrix integrals (over N ×N Gaussian hermitian matrices)
and orthogonal polynomials, one obtains

(Rk: M(t) =M(t, 1))

receives a color in [1..N ]

i.e., each map with f faces is counted with weight Nf

M(t,N) = −N2+

N−1∑
i=1

(
ri(t)+ri+1(t)

)
= (2N 3 +N)t2 + (9N 4 + 15N 2)t4 + (54N 5 + 198N 3 + 45N)t6 + · · ·

Planar case (N →∞)
tMplanar(t) = 2

∫
R(t)dt

with R(t) = 1 + 3tR(t)2
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is also differentially algebraic

Exact expression of Ri(t)

Ri = R · (1− xi)(1− xi+3)

(1− xi+1)(1− xi+2)

x = tR2(1 + x+ x2)where

Polynomiality in i of coefficients

ri(t) = i+ 3i2t+ (18i3 + 6i)t2

+(135i4 + 162i2)t3 + · · ·



Bijective proof that M(t) = r1(t)− 1



The planar bijection via Eulerian orientations
[F’07, Albenque-Poulalhon’15]

Rk: via the bijection, the 4-regular map is endowed with a spanning tree T
and an orientation O such that edges of T are oriented toward the root
and edges not in T turn clockwise around the tree



α-orientations
For G = (V,E) a graph and α : V → N
α-orientation of G = orientation where every vertex v has outdegree α(v)

[Propp’02], [Felsner’03]
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α-orientations
For G = (V,E) a graph and α : V → N
α-orientation of G = orientation where every vertex v has outdegree α(v)

[Propp’02], [Felsner’03]

Let v0 ∈ V be a marked vertex
an orientation is v0-accessible if ∀v ∈ V there is a path from v to v0

Property: either all α-orientations are v0-accessible or none

In the first case (and non-emptiness), α is called root-accessible
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α(v) = |ES|
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by a certain traversal ([Poulalhon-Schaeffer’06] for 3-orientations)
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Let M be a rooted planar map, with vertex-set V

spanning trees of M root-accessible α : V → N

3
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‘minimal’ α-orientation
(unique without ccw cycle)

From the minimal α-orientation, the spanning tree is computed
by a certain traversal ([Poulalhon-Schaeffer’06] for 3-orientations)

We apply it to 4-regular planar maps, with α(v) = 2
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4-regular map M any eulerian orientation of M

(α(v) = 2 ∀v)

traversal procedure

minimal eulerian orientation of M
balanced blossoming tree

+ ‘forward’ matching of buds with leaves



Application to 4-regular maps
4-regular map M any eulerian orientation of M

(α(v) = 2 ∀v)

traversal procedure

minimal eulerian orientation of M
balanced blossoming tree

+ ‘forward’ matching of buds with leaves

Rk: different from extensions of Schaeffer’s bijection with control on the genus
[Lepoutre’19, Albenque-Lepoutre’20, Lepoutre-Do lega’20]
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Generating function expressions

i = 4

z4

z2

Let r̂i(t) = GF i-balanced blossoming trees

weight z34z
2
3z

2
2

with weight zh per leaf of height h

Equation:

r̂i(t) = zi + t r̂i+1(t)r̂i(t) + t r̂i(t)r̂i(t) + t r̂i(t)r̂i−1(t)

i i i-1 i i-1 i i-1

r̂i(t) = zi + tr̂i(t) · (r̂i−1(t) + r̂i(t) + r̂i+1(t))r̂0 = 0 for i ≥ 1

leaf-path

We have Ri(t) = r̂i(t)|zh=1 ri(t) = r̂i(t)|zh=h

bijection
⇓

M(t) = r̂1(t)|zh=h

combinatorial interpretation
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Bijection ⇔ leaf-extensions + Schaeffer’s planar construction

Rk: Let ri(t, q) := r̂i|zj=[j], where [j] := 1 + · · · + qj−1 =
1− qj

1− q
Then r1(t, q) = GF of Eulerian maps with q conjugate to crossing-number

Ri(t) = ri(t, 0) ri(t) = ri(t, 1) w.r.t canonical
spanning tree

3
2

2
0 2

1

1
0

2
13

1
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Let M̂(t,N) = GF of fully-N-colored 4-regular maps

(every color ∈ [1..N ] is used by at least one face)
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Bijection for N ≥ 2 ?
Let M̂(t,N) = GF of fully-N-colored 4-regular maps

(every color ∈ [1..N ] is used by at least one face)

3
1

1

2
a fully N -colored map, for N = 3

M̂(t,N) = GF of

Rk: approach extends to Eulerian maps with prescribed vertex-degrees

N − 1 marked matched pairs

1-vertex case: Harer-Zagier formula (has bijective proofs)

N = 3

allowed not to be forward

bijection ?


