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tools: matrix integrals (1) = 3

Question: bijective interpretation of (xx) 7 (unified with (x) ?7)
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Blossoming trees

Blossoming tree = rooted binary tree where each node carries
an arrow, called a bud

(2n)!
nl(n+1)!

T leaf-path w(T") = 1IN\ \ .............................. N

A blossoming tree T is balanced if w(7T') does not go below the x-axis

T # blossoming trees on n nodes = 3"

1N NN

balanced blossoming trees on n nodes

2 (2n)!

n

n+2 nl(n+1)!

There are
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Balanced blossoming tree — rooted 4-regular planar map
[Schaeffer'97]

Inverse mapping
cut the edges dual to those in
the leftmost BST of the dual map

[
’

leaf-path

2-3"(2n)!
n!(n+2)!

= there are rooted 4-regular planar maps on n vertices
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Blossoming tree — bi-pointed 4-regular planar map
[Bouttier-Di Francesco-Guitter'03]

bi-pointed 4-regular map
(marked face f+marked edge e)

nesting depth of e
— dual distance d from e to f

d is the depth (— minimal level) of leaf-path
n + 2

Bijection gives 3" Cat,, = . # rooted 4-regular maps
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Two-point function R;(1)

For ¢+ > 1 let R;(t) be the counting series of
blossoming trees of depth d < 7

0

leaf-path does not go below the z-axis
when vertically shifted to start at height 2

d =

R;(t) counts those maps
with dual distance d < ¢

Rk: [t"]|R1(t) = —253"Cat,, [t"]Rs = 3"Cat,

Equation: z{
i T

Rz(t) = 1 + tRfH_l(t)Ri(t)

Ro=0 |Ri(t)=1+tRi(t)  (Ri_1(t) + Ri(t) + Ris1(2))
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Cori-Vauquelin-Schaeffer bijection
n faces

conditions:
pointed quadrangulation e min-label =1
+ distance-labeling e all edges satisfy
O—Q@ li—jl <1

R:(t) = GF of /@\ bijection yields R;(t) = GF of
>V dist(v,e) <i—1
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Exact expression for Rz(t) [Bouttier-Di Francesco-Guitter'03]

Let R = R given by R =1+ 3tR?
Let x = x(t) be given by x=tR*(1+ z+ z°)

(1—a?)(1 — i*3)
(1 _ ,CCi_l_l)(l _ $i+2)

Then Ri=R- for all 4 > 1

Let (),, = random rooted quadrangulation with n faces

Let X,, = distance(root-edge, random vertex) in ().,

. _ lg"1Ri(g)
RN RLI0)

x(g) ~7—c(l— 129)1/4 = Xn/nl/4 converges to explicit law



Unfixed genus
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cf [Arques-Béraud’'00, Vidal-Petitot'10, Courtiel-Yeats-Zeilberger'17]

M(t) = 3t + 6t M(t) + (42 M (¢ )—th( )+t M(t)?

2 loops 1 loop —
at v, at vy - = — o~

still connected disconnected

e 2nd approach configuration model

Let U, := family of 4-regular maps on n vertices that are
unrooted & half-edge-labeled & not necessarily connected
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d
= GF of (rooted) 4-regular maps is M(t) = 4t£ log(U(t))
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[Bessis-Itzykson-Zuber'80]
Configuration model y

2 pta* /4—a? /24
ields | M (t) = Jame T Pda
fetac [4—22 /2

— 1

(uses (2n — 1! = \/%7 fa;Q”e_‘BQ/Qdm)

Let p () = 2 + a®ai=1 4 ...

(

orthogonal for the scalar product < F,G >= [ F(x)G(x)e

(t-deformation of Hermite polynomials)

be the unique monic polynomials

te* /4—x /de

Let h;(t) :==< p!”, p'" > (the ith norm) let 7;(t) = hhi(t()t)
i—1

Then[M(t) = r1(t) — 1] (since p{”(z) = 1 and p{” (z) = z)

and moreover r1(t),r2(t), ... satisfy the recurrence

ro =0 T‘i(t):”I;—I—t’l“i(t)'(Ti_l(t)—FTi(t)—l—”l“i_i_l(t)) fore >1

= 7(t) =i + 3i°t% + (18¢% + 64)t* + (1354* + 162i°)t° + - --
in particular M (t) = r1(t) = 1 4 3t + 24t + 2973 + - -
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Extension to face-colored maps (via matrix integrals)

4-face-coloring

N-face-colored map = map where each face
receives a color in [1..V]

For N > 1, let M(t,N) := GF of N-face-colored rooted 4-regular maps
i.e., each map with f faces is counted with weight N/

(Rk: M(t) = M(t, 1))

Using matrix integrals (over N x N Gaussian hermitian matrices)

and orthogonal polynomials, one obtains
N-—1

M(t,N)==N?>+)  (ri({t)+rit1(t))
1=1

= (2N° + N)t* + (ON* 4 15N)t*

@®3

Planar case (N — o)
t Mplanar (t) = 2 [ R(t)dt
with R(t) = 1 + 3tR(t)*

+ (54N° + 198N + 45N)t° +
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Compared properties i;
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invariant: R; — tRZ'_lRf,;RH_l = CSt
“~ R, =R tR?
with R = R, = 1 + 3tR?
R (t) € Rat(R(t)) is algebraic

iteratively, R; € Rat(R) for ¢ > 2
is also algebraic (in same extension)

/
diff. relation: 4% — Tit] — Ti_] — 2

\ :

ri= 14 2t%r) + t2rf + 2t37)
r1(t) is differentially algebraic

iteratively, r; € Rat(t,ry) for ¢ > 2
is also differentially algebraic

Exact expression of R;(t)

(1—a")( -
(1 — 2i+1)(1 — 2i+2)

r=tR*(1+x+ 2?)

xi—l—S)

Ri=R-

where

Polynomiality in 7 of coefficients
ri(t) =i+ 3%t + (18> + 61)t?
+(1354% + 162i2)t3 + - - -



Bijective proof that M (t) = ri(t) — 1



The planar bijection via Eulerian orientations
[F'07, Albenque-Poulalhon’15]

v

Rk: via the bijection, the 4-regular map is endowed with a spanning tree T’
and an orientation O such that edges of I’ are oriented toward the root

and edges not in 1" turn clockwise around the tree
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a-orientations [Propp’'02], [Felsner'03]
For G=(V,FE)agraphand a: V — N

a-orientation of G = orientation where every vertex v has outdegree a(v)

. not vyyp-accessible

> alv) = |Bs|

Let vg € V be a marked vertex
an orientation is vg-accessible if Vv € V there is a path from v to vg

Property: either all a-orientations are vg-accessible or none
In the first case (and non-emptiness), « is called root-accessible
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Bernardi’s bijection (planar case) [Bernardi’07]
Let M be a rooted planar map, with vertex-set V'

spanning trees of M < root-accessible o : V' — N

oD oD oL

‘minimal’ a- orlentatlon
(unique without ccw cycle)

From the minimal a-orientation, the spanning tree is computed
by a certain traversal ([Poulalhon-Schaeffer'06] for 3-orientations)

We apply it to 4-regular planar maps, with (v

@F @F@P &
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Application to 4-regular maps

4-regular map M any eulerian orientation of M

(a(v) = 2 Vo)

/

l traversal procedure

J

minimal eulerian orientation of M

balanced blossomlng tree
+ ‘forward’ matching of buds with leaves

Rk: different from extensions of Schaeffer’s bijection with control on the genus
[Lepoutre’19, Albenque-Lepoutre'20, Lepoutre-Dotega’20]
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3
A - \2 \2
'\_\_yx <—>.,o° 1000

height of

\ '/down—step
> indices = # crossings _\/\/\

L = 7 such crossings /
index < h

leaf-path A
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X

T weight 232523 bijection

Let 7#;(t) = GF ¢-balanced blossoming trees {L
with weight z; per leaf of height h = 71(t)|2n=h

Equation: z/ Yy Y{»
ri(t) = 2 ‘ ‘ t)Fi-1(
leaf-path zj\ zl/\v ’Iz’—l
fo =0 |7i(t) for i > 1




Generating function expressions

X
T weight 232523 bijection
Let 7;(¢ ) = GF ¢-balanced blossoming trees {L
with weight z; per leaf of height h = 71(t)|2n=h
Equation:
.Y ‘Zv ‘Zra
fz(t) = Z Tz 1




Planarized version of the bijection
Bijection < leaf-extensions + Schaef er s planar construction




Planarized version of the bijection
Bijection < leaf-extensions + Schaef er s planar construction

T z=[j]" where [j] =14 --- + qj—l _

Rk: Let Ti(?f, q) —

—_
|
K

Then r(t,q) = GF of Eulerian maps with ¢ conjugate to
Rz<t) = Tz'<t7 O) Tz(t> p— Ti<t7 1) k w.r.t canonical

spanning tree



Bijection for N > 2 7
Let ]\/Z(t, N) = GF of fully- N-colored 4-regular maps
(every color € [1..N] is used by at least one face)

é . a fully N-colored map, for N =3
N
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Bijection for N > 2 7
Let ]\/Z(t, N) = GF of fully- N-colored 4-regular maps
(every color € [1..N] is used by at least one face)

a fully N-colored map, for N =3

4
-
’¢7 ~o
1

N — 1 marked matched pairs
allowed not to be forward

N

M(t,N)=GF of /

bijection 7

Rk: approach extends to Eulerian maps with prescribed vertex-degrees
1-vertex case: Harer-Zagier formula (has bijective proofs)



