
Multicritical Schur measures

Jérémie Bouttier
Based on joint work with Dan Betea and Harriet Walsh

arXiv:2012.01995 [math.CO], longer version to appear soon

Institut de physique théorique
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Introduction

Parsons et al., PRL114, 213002

(2015)

Driven by progress in experiments on cold
atoms, much attention has been recently
devoted to systems of trapped fermions.

The simplest model of noninteracting 1D
fermions in a harmonic potential is known to
be equivalent to the Gaussian Unitary
Ensemble of random matrix theory.

For a large number of fermions, universal
asymptotic behaviours are observed both in
the bulk and at the edge. The latter is
described by the Airy ensemble and the
Tracy-Widom β = 2 distribution (or their
finite-temperature analogues), which are
closely related with the Kardar-Parisi-Zhang
equation.
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Universality of the Airy ensemble
For noninteracting 1D trapped fermions, the one-particle hamiltonian is of
the form

H = − ~2

2m

d2

dx2
+ V (x)

where V (x) is the confining potential.

At low temperatures, close to the
edge and Fermi level, V (x) can be approximated by a linear potential so

H ≈ − d2

dx2
+ x

and the eigenfunctions are given by Airy functions:

ψλ(x) := Ai(x + λ), Hψλ = −λψλ.

At zero temperature we must fill all negative energy states: the propagator
(or correlation kernel) is given by the Airy kernel

KAi(x , x
′) :=

∫ ∞
0

Ai(x + λ) Ai(x ′ + λ)dλ.

See e.g. J.-M. Stéphan, SciPost Phys. 6, 057 (2019) for more details.
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Multicritical edge behaviour

Le Doussal, Majumdar and Schehr (PRL121, 030603, 2018) considered
“flat traps” for which

H = − ~2

2m

d2

dx2
+ gx2n, g > 0, n = 1, 2, 3, . . .

In momentum space it reads

H = (−1)n~2ng
d2n

dp2n
+

p2

2m
≈ (−1)n~2ng

d2n

dp2n
+ pep.

In dimensionless units the eigenfunctions of (−1)n d2n

dp2n + p are given by

ψ
(n)
λ (p) := Ai2n+1(p + λ) with the generalized Airy functions

Ai2n+1(p) :=
1

2iπ

∫
iR+ε

e(−1)n+1 z2n+1

2n+1
−pzdz .

Jérémie Bouttier (IPhT, CEA Paris-Saclay) Multicritical Schur measures 18 January 2022 6 / 25



Multicritical edge behaviour

Le Doussal, Majumdar and Schehr (PRL121, 030603, 2018) considered
“flat traps” for which

H = − ~2

2m

d2

dx2
+ gx2n, g > 0, n = 1, 2, 3, . . .

In momentum space it reads

H = (−1)n~2ng
d2n

dp2n
+

p2

2m

≈ (−1)n~2ng
d2n

dp2n
+ pep.

In dimensionless units the eigenfunctions of (−1)n d2n

dp2n + p are given by

ψ
(n)
λ (p) := Ai2n+1(p + λ) with the generalized Airy functions

Ai2n+1(p) :=
1

2iπ

∫
iR+ε

e(−1)n+1 z2n+1

2n+1
−pzdz .

Jérémie Bouttier (IPhT, CEA Paris-Saclay) Multicritical Schur measures 18 January 2022 6 / 25



Multicritical edge behaviour

Le Doussal, Majumdar and Schehr (PRL121, 030603, 2018) considered
“flat traps” for which

H = − ~2

2m

d2

dx2
+ gx2n, g > 0, n = 1, 2, 3, . . .

In momentum space it reads

H = (−1)n~2ng
d2n

dp2n
+

p2

2m
≈ (−1)n~2ng

d2n

dp2n
+ pep.

In dimensionless units the eigenfunctions of (−1)n d2n

dp2n + p are given by

ψ
(n)
λ (p) := Ai2n+1(p + λ) with the generalized Airy functions

Ai2n+1(p) :=
1

2iπ

∫
iR+ε

e(−1)n+1 z2n+1

2n+1
−pzdz .

Jérémie Bouttier (IPhT, CEA Paris-Saclay) Multicritical Schur measures 18 January 2022 6 / 25



Multicritical edge behaviour

Le Doussal, Majumdar and Schehr (PRL121, 030603, 2018) considered
“flat traps” for which

H = − ~2

2m

d2

dx2
+ gx2n, g > 0, n = 1, 2, 3, . . .

In momentum space it reads

H = (−1)n~2ng
d2n

dp2n
+

p2

2m
≈ (−1)n~2ng

d2n

dp2n
+ pep.

In dimensionless units the eigenfunctions of (−1)n d2n

dp2n + p are given by

ψ
(n)
λ (p) := Ai2n+1(p + λ) with the generalized Airy functions

Ai2n+1(p) :=
1

2iπ

∫
iR+ε

e(−1)n+1 z2n+1

2n+1
−pzdz .

Jérémie Bouttier (IPhT, CEA Paris-Saclay) Multicritical Schur measures 18 January 2022 6 / 25



Multicritical edge behaviour

At zero temperature, the propagator/correlation kernel is given by

A2n+1(p, p′) =

∫ ∞
0

Ai2n+1(p + λ) Ai2n+1(p′ + λ)dλ

and the distribution of the highest momentum is given by the Fredholm
determinant

F (2n + 1; s) = det(I − A2n+1)L2(s,∞).

which generalizes the Tracy-Widom β = 2 distribution (n = 1).

These Fredholm determinants were studied by Cafasso, Claeys and Girotti
(IMRN, 2021) who showed that they are related with solutions of the
Painlevé II hierarchy. As noted by Le Doussal et al., this hierarchy also
appears in the context of multicritical unitary random matrix models,
introduced by Periwal and Shevitz (1990) and generalizing the
Gross-Witten-Wadia model. Can we explain this connection?
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Our work

We introduce multicritical Schur measures which are probability
distributions over integer partitions:

which have the same edge behaviour as the LDMS model,

which admit an exact mapping to the Periwal-Shevitz unitary matrix
models.
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Schur measures (Okounkov 2001)
An integer partition is a finite noncreasing sequence of positive integers. It
is usually represented as a Young diagram. They are in correspondence
with 1D fermionic configurations (“Maya diagrams”).

A Schur measure is a probability measure on partitions of the form

Prob(λ) =
1

ZX ,Y
sλ(X )sλ(Y )

where sλ is the Schur function associated with the partition λ and X ,Y
are two sets of variables.
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Fermionic formulation
We consider fermions on a 1D lattice with a one-particle hamiltonian of
the form

(Hψ)k = kψk + t1(ψk−1 + ψk+1) +
t2

2
(ψk−2 + ψk+2) + · · ·

where t1, t2, . . . are real parameters.

The eigenfuctions are given by the
generalized Bessel functions:

ψ
(`)
k = Jk−`(t1, t2, . . .) =

1

2iπ

∮
dz

zk−`+1
et1(z−z−1)+

t2
2

(z2−z−2)+···.

The ground state is obtained by filling all states with negative energy so
that the correlation kernel is given by

K (k, k ′) =
∑
`>0

Jk+`(t1, t2, . . .)Jk ′+`(t1, t2, . . .)

which matches the Schur measure with ti = pi (X ) = pi (Y ) for all i .
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Asymptotic behaviour
Now suppose that we take ti = θγi , with γi fixed and θ →∞. We also
take k = aθ for some fixed a.

Then, we have

Jk(t1, t2, . . .) =
1

2iπ

∮
eθS(z)dz

S(z) := −a log z + γ1(z − z−1) +
γ2

2
(z2 − z−2) + · · ·

As argued by Okounkov, asymptotics follow from the saddle-point method.
The saddle points are the roots of S ′(z) = 0 and there are generically two
dominant saddle points z+ = z−1

− (depending on a) with

z± real: “frozen region”

z± complex: “bulk”

z+ = z− = ±1: “edge”.

At the edge we have a double critical point S ′(1) = S ′′(1) = 0, with
generically S ′′′(1) 6= 0: this leads to the Airy kernel.
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Multicritical behaviour
By tuning the γi appropriately, it is possible to have a critical point of
higher order!

S ′(1) = S ′′(1) = · · · = S (2n)(1) = 0, S (2n+1)(1) 6= 0.

This choice is unique if we restrict the support of (γi )i≥1 to a set with n
elements:

“odd-even measure”: only γ1, γ2, . . . , γn nonzero

γi = (−1)i+1 (n − 1)!(n + 1)!

(n − i)!(n + i)!

“odd measure”: only γ1, γ3, . . . , γ2n−1 nonzero

γ2i−1 = (−1)i+1 (n − 1)!n!

(2i − 1)(n − i)!(n + i − 1)!

Jérémie Bouttier (IPhT, CEA Paris-Saclay) Multicritical Schur measures 18 January 2022 13 / 25



Multicritical behaviour
By tuning the γi appropriately, it is possible to have a critical point of
higher order!

S ′(1) = S ′′(1) = · · · = S (2n)(1) = 0, S (2n+1)(1) 6= 0.

This choice is unique if we restrict the support of (γi )i≥1 to a set with n
elements:

“odd-even measure”: only γ1, γ2, . . . , γn nonzero

γi = (−1)i+1 (n − 1)!(n + 1)!

(n − i)!(n + i)!

“odd measure”: only γ1, γ3, . . . , γ2n−1 nonzero

γ2i−1 = (−1)i+1 (n − 1)!n!

(2i − 1)(n − i)!(n + i − 1)!

Jérémie Bouttier (IPhT, CEA Paris-Saclay) Multicritical Schur measures 18 January 2022 13 / 25



Multicritical behaviour
By tuning the γi appropriately, it is possible to have a critical point of
higher order!

S ′(1) = S ′′(1) = · · · = S (2n)(1) = 0, S (2n+1)(1) 6= 0.

This choice is unique if we restrict the support of (γi )i≥1 to a set with n
elements:

“odd-even measure”: only γ1, γ2, . . . , γn nonzero

γi = (−1)i+1 (n − 1)!(n + 1)!

(n − i)!(n + i)!

“odd measure”: only γ1, γ3, . . . , γ2n−1 nonzero

γ2i−1 = (−1)i+1 (n − 1)!n!

(2i − 1)(n − i)!(n + i − 1)!

Jérémie Bouttier (IPhT, CEA Paris-Saclay) Multicritical Schur measures 18 January 2022 13 / 25



Theorem [Betea-B.-Walsh 2021]

Both multicritical Schur measures Pn,θ satisfy

lim
θ→∞

Pn,θ

[
λ1 − bθ

(θd)
1

2n+1

< s

]
= F (2n + 1; s)

with b, d explicit. Furthermore, the odd measure is invariant under
conjugation of partitions hence we can replace λ1 by λ′1 in the statement.
(For the odd-even measure λ′1 has generic edge fluctuations as for n = 1.)

Proof is done by the saddle-point method. By slightly perturbing the
parameters γi , we can in fact obtain the more general Fredholm
determinants considered by Cafasso, Claeys and Girotti. Also, it is possible
to get the finite-temperature version easily (using results from Betea-B.
2019), for which the Fredholm determinant is related to an
integro-differential generalization of the Painlevé II hierarchy (Krajenbrink
2021).
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By slightly perturbing the
parameters γi , we can in fact obtain the more general Fredholm
determinants considered by Cafasso, Claeys and Girotti. Also, it is possible
to get the finite-temperature version easily (using results from Betea-B.
2019), for which the Fredholm determinant is related to an
integro-differential generalization of the Painlevé II hierarchy (Krajenbrink
2021).
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Limit shapes (odd-even case)

-3 -2 -1 1 2 3

1

2

3

n = 1

n = 2

n = 3

n = 4

n = 5

ρoe(u)

Ωoe(u)

u

At the right edge, the density (one-point function) vanishes as (b − u)
1

2n .
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We obtain the same exponent 1
2n at both edges due to symmetry.
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Connection with unitary random matrix models

Proposition (Gessel/Heine/...)

Consider the Schur measure Pt1,t2,... and set

V (z) :=
∑
i≥1

ti
i
z i , fk := [zk ]eV (z)+V (z−1).

Then, we have

e
∑

i

t2
i
i Pt1,t2,...(λ

′
1 ≤ N) = det

1≤i ,j≤N
fi−j = EU(N)

(
expTr(V (U) + V (U†))

)
where U is distributed according to the Haar measure on U(N) and EU(N)

is the corresponding expectation. We can replace λ′1 by λ1 upon changing
ti 7→ (−1)i+1ti .

When we take the ti as in our odd-even multicritical measure, we recover
precisely the unitary matrix models of Periwal and Shevitz (1990)!
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Multicritical unitary random matrix models
The Periwal-Shevitz models (1990) are multicritical generalizations of the
Gross-Witten-Wadia model (1980), whose connection with the Plancherel
measure on partitions was observed by Johansson (1998). We thus extend
this observation to the multicritical setting.

By the Weyl integration formula

EU(N)

(
expTr(V (U) + V (U†))

)
=

1

(2π)NN!

∫
[−π,π]N

∏
k<`

∣∣e iαk − e iα`
∣∣2 N∏

k=1

eV (e iαk )+V (e−iαk )dαk .

As N gets large, the empirical measure on eigenvalues converges to an
equilibrium measure on the unit circle, whose support can be the full circle
(e.g. for V = 0) or a strict subset therefore (“V largely varying”). The
GWW model corresponds to V (U) = gNU and there is a phase transition
between the two situations at g = 1. The PS models correspond to V
higher degree polynomials, with fine-tuned coefficients to modify the
critical exponents of the phase transition.
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Conclusion

We introduced random partitions with a non generic 1
2n+1 exponent for

the fluctuations of the largest parts. These are described by the same
generalized Airy kernel A2n+1 (and corresponding determinantal point
process, Fredholm determinant, etc.) as the multicritical fermionic models
of Le Doussal, Majumdar and Schehr. We also explain the connection with
unitary random matrix models by an exact mapping.

The same models have been considered recently by Kimura and Zahabi
(2021+) in connection with supersymmetric gauge theories. Their work
suggests to consider the limit n→∞ (hard edge?).
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Future directions

In the future, we would like to investigate the case where the order n of
multicriticality is not an integer: we still get a meaningful measure on
partitions, equivalent to a unitary random matrix model.

Recall for
instance the “odd-even measure” which was defined in terms of the
(γi )i≥1 with

γi = (−1)i+1 (n − 1)!(n + 1)!

(n − i)!(n + i)!
= (−1)i+1 Γ(n)Γ(n + 2)

Γ(n − i + 1)Γ(n + i − 1)
.

Challenge: for n non integer, the family (γi )i≥1 does not have finite
support. Polynomials are replaced by series and convergence issues arise.

This (as well as the case n→∞ mentioned before) is work in progress by
Harriet Walsh.
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An analogous Hermitian random matrix model
Consider the usual Hermitian one-matrix model

Z =

∫
dMe−NTrV (M)

Since Brézin-Itzykson-Parisi-Zuber (1978) it is known that this model is
closely related with random maps (perturb V (M) = −1

2M
2 +

∑ gk
k M

k).
Kazakov (1989) showed that, for certain fine-tuned polynomials V , it is
possible to obtain non generic multicritical exponents:

V (M) =
m∑

k=1

vkM
2k , vk ∝

Γ(k −m)

Γ(k + 1
2 )k

, m = 1, 2, 3, . . .

Issue: except for m = 1, this leads to a signed measure on maps, whose
probabilistic interpretation is unclear. Still, lots is known in physics!
Ambjørn, Budd and Makeenko (2016) investigated the case where n
noninteger. For n = s − 1

2 and s ∈] 3
2 ,

5
2 ], we get a “large faces” probability

measure on maps!
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Future directions

My (crazy?) hope is that, in the analogous unitary matrix model, there
could also exist an interesting range of the multicriticality parameter n with
“nice” probabilistic interpretation (connection with a growth model, etc).

It would also be worthwhile to investigate if unitary matrix models have a
nice graphical/topological expansion in terms of maps or related objects.
Periwal and Shevitz make some arguments in that direction (using
U = e iH) but I wonder if this can be put on a rigorous footing.

Finally, all this is in the realm of determinantal point processes /
noninteracting fermions. Could we lift these considerations to interacting
models?

Schur measures → Macdonald/Jack measures

CUE/GUE → β-ensembles

connection with Gaussian multiplicative chaos and Liouville quantum
gravity? See e.g. Chhaibi-Najnudel (2019) on GMCγ vs CβE , etc.
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Thanks for your attention!
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