Bijections for maps on non-oriented surfaces

Maciej Dołęga, IMPAN

I. Maps

Maps

$=$ graphs embedded into a surface (2 -dimensional, compact, connected real manifold without boundary) in a way that the complement of the image is homeomorphic to the collection of open discs called faces

Maps

$=$ graphs embedded into a surface (2 -dimensional, compact, connected real manifold without boundary) in a way that the complement of the image is homeomorphic to the collection of open discs called faces

This is an map on the projective plane
$=$

This is a map on the torus
$=$

Maps

$=$ graphs embedded into a surface (2-dimensional, compact, connected real manifold without boundary) in a way that the complement of the image is homeomorphic to the collection of open discs called faces

This is an map on the projective plane

$$
=\quad \text { rooted } \operatorname{map} \equiv \text { map with }
$$ a distinguished oriented

corner

\equiv distinguished oriented edge in the oriented case (warning: not enough in the non-oriented
we kill automorphisms easier to count/decompose

This is a map on the torus.

case!)

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5 / 4 \cdot \chi(\mathcal{S})} \cdot 12^{n}$, where $c(\mathcal{S})$ is a constant ([Bender-Canfield '86]);

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5 / 4 \cdot \chi(\mathcal{S})} \cdot 12^{n}$, where $c(\mathcal{S})$ is a constant ([Bender-Canfield '86]); universality predicted by topological recursion [Checkhov, Eynard-Orantin
'06,'07+]: for any reasonable model $\mathscr{M}_{\mathcal{S}}$ on an orientable \mathcal{S}

$$
m_{\mathscr{M}_{s}}(n) \sim c\left(\mathscr{M}_{S}\right) \cdot n^{-5 / 4 \times(\mathcal{S})} \cdot \gamma_{\mathscr{M}_{s}}^{n}
$$

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5 / 4 \cdot \chi(\mathcal{S})} \cdot 12^{n}$, where $c(\mathcal{S})$ is a constant ([Bender-Canfield '86]);

Direct combinatorial explanation:

- When $\mathcal{S}=\mathbb{S}^{2}$: two important bijections with tree-like structures.

- root vertex labeled 1 - positive labels
- difference ≤ 1
along edges
- binary rooted tree on n vertices - each vertex has an additional
"bud"
- closing operation leaves the root leaf open

Rooted well-labeled trees
[Cori-Vaquellin '81]

+ [Schaeffer '98]

Balanced blossoming trees
[Schaeffer '97]

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5 / 4 \cdot \chi(\mathcal{S})} \cdot 12^{n}$, where $c(\mathcal{S})$ is a constant ([Bender-Canfield '86]);

Direct combinatorial explanation:

- When $\mathcal{S}=\mathbb{S}^{2}$: two important bijections with tree-like structures.

- root vertex labeled 1 - positive labels
- difference ≤ 1 along edges

Rooted well-labeled trees
[Cori-Vaquellin '81]

+ [Schaeffer '98]

Balanced blossoming trees
[Schaeffer '97]

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5 / 4 \cdot \chi(\mathcal{S})} \cdot 12^{n}$, where $c(\mathcal{S})$ is a constant ([Bender-Canfield '86]);

Direct combinatorial explanation:

- When $\mathcal{S}=\mathbb{S}^{2}$: two important bijections with tree-like structures.

- root vertex labeled 1 - positive labels
- difference ≤ 1
along edges

Rooted well-labeled trees
[Cori-Vaquellin '81]

+ [Schaeffer '98]

Balanced blossoming trees
[Schaeffer '97]

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5 / 4 \cdot \chi(\mathcal{S})} \cdot 12^{n}$, where $c(\mathcal{S})$ is a constant ([Bender-Canfield '86]);

Direct combinatorial explanation:

- When $\mathcal{S}=\mathbb{S}^{2}$: two important bijections with tree-like structures.

- root vertex labeled 1 - positive labels
- difference ≤ 1
along edges

Rooted well-labeled trees
[Cori-Vaquellin '81]

+ [Schaeffer '98]

Balanced blossoming trees
[Schaeffer '97]

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5 / 4 \cdot \chi(\mathcal{S})} \cdot 12^{n}$, where $c(\mathcal{S})$ is a constant ([Bender-Canfield '86]);

Direct combinatorial explanation:

- When $\mathcal{S}=\mathbb{S}^{2}$: two important bijections with tree-like structures.

Rooted well-labeled trees
[Cori-Vaquellin '81]

+ [Schaeffer '98]

Balanced blossoming trees
[Schaeffer '97]

Enumeration of maps...

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $\mathcal{S}=\mathbb{S}^{2}$ is the sphere, then $m_{\mathbb{S}^{2}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5 / 4 \cdot \chi(\mathcal{S})} \cdot 12^{n}$, where $c(\mathcal{S})$ is a constant ([Bender-Canfield '86]);

Direct combinatorial explanation:

- When $\mathcal{S}=\mathbb{S}^{2}$: two important bijections with tree-like structures.

Initial motivation:

- direct explanation of the simple formula of Tutte,
- better understanding of the structure of planar maps
- good way to generate maps

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors ($V_{\bullet}(M)$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors ($V_{\bullet}(M)$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\mathbf{0}}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4 .
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\mathbf{0}}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4 .
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\mathbf{0}}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4 .
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

...or enumeration of bipartite quadrangulations

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathcal{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathcal{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

How these bijections work

How these bijections work

How these bijections work

How these bijections work

How these bijections work

How these bijections work

local rule:

How these bijections work

local rule:

How these bijections work

local rule:

How these bijections work

How these bijections work

How these bijections work

Observation: labels \equiv metric structure of the quadrangulation

How these bijections work

How these bijections work

How these bijections work

How these bijections work

How these bijections work

How these bijections work

Theorem: [Felsner '04]
There is a unique
Eulerian orientation (indegree=outdegree) without clockwise circuit

How these bijections work

How these bijections work

dual map $=$ bipartite quadrangulation

Observation: metric structure in the quadrangulation is again encoded by the blossoming tree!

How these bijections work

Observation: metric structure in the quadrangulation is again encoded by the blossoming tree!

New motivation

Find a bijection between maps and some objects with a WELL-UNDERSTOOD (tree-like) structure!

Understanding a geometry of a random surface:

- growing maps as a discrete model of a continuous manifold,
- metric geometry of a random surface $=$ metric in a random map, when its size tends to infinity,
- bijection helps to understand a discrete surface as a metric space!

New motivation

Find a bijection between maps and some objects with a WELL-UNDERSTOOD (tree-like) structure!		
		Brownian map as a universal object for: - quadrangulations [Le Gall '11
Understanding a geometry of a random surface: - growing maps as a discrete model of a continuous manifold, - metric geometry of a random surface $=$ metric in a random map, when its size tends to infinity, - bijection helps to understand a discrete surface as a metric space!	bijections [Boutier-di Francesco-Guitter '04], [Ambjorn-Budd '13]	- $2 p$-angulations and traingulations [Le Gall '13] - bipartite maps [Abraham '14] - general maps [Bettinelli-Jacob-Miermont '13] - $2 p+1$-angulations [Addario-Berry-Albenque '19]

New motivation

II. Bijections for bipartite quadrangulations and labeled tree-like structures

Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive, then the map is called well-labeled.

Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 . If in addition we have:
- all the vertex labels are positive, then the map is called well-labeled.

Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive, then the map is called well-labeled.

labeled map on the torus

Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive, then the map is called well-labeled.

well-labeled map on the torus

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus-Schaeffer '98]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Are non-orientable maps different?

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;
|dea of how to extend Marcus-Schaeffer bijection:
- local rules are the same,

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular $=$ dual graph has a tree-like structure,

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- position of blue and black edges forces the position of red edges,

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- position of blue and black edges forces the position of red edges,

General case

Theorem [Chapuy-D. '15]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- If the construction of blue graph is local then it is invertible and it leads to BIJECTION!

General case (II)

\{rooted, bipartite quadrangulations on \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)\}$
$\left\{\right.$ rooted, WELL-LABELED, one-face maps on \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)\}$

General case (II)

\{rooted, bipartite quadrangulations on \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)\}$
$\left\{\right.$ rooted, WELL-LABELED, one-face maps on \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)\}$

$$
\Downarrow
$$

\{rooted, POINTED bipartite quadrangulations on \mathcal{S} with n faces and
N_{i} vertices at distance i from the pointed vertex $\left.(i \geq 1)\right\}$

$$
\leftrightarrow
$$

\{rooted, LABELED, one-face maps on \mathcal{S} equipped with a sign $\epsilon \in\{+,-\}$ with N_{i} vertices of label $\left.i+\left(\ell_{\text {min }}-1\right)(i \geq 1)\right\}$

General case (II)

\{rooted, bipartite quadrangulations on \mathcal{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)\}$
\leftrightarrow
\{rooted, WELL-LABELED, one-face maps on \mathcal{S} with n edges and N_{i} vertices of label $i(i \geq 1)\}$
\{rooted, POINTED bipartite quadrangulations on \mathcal{S} with n faces and N_{i} vertices at distance i from the pointed vertex $\left.(i \geq 1)\right\}$
\leftrightarrow
\{rooted, LABELED, one-face maps on \mathcal{S} equipped with a sign $\epsilon \in\{+,-\}$ with N_{i} vertices of label $\left.i+\left(\ell_{\min }-1\right)(i \geq 1)\right\}$

Double rooting trick and Hall's marriage theorem!

Random maps

Let (\mathcal{M}, v) be a map with a distinguished vertex v. We define:

- radius of a $\operatorname{map} \mathcal{M}$ centered at v by the quantity

$$
R(\mathcal{M}, v)=\max _{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u)
$$

- profile of distances from the distinguished point v (for any $r>0$) by:

$$
I_{(\mathcal{M}, v)}(r)=\#\left\{u \in V(\mathcal{M}): d_{\mathcal{M}}(v, u)=r\right\}
$$

Random maps

Let (\mathcal{M}, v) be a map with a distinguished vertex v. We define:

- radius of a $\operatorname{map} \mathcal{M}$ centered at v by the quantity

$$
R(\mathcal{M}, v)=\max _{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u)
$$

- profile of distances from the distinguished point v (for any $r>0$) by:

$$
I_{(\mathcal{M}, v)}(r)=\#\left\{u \in V(\mathcal{M}): d_{\mathcal{M}}(v, u)=r\right\}
$$

Theorem [Chapuy-D. '15]
Let q_{n} be uniformly distributed over the set of rooted, bipartite quadrangulations with n faces on \mathcal{S}, let v_{0} be a root vertex of q_{n} and let v_{*} be uniformly chosen vertex of q_{n}. Then, there exists a continuous, stochastic process $L^{\mathcal{S}}=\left(L_{t}^{\mathcal{S}}, 0 \leq t \leq 1\right)$ such that:
$\bullet\left(\frac{9}{8 n}\right)^{1 / 4} R\left(q_{n}, v_{*}\right) \rightarrow \sup L^{\mathcal{S}}-\inf L^{\mathcal{S}} ;$
$\bullet\left(\frac{9}{8 n}\right)^{1 / 4} d_{q_{n}}\left(v_{0}, v_{*}\right) \rightarrow \sup L^{\mathcal{S}} ;$

- $\frac{I_{\left(q_{n}, v_{*}\right)}\left((8 n / 9)^{1 / 4} \cdot\right)}{n+2-2 h} \rightarrow \mathcal{I}^{\mathcal{S}}$,
where $\mathcal{I}^{\mathcal{S}}$ is defined as follows: for every non-negative, measurable $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$,

$$
\left\langle\mathcal{I}^{\mathcal{S}}, g\right\rangle=\int_{0}^{1} d t g\left(L_{t}^{\mathcal{S}}-\inf L^{\mathcal{S}}\right)
$$

Generalization by Bettinelli

- [Bettinelli '15] rephrased our orientation process of a quadrangulation (given by the Dual Exploration Graph) in terms of level loops.
direct construction of a bijection between pointed quadrangulations and labeled unicellular maps on a non-oriented surface \mathcal{S}
extension to arbitrary bipartite
(and finally not necessarily bipartite - more technical) maps on a non-oriented surface \mathcal{S}.

Bijection with so-called well-labeled unicellular mobiles on \mathcal{S}.

Generalization by Bettinelli

- [Bettinelli '15] rephrased our orientation process of a quadrangulation (given by the Dual Exploration Graph) in terms of level loops.
direct construction of a bijection
between pointed
quadrangulations and labeled unicellular maps on a non-oriented surface \mathcal{S}
extension to arbitrary bipartite
(and finally not necessarily bipartite - more technical) maps on a non-oriented surface \mathcal{S}.

Bijection with so-called well-labeled unicellular mobiles on \mathcal{S}.

Applications: Enumeration of triangulations of any non-oriented surface \mathcal{S}.

III Bijections for bipartite maps and blossoming tree-like structures

Idea

- In the planar case the crucial idea was to use the set of Eulerian orientations and rely on the fact that it is a lattice. In positive genus:
Eulerian maps \neq Bicolorable maps (Bicolorable maps $=$ dual to bipartite maps)
- The set of bicolorable orientations (of a fixed graph) is a lattice [Propp '93]. [Lepoutre '17] used it to extend Schaeffer bijection to all orientable surfaces. Ideas still heavily rely on clockwise/counterclockwise circuits. New ideas:
- try to cut your map using a canonical spanning tree
- redefine blossoming maps

Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):

- buds \uparrow - leafs \mid

Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
\bullet buds $\uparrow \quad$ leafs \upharpoonright
The corner labeling of the one-face blossoming map:
$i+1!$

- root corner label $=0$
- walk around your face and label according to

Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
\bullet buds $\uparrow \quad$ leafs \upharpoonright
The corner labeling of the one-face blossoming map:
$i+1!$

- root corner label $=0$
- walk around your face and label according to

Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
\bullet buds $\uparrow \quad$ leafs \upharpoonright
The corner labeling of the one-face blossoming map:
$i+1!$

- root corner label $=0$
- walk around your face and label according to

Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):

- buds $\uparrow \quad$ leafs \dagger

The corner labeling of the one-face blossoming map:

- root corner label $=0$
- walk around your face and label according to

A map is well-blossoming if it has one-face and

- it is bud-rooted
- the first/second visited side of an edge has label $i+1 / i$

Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):

- buds 4 - leafs \mid

The corner labeling of the one-face blossoming map:

- root corner label $=0$
- walk around your face and label according to

A map is well-blossoming if it has one-face and

- it is bud-rooted
- the first/second visited side of an edge has label $i+1 / i$

Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):

- buds 4 - leafs \mid

The corner labeling of the one-face blossoming map:

- root corner label $=0$
- walk around your face and label according to

A map is well-blossoming if it has one-face and

- it is bud-rooted
- the first/second visited side of an edge has label $i+1 / i$

Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):

- buds 4 - leafs \mid

The corner labeling of the one-face blossoming map:

- root corner label $=0$
- walk around your face and label according to

A map is well-blossoming if it has one-face and

- it is bud-rooted
- the first/second visited side of an edge has label $i+1 / i$

Bijection

Theorem [D.-Lepoutre '20]
There exists a bijection between:

- rooted, bipartite, pointed maps on ANY NON-ORIENTED surface \mathcal{S} with n. black vertices, n_{\circ} white vertices, and n_{k} faces of degree $2 k(k \geq 1)$;
- well-blossoming maps on ANY NON-ORIENTED surface \mathcal{S} with $n_{\bullet}-1$ black buds, n_{\circ} white buds and and n_{k} vertices of degree $2 k(k \geq 1)$;
Additionally, distances from the distinguished point correspond to the corner labeling.

Bijection

Theorem [D.-Lepoutre '20]
There exists a bijection between:

- rooted, bipartite, pointed maps on ANY NON-ORIENTED surface \mathcal{S} with n. black vertices, n_{\circ} white vertices, and n_{k} faces of degree $2 k(k \geq 1)$;
- well-blossoming maps on ANY NON-ORIENTED surface \mathcal{S} with $n_{\bullet}-1$ black buds, n_{\circ} white buds and and n_{k} vertices of degree $2 k(k \geq 1)$;
Additionally, distances from the distinguished point correspond to the corner labeling.

How does it work?

Bijection (II)

Bijection (II)

- label the distances from the distiguished point

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map), whose contour word is maximal in lexicographic order.
Algorithm: A variant
of breadth first search.

Bijection (II)

- draw the dual map

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map), whose contour word is maximal in lexicographic order.
Algorithm: A variant of breadth first search.

Bijection (II)

- draw the dual map

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map), whose contour word is maximal in lexicographic order.
Algorithm: A variant of breadth first search.

Bijection (II)

- draw the dual map
- finish the blossoming map by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map),
whose contour word is maximal in lexicographic order.
Algorithm: A variant of breadth first search.

Bijection (II)

- draw the dual map
- finish the blossoming map by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map),
whose contour word is maximal in lexicographic order.
Algorithm: A variant of breadth first search.

Bijection (II)

- draw the dual map
- finish the blossoming map by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map),
whose contour word is maximal in lexicographic order.
Algorithm: A variant of breadth first search.

Bijection (II)

- draw the dual map
- finish the blossoming map by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map), whose contour word is maximal in lexicographic order.
Algorithm: A variant of breadth first search.

Bijection (II)

- draw the dual map
- finish the blossoming map by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map), whose contour word is maximal in lexicographic order.

Algorithm: A variant of breadth first search.

Bijection (II)

- draw the dual map
- finish the blossoming map by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree \equiv the distances in the initial map), whose contour word is maximal in lexicographic order.
Algorithm: A variant of breadth first search.

Consequences

Theorem [Bender-Canfield '86]
Let

$$
B Q_{\mathcal{S}}(t):=\sum_{M \in \mathcal{B} \mathcal{Q}_{\mathcal{S}}} t^{\chi(\mathcal{S})+\text { number of faces of } \mathrm{M}}
$$

be the univariate generating function of rooted bipartite quadrangulations of S. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T=1+3 t T^{2}, \quad U=t T^{2}\left(1+U+U^{2}\right)$. Then $B Q_{\mathcal{S}}(t)$ is a rational function in U.

Consequences

Theorem [Bender-Canfield '86]
Let

$$
B Q_{\mathcal{S}}(t):=\sum_{M \in \mathcal{B} \mathcal{Q}_{\mathcal{S}}} t^{\chi(\mathcal{S})+\text { number of faces of } \mathrm{M}}
$$

be the univariate generating function of rooted bipartite quadrangulations of S. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T=1+3 t T^{2}, \quad U=t T^{2}\left(1+U+U^{2}\right)$. Then $B Q_{\mathcal{S}}(t)$ is a rational function in U.

> a consequence of our labeled bijection
> [Chapuy-D. '15]

Consequences

Theorem [Bender-Canfield '91]
Let

$$
B Q_{\mathcal{S}}(t):=\sum_{M \in \mathcal{B} \mathcal{Q}_{\mathcal{S}}} t^{\chi(\mathcal{S})+\text { number of faces of } \mathrm{M}}
$$

be the univariate generating function of rooted bipartite quadrangulations of an orientable surface \mathcal{S}. Then $B Q_{\mathcal{S}}(t)$ is a rational function in $\sqrt{1-12 t}$.
$\left\{\begin{array}{l}\text { a consequence of the } \\ \text { blossoming bijection } \\ \text { [Lepoutre '17] }\end{array} \quad \begin{array}{l}\text { also a consequence of the } \\ \text { topological recursion } \\ \text { [Eynard-Orantin '07] }\end{array}\right.$

Consequences

Theorem [Bender-Canfield-Richmond '93 (orientable) Arques-Giorgetti '00 (non-oriented)]
Let

$$
B Q_{\mathcal{S}}(x, y):=\sum_{M \in \mathcal{B} \mathcal{Q}_{\mathcal{S}}} x^{n \bullet(M)} y^{n_{\circ}(M)}
$$

be the bivariate generating function of rooted bipartite quadrangulations of a surface \mathcal{S}. Let

$$
\begin{aligned}
t_{\bullet} & =x+2 t_{\bullet} t_{\circ}+t_{\bullet}^{2} \\
t_{\circ} & =y+2 t_{\bullet} t_{\circ}+t_{\circ}^{2} \\
a & =\sqrt{\left(1-2\left(t_{\bullet}+t_{\circ}\right)\right)^{2}-4 t_{\bullet} t_{\circ}}
\end{aligned}
$$

Then there exists a polynomial $P_{\mathcal{S}}\left(t_{\bullet}, t_{0}, a\right)$ of degree $\leq 3-3 \chi(\mathcal{S})$ such that

$$
B Q_{\mathcal{S}}(x, y)=\frac{P_{\mathcal{S}}\left(t_{\bullet}, t_{\mathrm{o}}, a\right)}{a^{4-5 \chi(\mathcal{S})}}
$$

Moreover $\operatorname{deg}_{a}\left(P_{\mathcal{S}}\right)=0$ when \mathcal{S} is orientable.
4 a consequence of the
blossoming bijection
[D.-Lepoutre '20]
(orientable case worked out by
[Albenque-Lepoutre '20])

THANK YOU!

References:
arXiv:1501.06942
arXiv:1512.02208
arXiv:2002.07238

