Resolution of Liouville CFT: Segal axioms and bootstrap
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Classical mechanics in dimension 2

v

M space of dimension 2 (surface) : points x
» M x R? phase space : points x and velocity ¢ € R? (in fact T*M)

Observables : a € C®(M x R?). ex: the Hamiltonian h=kinetic + potential
energy

v

h(x,€) = [€]* + V(x)
» Dynamics: Hamilton equation for x(t) = (x1(t), x2(t)), £(t) = (&1(t), &2(t))

X5(t) = (B h)(x(1), (), &§(t) = —(Bgh)(x(2),&(1)),  (x(0),£(0)) = (x0, o)

> Gives a flow on (M x R?) (Hamiltonian flow of a vector field Xj)

(x(t),&(2)) = e (x0, o)




Quantum mechanics (in dim 2)

» M x R? phase space : points x and velocity ¢ € R?
» Hilbert space H = L?(M) : points become probability density f € L?(M)

» Observables become linear operator :
a€ C®(MxR?) = A=0p(a): H —H
for example the energy (classical Hamiltonian)
h(x,€) = [¢* + V(x) = H := Op(|¢* + V(X)) : f = (=05 + V(x))f

» Dynamics: Schrodinger equation, for initial data fy € ‘H

[i0:F(£,%) = (HF)(t, %), F(0,%) = fi(x)]

» Quantum evolution flow

ft — eitHfb




Quantum field theory / gravity (in dim 2)

» M surface, considered as a space time, dim = 1 + 1. Example: ¥ := a cylinder
0 = space variable, t = time variable

» Space of fields E(X): typically a Sobolev space H=*(X) , s > 0. Singular
functions (distributions). Points are replaced by fields ®.

» Restriction of fields ® to embedded circles (for example at fixed t) produces
family of fields ¢; on S! evolving

peH(SY) <= 0= 0ne™ > loa? 1+ |n])~* < o0
neZ n
» Probability density become functionals F : H=5(S!) — R.

» Quantization: H = L2(H~5(S!), ;1) , need a measure 2 on E(S!) = H=(S)
= real mathematical difficulty = probability !!



» Dynamics : for F: E(S') — R in H,
U(t)F = e™MF

for some operator called Hamiltonian H: H — H

» probabilistic approach: if (¥, g) is Riemannian (instead of Lorentzian), the
dynamics= Markov process, a contraction semi-group on H = L2(H=S(S!, u))

U(ty=eF

generating some Hamiltonian H : H — H.



Liouville action

Liouville action on Riemannian surface (¥, g) is

1
Selp8) = 3 (140 + QK0+ &),

with Q =2/y+~v/2 and v € (0,2), Ky = 2x Gauss curvature of g

» Critical points of Sy(g,®) are related to finding ®g s.t. K0, = negative
constant.



Liouville field theory

Correlation and partition functions:

Partition fct: the mass of the formal measure e=>=(®:€) D& on space of fields E(X)

(1)sg 22/ e~z S ([P +QKd+e7®)dve p gy physics def / formal
E(x)

)5 g def dVOI(Z) {H e Jx( QKg(CJFXg)*eW(HXg))dVg} dc math def
et/

Xg = Gaussian Free Field on X with covariance Green's function G, for Laplacian A.



Correlation fct: x1,...,x, € ¥ some points, ai,...,a, € R some weights
(H Vo, (Xi))5,e = / e1®la)  gn®a)g=5x(®8) Do physics def / formal
i E(X)

and the math definition

n v/ Vol(X) c
<H Vaj (Xj»z,g déf \/dZ:A/ |:H e (c+Xg (i) e 47r Jx( (\)Kg(CJFXg)JFe7 +Xg))dvg dc
i g




Segal axioms (physics heuristics)

Desintegration of path integral using conditionning on C = 0¥ = 0%: if

SZ((Dag) = 521(¢|217g) + Szz(q)b:z’g)

one should have

—55(%.g) _ =551 (®|m;.8) =55, (®lx,.8)
/E(Z)e o0 /E(c)(/i(zl)’e o D(D)(/E(Z)ve Do) Dy

le= Sle=¢

%)
— / Az, (9)As, () Dy
E(C)

Ay is called amplitude of X;.



Segal axioms

A Conformal Field Theory is
» Object: H a Hilbert space attached to S (for us: H = L2(H~5(S'), i)

» Morphism: to each Riemannian surface (X, g) with parametrized boundary
OF = 1UP_,C;, we associate an amplitude

As ;€ P2(H5(SY)?) = @b

» Conformal invariance: for w € C*°(X) with w =0 on 9%

As eog(p) = edor Jr lle2Kew ps (1)




» Gluing rules: if we glue (X1, g1) with (X2, &) by identifying C;, ~ C),

(0T1 = L1 Gy, and 0%, = U2 C)), for (T, 8) = (S1£X2, g11e2)

“AZ,g = ‘Azlygl Oji—j2 Azzgz ‘

integrate out the j; component of Ay, ., against the j» component of Ay, ,,

% €
. « % "
-—‘—-.'> [

. <& 0
f . 2

As g(¢1 soz,s%ws):/ (1)Azl,g(wl,@2,¢3)Azz,g(¢3,s@4,ws)du(ws)
H—s(S



Hilbert space of Liouville CFT

Hilbert space: if Q := (R?)N" and P = [1>1 %ef%(’(’%*}"%)dxndyn,

H = L*(Re x Q,dc @ P) = L2(H™(SY), d)

where 1 is pushfoward of dc ® P by the real random field

(%)

If b disjoint circles, H®? = L2(H~¢(S')?, dub), take b independent fields (¢!, ...

distributed as in (x)

: 1x,+ iy

0 n n

p=c+> o™, on== :
o 2 /n

n>0



Definition of amplitudes and conditional expectations

Let (X, g) with b parametrized boundary circles and n weighted marked points (x;, «;):

As gx,a(p) = /E(): H e%®(9)e=5x(®8) po physics def / formal
Sle=p J=1
and the rigorous probabilistic definition

d f (Xp+Pe))
AZ,g,x,a( < [Hea’(XD xi)+Pep(x;)) e 471' f):(QKg Xp+Pp)+e?XD+Pe)ydv, .AO ( )

i=1

> & = Xp + Py with o = (¢}, ..., pP) € H=5(Sh)?,

» Xp = GFF with Dirichlet condition, [E = expectation wrt Xp,

» Py = harmonic extension of ¢ on X

> A} (p)=e ~2{(Pz=D)2.#) half_density term (Dg=Dirichlet to Neumann map on

Z,D VAg1).



Segal Axioms are satisfied for Liouville CFT

Theorem (G-Kupiainen-Rhodes-Vargas '21)

1) Let (X, g) be Riemannian surface with b parametrized boundary circles, marked
points x = (x1, ..., Xm) with weight o = (a1, ...,am). Then if Y. a; + Qx(X) >0

AZ,g,x,a G L2(H7€(Sl)b7 dub) — H®b

2) The amplitudes satisfy conformal invariance required in Segal axioms.
3) The amplitudes satisfy gluing properties required in Segal axioms.



The propagator and the Hamiltonian

For the flat annulus A; = ({ze Cle ' < |z| <1}, g = |dz|| ), define the amplitude as

above

Ap (g, ¢) =E [e’ﬁ Ju 00 ))dvg} o 3((Da,—D)(,¢),(¢.4"))

where Dy, =Dirichlet-to-Neumann of A; and D = |09y| (note: Dp, — D is smoothing).

Define the associated operator S(t) : H — H:

o€ HUS), [(SWANE) = [ Al #IF)IuE)




idea 1: gluing two annuli produces bigger annuli = S(t) should be a semi-group.

>
¢
é B

Ay

with Ay, , = {|z] € [e72,e7 1]}

idea 2: gluing annulus A; with a disk D produces a bigger disk =

S(t)Ap o = eMAp -
(&)



Proposition (G-Kupiainen-Rhodes-Vargas '20)

2
The operator e~ (PRt (t) = e~ ™M is a Markov process, a contraction semi-group on
H = L%(R x Q; dc ® P) with self-adjoint generator

1 1
H= 5(—(‘93 + Q>4 2P +€7°V) = Hg + 5S¢V

2
with P the infinite harmonic oscillator and V € L+ () a positive potential/measure:
- 1
P = V b, ’WZJ(G) d9
>l 0 + @0l VD) =5 [
where @ = o — 5= [ p(0)d0 = o — c.

Tool: Feynmann-Kac representation of e™*H — Vincent's talk.



Spectral resolution for the free field Hamiltonian Hg
Fact 1: Hgp = —92 + Q? + P has continuous spectrum [Q?, o), eigenfunctions are
P, Ho(eP ) = (p° + Q% + k| + [I])e™ Y
with

Ui = [ [ o Cin) b, (v0), Pra = (I + [1])tbwa

indexed by k = (k1,...,kn,0,...),0 = (l,...,ly,0,...) € NN finite sequences,
hi(x) Hermite polynomial and |k| =), nk, € N.

Fact 2: Plancherel formula: for uy,up € H = L?(R x Q)

(un, u)pe = > [ (ur, €P i) (eP 4, u)3dp
klen 7R

Fact 3: p — ePyyq extends analytically to C, in particular for ip = a € R~



Diagonalization of H using scattering theory:

Theorem (G-Kupiainen-Rhodes-Vargas '20)

Let v € (0,2),Q =2/~ + /2. Then
» 3 a complete family of eigenstates ®qipk1 € € “°L*(R. x Q) labeled by p € R
and k,1 € NN s.¢t.

Q2 p2
HOg ipkl = (7 + ) + k| + |||)¢Q+ip,k,l-

> Poyipk) is a complete family diagonalizing H: Yu1, up € L?(R x Q)

(ur, u2)y2 = Z / (U1, PQtip k) 12 (P Q+ip k> U2) 24P
kIeN




Link with the amplitude of the disk

Proposition (G-Kupiainen-Rhodes-Vargas'20)

1) The (probabilistic) amplitude of the unit disk (D, |dz|?) with 1 marked point at
x =0, weight a < Q

Pa(p) 1= Ap a(p) = E[e200+PA0—5 [ 000 ] ¢ ela-0-2)ei2(R x 0)

is an eigenfunction of H:

Hoo = a(Q — %)d)a = 20,0,

2) The map o +— @, extends analytically to Re(a) < Q and ®g4ip00 = Po+ip
3) Same for o — ®g )



Imierx
1

1
Analyticity région k— Spectrum line

E Q+ iR
Probabilistic region E
TN e T Re a
Figure: Analytic continuation of eigenstates W, x| and probabilistic region, Ay := |k| + |I|.

In probabilistic region, intertwining (scattering):
Py = lim et(AaHkHll\)eftH(e(an)cwkl)_
w t—00 N———

Ho eigenst



A different basis related to Virasoro algebra

» For two Young diagrams v = (v; > --- > 1) and 0 = (¥ > --- > ), (vj € N)
there is a canonical eigenfunction of H

VQtipwp € Span{Pqiipki| k| + (I = [v] + [P}

obtained from Virasoro algebra, more adapted to the problem

» (Votipu,i7)pw,p is a basis but not orthonormal

()= > Y /0 (U1, Y Quipwin) (W Qripw o » U2) Qg 1p (1 V) Q gl (B, 7) dp

v |=Iv] |7 |=[?]

Q@+ip(v, 7) are Gram matrices of change of basis.




Conformal Bootstrap for general surfaces

Theorem (G-Kupiainen-Rhodes-Vargas 21": modular bootstrap)

For a closed Riemannian surface (¥,g) with n marked points x = (xi,...,xn) € "
and weights o = (o, ..., ) € (0, Q)", then

(Vay (31) - Vo, (505 g—C/ (. 0)| Foala) Pelp

» o(p,a) is a product of 3-point correlations functions on S?

» q+— Fpal(q) = conformal blocks are holomophic in q = (qu, ..., q3n—3+n), the

plumbing (complex) coordinates on the moduli space My, , of Riemann surfaces,
h = genus(X).

» (g > 0 an explicit constant depending on g.



Aqe

Figure: The plumbed surfaces >4 with four pairs of pants Py, ..., Ps and six annuli
A A

q1sc 1 48qe



t

Figure: The plumbing with parameter g = e~ /% of two pairs of pants, viewed as gluing an
annulus A, = {z € D||q| < |z| < 1} with a twist of angle 6 between the two pairs of pants.
The length for the flat metric |dz|?/|z|? of the annulus is t.

In terms of amplitudes: composition with e~t*/M where M is generator of rotations
i0
z— ez,



|dea of proof : genus 2

: o olifv): I_ . ,
(Forget the Young diagrams to simplify): assume ® g, basis of eigenfunctions of H

B
sy
"
>

<1>}:,g = /H (513 Azl,g(wlv P2, 903)A227g(9017 ©2, @3)dﬂ3(9017 2, @3)

1) Use gluing rule (Segal axiom)

=(As, g, Asy g) He3



2) Use spectral decomposition (Plancherel formula)

(Asy g0 As, g ) pes = /]R , (Ax,.g: ©F1PQ+in ) 153 ()1 PQipy Ay g ) wea dpr dp2dps

+
3) Analytic continuation in «j = Q + ip; to come back to o < Q real of

W(ag,a2,03) = / (As, g ®]3:1¢0<1>H®3
(RT)3

4) Gluing rule: ®,, = ADO,aJ- thus

W(a1, a2, a3) = (Va; (x1) Va, (%2) Vs (33))s2.¢ = CPO%(ay, 0z, a3)

D,
i— D= Xy
Q2
De>Dx = n
D;



Conclusion: using analytic continuation again in «;
(Drg = /( . CPOZ2(Q-+ipy, Q+ip2, Q+ips) CPV%*(Q—ip1, Q—ip2, Q—ip3)dp1dp2dps
R+

But if take into account the Young diagram part of spectral resolution: use Ward
identities and obtain conformal block

(Dyg= /( o CPOLL(Q+ipy, Q+ipa, Q+ip3) CPO%2(Q—ip1, @ —ip2, @—ip3)| Fp|?dp
R

Change of moduli of surface: glue annuli of moduli ¢ = (q1, g2, g3) € D3 between ¥;
and ¥, this only enters the conformal block

(1)5qeq = /( . CPOP2(Q+ipy, Q+ip2, Q+ips) CVO%*(Q—ip1, Q—ip2, Q—ip3)| Fp(q) *dp
R



Another example: torus 1 point

= — X
- v
o >

e =yl i A

1-point function on torus T2 = C/(27Z + 277Z), with g = €™

_146Q2
_ |q| 12

(Vo G52)) 2 = 0

/0 C(Q + Ipa at, Q - ip)’q’_zAQ+ip|FP:0¢1(q)‘2dp



Remarks:
> first mathematical proof of the explicit expressions proposed by physicists
(Knizhnik, Belavin, Sonoda, Polchinski, Teschner ...).

» the bootstrap formula depends on the chosen decomposition into pairs of pants,
annuli with 1 marked point/insertion and disks with 1 or 2 marked
points/insertions

P proves crossing symmetries: formulas for correlations functions given by bootstrap
approach do not depend on the decomposition into geometric blocks (although
conformal blocks do)

» implies convergence a.e. P € R of conformal block series (this was an open

problem)
k k3h—3+n
fP,a(q) = Z Wk(aa p)qll cee q3Zh_;1n
kENgh73+n
for g = (q1,.-.,93n—3+n) € D3h=3+1 Marden-Kra plumbing coordinates; here

wk (v, p) are representation theoretic constants depending only on Virasoro
commutation relations.



