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Limit theorems for Bessel and Dunkl processes of
large dimension

Jeannette Woerner
Technische Universität Dortmund

based on joint work with Michael Voit

- Multivariate Bessel processes
- Associated ODEs
- Limit theorems for N →∞
- Connections to free probability
- Extensions to Dunkl processes
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Motivation

- Multivariate Bessel and Dunkl processes of dimension N have a
background in interacting particle systems of Calogero- Moser-
Sutherland type, we will consider two types, the case AN−1 and BN .

- Dunkl processes are jump diffusions, where the jumps occur when
particles change position or sign. The radial part is a Bessel process.

- The joint distribution of the components of a multivariate Bessel process
at time t = 1 corresponds to the joint distribution of the eigenvalues of
random matrices, i.e. the ordered eigenvalues of β-Hermite and
β-Laguerre ensembles.

Aim:
Derive the semicircle, Marchenko-Pastur and related laws for the
empirical measure of Bessel and Dunkl processes with growing dimension
as an analogon to the classical results for random matrices.
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General outline of the technique

- Consider the freezing limit first.
- Derive limit results for the frozen process via recurrence relations for
the moments.
- Interpret the limiting laws with the help of Stieltjes- and R-transforms
from free probability.
-Extend the results to the original stochastic process setting with
martingale techniques.

Observation:
The limiting laws stay the same.
All information on the limit is encoded in the frozen process.
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Generators and Weyl chambers AN−1

For AN−1, we have a multiplicity k ∈]0,∞[, the processes live on the
closed Weyl chamber

CA
N := {x ∈ RN : x1 ≥ x2 ≥ . . . ≥ xN},

and the generator of the transition semigroup is

Lf :=
1

2
∆f + k

N∑
i=1

(∑
j 6=i

1

xi − xj

) ∂

∂xi
f , (1)

where we assume reflecting boundaries, i.e., the domain of L is

D(L) := {f |CA
N

: f ∈ C (2)(RN), f invariant under all coordinate permutations}.
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Generators and Weyl chambers BN

For BN , we have the multiplicity k = (k1, k2) ∈]0,∞[2, the processes live
on

CB
N := {x ∈ RN : x1 ≥ x2 ≥ . . . ≥ xN ≥ 0},

and the generator of the transition semigroup is

Lf :=
1

2
∆f + k2

N∑
i=1

∑
j 6=i

( 1

xi − xj
+

1

xi + xj

) ∂

∂xi
f + k1

N∑
i=1

1

xi

∂

∂xi
f ,

where we again assume reflecting boundaries, i.e., L has the domain

D(L) := {f |CB
N

: f ∈ C (2)(RN), f invariant under all permutations

and sign changes of all coordinates}.
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Stochastic differential equation

Theorem

(Chybiryakov, Gallardo and Yor (2008), Graczyk and Malecki (2014))
Assume that k > 0. Then, for x ∈ CN in the closed Weyl chamber and
t > 0, the Bessel process (Xt,k)t≥0 satisfies

X0,k = x , dXt,k = dBt +
1

2
(∇(lnwk))(Xt,k) dt

with an N-dimensional Brownian motion (Bt)t≥0 and

wA
k (x) :=

∏
i<j

(xi − xj)
2k , wB

k (x) :=
∏
i<j

(x2i − x2j )2k2 ·
N∏
i=1

x2k1i ,

has a unique (strong) solution (Xt,k)t≥0. If all components of k are at
least 1/2, then (Xt,k)t>0 lives on the interior on CN almost surely.
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Freezing limit

An important role plays the limit k →∞ which in physics corresponds to
the case of low temperature and a decreasing influence of the
Brownian motion. For the Bessel processes (Xt,k)t≥0 of type AN−1

dX i
t,k = dB i

t + k
∑
j 6=i

1

X i
t,k − X j

t,k

dt (i = 1, . . . ,N).

the renormalized processes (X̃t,k := Xt,k/
√
k)t≥0 satisfy

dX̃ i
t,k =

1√
k
dB i

t +
∑
j 6=i

1

X̃ i
t,k − X̃ j

t,k

dt (i = 1, . . . ,N).

and the limit leads to the following ODE.

J.H.C. Woerner (TU Dortmund) 7 / 46



FoGruLogosmall

tudl ogocmyk.pdf

ODE in the case AN−1

dx

dt
(t) = H(x(t)), x(0) = x0 (2)

with

H(x) :=
(∑
j 6=1

1

x1 − xj
, . . . ,

∑
j 6=N

1

xN − xj

)
.

has a unique solution for all t ≥ 0 in the sense that [0,∞[→ CA
N , t 7→ x(t)

is continuous such that x(t) is in the interior of CA
N and solves the ODE in

(2) for t > 0.
We denote the solutions of the ODE by

φN := (φN,1, . . . , φN,N)

.
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Special solution

Lemma (Stieltjes)

For y ∈ CA
N , the following statements are equivalent:

(1) The function 2
∑

i ,j :i<j ln(xi − xj)− ‖x‖2/2 is maximal at y ∈ CA
N ;

(2) For i = 1, . . . ,N: 1
2yi =

∑
j :j 6=i

1
yi−yj ;

(3) The vector

z := (z1, . . . , zN) := (y1/
√

2, . . . , yN/
√

2)

consists of the ordered zeroes of the Hermite polynomials HN .

For the vector z as above and each c ≥ 0, a solution of the ODE above
with start in cz is given by

φ(t) =
√

2t + c2 · z .
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The empirical measure

Aim: Determine the limit as N →∞ of the normalized empirical measure
of the solutions of the ODE.
We take (xN,1, . . . , xN,N) ∈ CA

N as starting points of the solution φN(t)
and define the empirical measure

µN,t :=
1

N
(δφN,1(t)/

√
N + . . .+ δφN,N(t)/

√
N) (3)

for t ≥ 0. Denote the l-th moment (l ∈ N0) µN,t by

SN,l(t) :=

∫
R
y l dµN,t(y) =

1

N l/2+1
(φN,1(t)l + . . .+ φN,N(t)l).

Hence we have to calculate symmetric polynomials.
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Calculation of empirical moments I
Clearly SN,0(t) = 1. Moreover, by the ODE,

d

dt
SN,1(t) =

1

N3/2

N∑
i ,j=1;i 6=j

1

φN,i (t)− φN,j(t)
= 0,

i.e., SN,1(t) = SN,1(0) for all t ≥ 0.

d

dt
SN,2(t) =

2

N2

N∑
i ,j=1;i 6=j

φN,i (t)

φN,i (t)− φN,j(t)
=

2

N2
· N(N − 1)

2
=

N − 1

N

(4)
and

d

dt
SN,3(t) =

3

N5/2

N∑
i ,j=1;i 6=j

φN,i (t)2

φN,i (t)− φN,j(t)

=
3

2N5/2

N∑
i ,j=1;i 6=j

(φN,i (t) + φN,j(t)) =
3(N − 1)

N
SN,1(0). (5)
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Calculation of empirical moments II

for l ≥ 4 we obtain

d

dt
SN,l(t) =

l

N l/2+1

N∑
i ,j=1;i 6=j

φN,i (t)l−1

φN,i (t)− φN,j(t)

=
l

2

(1− l

N
SN,l−2(t) +

l−2∑
k=0

SN,l−2−k(t)SN,k(t)
)
. (6)
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Recurrence relation for the limiting empirical
moments

Lemma

Let (xN,k)1≤k≤N ⊂ R be starting sequences such that for all l ∈ N0,
cl(0) := limN→∞ SN,l(0) = limn→∞

1
N l/2+1 (x lN,1 + . . .+ x lN,N) <∞ exists.

Then for all l ∈ N0,
cl(t) := lim

N→∞
SN,l(t)

exists locally uniformly in t ∈ [0,∞[. For each l ∈ N0, cl(t) is a
polynomial in t of degree at most bl/2c with a nonnegative “leading”
coefficient of order bl/2c. Moreover, the cl(t) satisfy

cl(t) = cl(0) +
l

2

∫ t

0

( l−2∑
k=0

cl−2−k(s)ck(s)
)
ds. (7)

J.H.C. Woerner (TU Dortmund) 13 / 46
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Catalan numbers

The Catalan numbers may be defined via the recurrence relation

C0 = C1 = 1, Cn+1 =
n∑

k=0

CkCn−k (n ≥ 1).

Hence comparison with our derived recurrence relation implies:
The polynomial c2l(t) has the degree l with the Catalan number Cl as
leading coefficient for l ∈ N0.

J.H.C. Woerner (TU Dortmund) 14 / 46
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Example: Semicircle Law

Assume that xN,k = 0 for all N, k. Then c0(0) = 1 and cl(0) = 0 for l ≥ 1.
Therefore c0(t) = 1, c1(t) = 0, c2(t) = t and c3(t) = 0 for t ≥ 0 and

c2l(t) = Cl t
l and c2l+1(t) = 0 (t ≥ 0, l ∈ N0).

For R > 0, a random variable XR with the semicircle law µsc,R with
density fR(x) := 2

πR2

√
R2 − x2 for |x | ≤ R and fR(x) = 0 otherwise has

the moments

E (X 2n
R ) =

(
R

2

)2n

Cn and E (X 2n+1
R ) = 0 for n ≥ 0.

By the moment convergence theorem for t > 0 the empirical measures
µN,t of the (renormalized) solutions of our ODEs with start in the origin
tend weakly to µsc,2

√
t for N →∞.
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General Moment Method

We choose (xN,n)N≥1,1≤n≤N ⊂ R with xN,n−1 > xN,n for 2 ≤ n ≤ N − 1
such that the empirical measures

µN,0 :=
1

N
(δxN,1/

√
N + . . . δxN,N/

√
N)

tend weakly to µ for N →∞, i.e., by the moment convergence theorem,
that

lim
N→∞

SN,l(0) := lim
N→∞

1

N l/2+1
(x lN,1 + . . .+ x lN,N) = cl (l ≥ 0).

If
|cl | ≤ (cl)l for all l ≥ 0 and some c > 0. (8)

holds, then for each t ∈ [0,∞[, the sequence (cl(t))l≥0 is the sequence of
moments of some unique probability measure µt ∈ M1(R) for which (8)
also holds. Moreover, the µN,t tend weakly to µt for N →∞.
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Limiting Distribution

Question:
How can we interpret the limiting distribution?

Hint:
For Gaussian unitary ensembles it is well-know that the limit is the free
additive convolution of the semicircle law with the empirical measure of a
second added random matrix.

Conjecture:
µt is the free additive convolution between the starting measure µ and
the semicircle law µsc,2

√
t .
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Stieltjes Transform
Recall the definition of the Stieltjes transform

Gµ(z) :=

∫
R

1

z − x
dµ(x) for z ∈ H := {z ∈ C : =z > 0} (9)

of a probability measure µ ∈ M1(R). Clearly, Gµ is analytic on H. We next
derive by the recurrence relation the PDE for the Stieltjes transform

G (t, z) := Gµt (z) (t ≥ 0, z ∈ H)

of the measure µt . It satisfies Burgers equation

Gt(t, z) = −G (t, z)Gz(t, z).

Idea of the proof: Use

G (t, z) =

∫
R

1

z − x
dµt(x) =

∞∑
l=0

cl(t)

z l+1

J.H.C. Woerner (TU Dortmund) 18 / 46
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R-Transform
With the aid of the R-transform of measures µ ∈ M1(R) which is defined
as the formal power series Rµ(z) :=

∑∞
n=0 kn+1(µ)zn with the free

cumulants kn(µ) of the measure µ for which all moments exist. The
functions Rµ and Gµ are related by

z − 1

Gµ(z)
= Rµ(Gµ(z)). (10)

Hence we may transform the PDE for the Stieltjes transform into a
PDE for the R-transform:

Rt(t, z) = z (11)

with R(0, z) = Rµ(z) the R-transform of the starting measure µ.
Therefore,

R(t, z) = zt + R(0, z).

and since the R-transform is additive with respect to free convolution

zt + R(0, z) = Rµsc,2√t
(z) + Rµ(z) = Rµsc,2√t�µ(z).

J.H.C. Woerner (TU Dortmund) 19 / 46
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Bessel processes of type A

To use the results for the ODEs we consider the renormalized processes
(X̃t,k := Xt,k/

√
k)t≥0 which satisfy the SDE

dX̃ i
t,k =

1√
k
dB i

t +
∑
j 6=i

1

X̃ i
t,k − X̃ j

t,k

dt (i = 1, . . . ,N), (12)

which agrees, for k =∞, with the ODE. We also consider the
renormalized empirical measures

µ̃N,t :=
1

N
(δX̃ 1

t,k/
√
N + . . .+ δX̃N

t,k/
√
N). (13)

Denote the l-th moment (l ∈ N0) of µ̃N,t by

SN,l(t) :=

∫
R
y l d µ̃N,t(y) =

1

N l/2+1

N∑
i=1

(X̃ i
t,k)l .
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The Semicircle law for Bessel processes of type A

Theorem

Consider the processes (X̃t,k)t≥0 with k ≥ 1/2 and with starting sequence
(xi )i≥1 as for the ODE. Then, for the sequences (cl(t))l≥0 corresponding
to the ODE,

SN,l(t)→ cl(t) for N →∞ (14)

almost surely for all l ≥ 0 and locally uniformly for all t ∈ [0,∞[.

J.H.C. Woerner (TU Dortmund) 21 / 46
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Ideas of the proof

Consider the asymptotic behaviour of the expectation of the
normalized moments, which is similar to the behaviour of the
associated ODE.

Deduce the asymptotic behaviour of the corresponding diffusion part
of the associated SDE.

Deduce the desired result for the normalized moments:
First derive with Chebychev and Burkholder-Davis-Gundy inequality
convergence in probability
and finally with a Borel Cantelli argument almost sure convergence.

J.H.C. Woerner (TU Dortmund) 22 / 46
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Empirical Moments of the Bessel process

Using Itô’s formula we obtain for l ≥ 1

N∑
i=1

(X̃ i
t,k)l =

N∑
i=1

x li +
l√
k

N∑
i=1

∫ t

0
(X̃ i

s,k)l−1dB i
s (15)

+

∫ t

0

l
N∑
i=1

∑
j 6=i

(X̃ i
s,k)l−1

X̃ i
s,k − X̃ j

s,k

+
N∑
i=1

l(l − 1)

2k
(X̃ i

s,k)l−2

 ds

Note
N∑
i=1

∫ t

0
(X̃ i

s,k)l−1dB i
s

d
=

∫ t

0

√√√√ N∑
i=1

(X̃ i
s,k)2l−2 dB̃s

for some one-dimensional Brownian motion B̃ by the Lévy characterization
of the one-dimensional Brownian motion.

J.H.C. Woerner (TU Dortmund) 23 / 46
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Example: Start in Zero

If the renormalized Bessel processes start in 0, i.e. if the starting measure
µ = δ0, then the limiting measure µ̃t = µsc,2

√
t for all t > 0.

Hence for the original Bessel processes (XN
t,k)t≥0 of dimension N with

multiplicity k ≥ 1/2, the associated empirical measures µN,t tend weakly
to the semicircle law µsc,2

√
tk almost surely for t > 0.

J.H.C. Woerner (TU Dortmund) 24 / 46



FoGruLogosmall

tudl ogocmyk.pdf

The case BN

The case BN works with the same technique. We consider the multiplicities
k = (k1, k2) = (ν · β, β) with ν > 0 fixed and β →∞ and the SDE

dX i
t,k = dB i

t + β
∑
j 6=i

( 1

X i
t,k − X j

t,k

+
1

X i
t,k + X j

t,k

)
dt +

ν · β
X i
t,k

dt

for i = 1, . . . ,N with an N-dimensional Brownian motion (B1
t , . . . ,B

N
t )t≥0.

The associated dynamical system is then dx
dt (t) = H(x(t)) with

H : Uε → RN , x 7→


∑

j 6=1

(
1

x1−xj + 1
x1+xj

)
+ ν

x1

...∑
j 6=N

(
1

xN−xj + 1
xN+xj

)
+ ν

xN


and an analogon to the Lemma in the case AN−1 holds where the zeros of

the Hermite polynomials are replaced by the positive square root of the

zeros of the Laguerre polynomials L
(ν−1)
N denoted by (z

(ν−1)
1 , . . . , z

(ν−1)
N ).

J.H.C. Woerner (TU Dortmund) 25 / 46



FoGruLogosmall

tudl ogocmyk.pdf

Ideas for the case B

Wish to proceed similarly as in the case AN−1:

Consider the associated ODE first, i.e. derive a recurrence relation for
the normalized empirical moments

Identify the limiting distributions

Transform the result to the SDE setting

Problem:
We cannot work with the process itself. Necessary polynom division for the
recurrence relation does not work for odd moments.
Solution:
Pass to the squares.

J.H.C. Woerner (TU Dortmund) 26 / 46
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Empirical moments for the ODE

Consider the associated solutions φN(t) and the normalized empirical
measures

µN,t :=
1

N
(δφN,1(t)2/(2N) + . . .+ δφN,N(t)2/(2N)) (16)

Denote the l-th moment (l ∈ N0) of µN,t by

SN,l(t) :=

∫
R
y l µN,t(y) =

1

2lN l+1
(φN,1(t)2l + . . .+ φN,N(t)2l).

Then

d

dt
SN,l(t) = l

(2N + ν − l

N
SN,l−1(t) +

l−2∑
k=1

SN,l−1−k(t)SN,k(t)
)
. (17)

J.H.C. Woerner (TU Dortmund) 27 / 46
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Limit in first case

First case: ν > 0 fixed.

c0(t) = 1 and cl(t) = cl(0) + l

∫ t

0

l−1∑
k=0

cl−1−k(s)ck(s) ds (l ≥ 1).

(18)
We obtain the same result as for the even moments in the case A. Hence
the limiting distribution for the case B is

|µsc,2√t � µeven|

As special case with start in zero the limit is quarter circle law on the
positive half line.
We use the notation: for a probability measure µ on [0,∞[, let µeven the
unique even probability measure on R with |µeven| = µ

J.H.C. Woerner (TU Dortmund) 28 / 46
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Limit in the second case
Second case:
Let (xN,k)1≤k≤N ⊂ R be starting sequences such that for all l ∈ N0,

cl(0) := lim
N→∞

SN,l(0) = lim
n→∞

1

2lN l+1
(x2lN,1 + . . .+ x2lN,N) <∞

exists. Assume that ν = ν(N) depends on N with

lim
N→∞

ν(N)

N
= ν0 ≥ 0.

Then for l ∈ N0,
cl(t) := lim

N→∞
SN,l(t)

exists locally uniformly in t ∈ [0,∞[ and satisfies the recurrence relation

c0(t) = 1 and cl(t) = cl(0)+lν0

∫ t

0
cl−1(s)ds+l

∫ t

0

l−1∑
k=0

cl−1−k(s)ck(s)ds (l ≥ 1).

(19)
J.H.C. Woerner (TU Dortmund) 29 / 46
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Marchenko-Pastur law

Recall that for the parameters c ≥ 0, t > 0, the Marchenko-Pastur
distribution µMP,c,t is the probability measure on [x−, x+] ⊂ [0,∞[ with
µMP,c,t = µ̃ for c ≥ 1 and µMP,c,t = (1− c)δ0 + cµ̃ for 0 ≤ c < 1, where
x± := t(

√
c ± 1)2 and µ̃ has the Lebesgue density

1

2πxt

√
(x+ − x)(x − x−) · 1[x−,x+](x).

The Marchenko-Pastur distributions have the R-transforms

RMP,c,t(z) =
ct

1− tz
. (20)

As these R-transforms are linear in c , we in particular conclude that

µMP,a,t � µMP,b,t = µMP,a+b,t . (21)

J.H.C. Woerner (TU Dortmund) 30 / 46
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Limiting distribution in the general case

Under the conditions as before the normalized empirical measures

µN,t :=
1

N
(δφN,1(t)√

2N

+ . . .+ δφN,N (t)
√
2N

) (t ≥ 0),

tend weakly to √
µMP,ν0,t � (µsc,2

√
t � µeven)2.

Namely we may deduce as in the case AN−1 a PDE for the R-transform:

Rt(t, z) = ν0 + 1− 2zR(t, z) + z2Rz(t, z) (22)

R(0, z) = Rµ(z),

with a solution RµMP,ν0,t
(z) + R(µsc,2

√
t�µeven)

2(z) using the first case.

J.H.C. Woerner (TU Dortmund) 31 / 46
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Bessel process of type B

Theorem

Consider the processes (X̃t,k)t≥0 with β ≥ 1/2, ν > 0 and with starting sequences
(xN,k)k≥1 ⊂ [0,∞[ as before such that

cl(0) := lim
N→∞

SN,l(0) = lim
n→∞

1

2lN l+1
(x2lN,1 + . . .+ x2lN,N) <∞

exists for l ≥ 0. Assume that ν := ν(N) with ν0 := limN→∞ ν(N)/N ≥ 0. Then,
for l ∈ N0,

cl(t) := lim
N→∞

SN,l(t)

exists almost surely locally uniformly in t ∈ [0,∞[ with

c0(t) = 1 and cl(t) = cl(0) + lν0

∫ t

0

cl−1(s)ds + l

∫ t

0

l−1∑
k=0

cl−1−k(s)ck(s) ds.
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Extension to Dunkl processes

Dunkl processes are jump-diffusions with jumps, which exchange the
coordinates or lead to a random sign change.
For AN−1 only permutations of particles occur which have no influence
on our derived limit theorem.
For BN we have additional random sign changes which lead to new limit
theorems for the normalized empirical measure.
Consider k = (k1, k2) = (β, νβ) with β > 0 and ν ≥ 0. In this case we
have for the renormalized process the generator

L̃k0,βu(x) :=
1

2β
∆u(x) + Lνu(x) (23)

for u ∈ C 2
c (RN)
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Frozen Dunkl process

Denote the frozen Dunkl process Xt,ν given by the generator

Lνu(x) :=
N∑
i=1

(∑
j : j 6=i

2xi
x2i − x2j

+
ν

xi

)
uxi (x) +

ν

2

N∑
i=1

u(σix)− u(x)

x2i

+
1

2

∑
i ,j : j 6=i

(u(σi ,jx)− u(x)

(xi − xj)2
+

u(σ−i ,jx)− u(x)

(xi + xj)2

)
(24)

with σi , σi ,j , σ
−
i ,j (i 6= j) are reflections on RN where σi changes the sign of

the i-th coordinate, σi ,j exchanges the coordinates i , j , and σ−i ,j exchanges
the coordinates i , j and changes the signs of these coordinates.
Note: The frozen Dunkl process is random, the jumps are still there.
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Empirical measure of the frozen process I
Denote the components of Xt,ν by Xj ,t,ν for j = 1, . . . ,N. Consider
(random) normalized empirical measures

µN,t,ν :=
1

N
(δX1,t,ν/

√
N + . . .+ δXN,t,ν/

√
N) ∈ M1(R). (25)

and the corresponding moments

SN,l ,ν(t) :=
1

N l/2+1
(X l

1,t,ν + . . .+ X l
N,t,ν) (l ≥ 0). (26)

Note: The even moments SN,2l ,ν(t) are deterministic, corresponding to
frozen Bessel processes of type B. With the functions

ul(x) := x l1 + . . .+ x lN (l ≥ 0)

we have

SN,l ,ν(t) =
1

N1+l/2
· ul(Xt,ν) (l ≥ 0). (27)

The ul are invariant under permutations of coordinates.
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Empirical measure of the frozen process II
For all u := ul

Lνu(x) =
N∑
i=1

(∑
j : j 6=i

2xi
x2i − x2j

+
ν

xi

)
uxi (x) +

ν

2

N∑
i=1

u(σix)− u(x)

x2i

+
1

2

∑
i ,j : j 6=i

u(σ−i ,jx)− u(x)

(xi + xj)2
. (28)

Moreover, Dynkin’s formula for Markov processes implies(
ul(Xt,ν)− ul(X0,ν)−

∫ t

0
(Lνul)(Xs,ν) ds

)
t≥0

(29)

are martingales. Hence, for all l ≥ 0,

d

dt
E (ul(Xt,ν)) = E ((Lνul)(Xt,ν)), (30)

which now is the analogon to our ODE in the Bessel case and we may
proceed as there with polynom division.
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Recurrence relation for the expectations of moments
For the odd moments, we obtain

d

dt
E (SN,2l+1,ν(t)) =

2l(2N + ν − (l + 1))

N
E (SN,2l−1,ν(t)) (31)

+ 4
l−1∑
h=1

(l − h)SN,2h,ν(t)E (SN,2l−1−2h,ν(t)).

and in the even case we obtain

d

dt
SN,2l ,ν(t) =

2l(ν + l + 1)

N
SN,2l−2,ν(t)+2l

l−1∑
h=0

SN,2l−2−2h,ν(t)SN,2h,ν(t).

(32)
Recall that the even moments are deterministic and for them we have
the same recurrence relation for the moments of Bessel processes of
type B up to an factor 2.
This factor 2 is caused by by the slightly different scalings of the empirical
measures.
J.H.C. Woerner (TU Dortmund) 37 / 46



FoGruLogosmall

tudl ogocmyk.pdf

Lemma

Let (xN,k)1≤k≤N ⊂ R be the starting sequences of the frozen Dunkl
processes (Xt,ν)t≥0 for N ∈ N with X0,ν = (xN,1, . . . , xN,N) such that

cl(0) := lim
N→∞

SN,l ,ν(0) = lim
n→∞

1

N l/2+1
(x lN,1 + . . .+ x lN,N) <∞

exists for all l ∈ N0. Assume that limN→∞
ν(N)
N = ν0 ≥ 0. Then for l ∈ N0,

cl(t) := limN→∞ E (SN,l ,ν(N)(t)) exists locally uniformly in t ∈ [0,∞[ and
satisfies the recurrence relations
c0(t) = 1, c1(t) = c1(0), and for l ≥ 1,

c2l(t) = c2l(0) + 2l
∫ t
0

(
ν0c2l−2(s) +

∑l−1
h=0 c2h(s)c2l−2h−2(s)

)
ds

c2l+1(t) = c2l+1(0)+
∫ t
0

(
2lν0c2l−1(s)+4

∑l−1
h=0(l−h)c2h(s)c2l−2h−1(s)

)
ds.
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Description of the limiting law
We define the reflected probability measures µ∗t ∈ M1(R) with
µ∗t (A) = µt(−A) for Borel sets A ⊂ R and

µt,even :=
1

2
(µt + µ∗t ), µt,odd :=

1

2
(µt − µ∗t ).

Note µt,odd usually is a signed measure with that µt = µt,even + µt,odd .
We now introduce the Stieltjes transforms

G even(t, z) := Gµt,even(z), G odd(t, z) := Gµt,odd (z)

with G = G even + G odd and obtain by the recurrence relation the
quasilinear system of PDEs

G even
t (t, z) = ν0

(G even(t, z)

z2
− G even

z (t, z)

z

)
− 2G even(t, z)G even

z (t, z)

G odd
t (t, z) =

(
−ν0

z
− 2G even(t, z)

)
G odd
z (t, z) (33)

for t ≥ 0.
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Corollary

For t ≥ 0, the even parts µt,even of the limiting probability measures µt are
the unique even probability measures on R whose pushforwards under the
mapping x 7→ x2/2 are given by µMP,ν0,t � (µsc,2

√
t � µeven)2. Hence,

µt,even =
(√

µMP,ν0,2t � (µsc,2
√
2t � µeven)2

)
even

(t ≥ 0). (34)
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Interpretation

If the initial measure µ0 = µ is even, then the associated linear PDE for
G odd has the solution G odd = 0, i.e., the limiting µt is given by the
measure in Eq. (34).
If we start the frozen Dunkl process in a symmetric measure the limiting
measure is the two-sided version of the law for the corresponding
Bessel processes.
Hence the jumps with the sign changes keep the symmetry of the
starting measure.
Question:
What happens, if we start in an asymmetric measure?

Indeed we get a different class of limiting measure, which cannot be
interpreted as free convolutions.
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Lemma

Let µ ∈ M1(R) for which the moment condition (8) holds. Let D ⊂ H be
some non-empty open domain such that there is some (analytical)
function K with

K [Gµeven(z) · (Gµeven(z) + ν0Gδ0(z))] = z (z ∈ D).

Then, with the measures µt,even from the previous corollary,

G (t, z) := Gµodd [K
(
Gµt,even(z) · (Gµt,even(z) + ν0Gδ0(z))

)
] +Gµt,even(z) (35)

is the solution of the system of PDEs with the initial condition
G (0, z) = Gµ(z) for z ∈ D.
In particular, for ν0 = 0 this solution simplifies to

G (t, z) = Gµ(G−1µeven(Gµsc,2√2t�µeven
(z))). (36)

J.H.C. Woerner (TU Dortmund) 42 / 46



FoGruLogosmall

tudl ogocmyk.pdf

Extension to Dunkl processes

Theorem

Consider the Dunkl processes (X̃t,ν,β)t≥0 with β ≥ 1/2, ν > 0 and with
starting sequences (xN,i )i≥1 ⊂ R as before such that for l ≥ 0,

cl(0) := lim
N→∞

SN,l ,ν,β(0) = lim
n→∞

1

N l/2+1
(x lN,1 + . . .+ x lN,N) <∞

exists. Let ν0 := limN→∞ ν(N)/N ≥ 0. Then, for l ∈ N0,

cl(t) := lim
N→∞

SN,l ,ν,β(t)

exists a.s. locally uniformly in t ∈ [0,∞[. Furthermore, the cl(t) satisfy the
recurrence relation from the frozen process.
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Further considerations on the limiting laws
Questions:
How do the limiting laws in the asymmetric case look like?
How is the long term behaviour, is the asymmetry kept or vanishing?

Example: Consider ν0 = 0 and start in the quartercircle distribution on
[0, 2], the we may calculate the density of the limiting law

ft(x) =
−1

π
lim
ε↓0
=G (t, x + iε) (37)

=
1

(2t + 1)π

(1

2
+

t + 1

π
arctan

x

2t

)√
4(2t + 1)− x2

− 1

π2
tx

2(2t + 1)
ln
(2(t + 1) +

√
4(2t + 1)− x2

2(t + 1)−
√

4(2t + 1)− x2

)
.

Now look at rescaled densities

f̃t(x) =
√

2t + 1f (x
√

2t + 1),

i.e. probability measures on [−2, 2].
J.H.C. Woerner (TU Dortmund) 44 / 46



FoGruLogosmall

tudl ogocmyk.pdf

-2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22

-0.4-0.4

-0.3-0.3

-0.2-0.2

-0.1-0.1

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

00

f̃t(x) for t = 0, 0.1, 1, 10, 100 and t =∞.
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Conclusion

- We derived that crucial information of the limiting laws for the empirical
measures of Bessel and Dunkl processes is already encoded in their frozen
versions.
- We derived semicircle, quarter circle and Marchenko-Pastur type laws for
ODEs associated with frozen Bessel and Dunkl processes of type AN−1
and BN as N →∞.
- We deduced that the same limit laws hold for the processes themselves.
- We saw that the case of a Dunkl process of type B with start in an
asymmetric configuration leads to new limiting laws, which cannot be
interpreted in terms of free probability.
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