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Definition of Dunkl operators:
Data:

I G finite reflection group in Rm

I R its root system

I κ : R → R+ a G -invariant multiplicity function

I 〈·, ·〉 the Euclidean inner product on Rm

I σαx := x − 2〈x , α〉α/||α||2 is a reflection

Then the Dunkl operator for ξ ∈ Rm is

Tξf (x) = ∂ξf (x) +
∑
α∈R+

κα〈α, ξ〉
f (x)− f (σαx)

〈α, x〉
, x ∈ Rm

We write Tj = Tej when ξ are the basis vectors

C. F. Dunkl, Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311

(1989), 167-183.

C. F. Dunkl, Y. Xu, Orthogonal polynomials of several variables. Cambridge university press, 2014.



Example: one dimensional case

Only one reflection group: Z2 (root system A1), acting on R

Tx =
d

dx
+ k

1− R

x

with Rf (x) = f (−x)

For this case essentially everything is known, including Dunkl
transform and intertwining operator (see later)



Example: the symmetric group

I G = Sm, acting on Rm by permutation of standard vectors

I R = Am−1 = {±(ei − ej), i < j}
I κ becomes a constant (only one orbit of G on R)

Dunkl operators for i = 1, . . . ,m

Ti = ∂i + κ
∑
j 6=i

1− σij
xi − xj

with
σij f (. . . , xi , . . . , xj , . . .) = f (. . . , xj , . . . , xi , . . .)



Basic properties:

Tξf (x) = ∂ξf (x) +
∑
α∈R+

κα〈α, ξ〉
f (x)− f (σαx)

〈α, x〉
, x ∈ Rm

I commutative: TiTj = TjTi

I Tξ maps polynomials to polynomials, lowers degree by 1

I Dunkl Laplacian ∆κ =
∑m

j=1 T
2
j

I With weight ωκ(x) =
∏
α∈R+

|〈α, x〉|2κ(α) the inner product

〈f , g〉κ =

∫
Rm

f (x)g(x)ωκ(x)dx

makes Tj skew-adjoint:

〈Tj f , g〉κ = −〈f ,Tjg〉κ
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Two important operators:

I the Dunkl transform (generalizes the Fourier transform)

I the intertwining operator (maps the ordinary situation to the
Dunkl situation)

We will discuss both.

Summary: some general results are known, but there is limited
information for specific reflection groups

M. de Jeu, The Dunkl transform. Invent. Math. 113 (1993), 147–162.

C. F. Dunkl, M. de Jeu, E. Opdam, Singular polynomials for finite reflection groups. Trans. Amer. Math.

Soc. 346 (1994), 237-256.

M. Rösler, Positivity of Dunkl’s intertwining operator. Duke Math. J. 98 (1999), 445-464.



Recall that the Fourier transform

F(f )(y) = (2π)−
m
2

∫
Rm

e−i〈x ,y〉f (x)dx

satisfies
F(∂xj f (x)) = iyjF(f ), j = 1, . . . ,m

=⇒ we want an integral transform with these properties for the
Dunkl operators!



Dunkl transform: Put for y ∈ Rm

Fκf (y) := c−1
κ

∫
Rm

Eκ(−ix , y)f (x)ωκ(x)dx

with Eκ the joint eigenfunction of all Tj ,

TjEκ(x , y) = yjEκ(x , y), j = 1, . . . ,m

This transform satisfies

Fκ(Tj f (x)) = iyjF(f ), j = 1, . . . ,m

Proof: use skew-adjointness of Tj



Abstract results on Dunkl transform:

I the integral kernel Eκ exists and is real-analytic

I boundedness: |Eκ(−ix , y)| ≤ 1

I variants of Paley-Wiener theorems

M. de Jeu, The Dunkl transform. Invent. Math. 113 (1993), 147–162.

M. de Jeu, Paley-Wiener theorems for the Dunkl transform. Trans. Amer. Math. Soc. 358 (2006),

4225-4250.

Concrete results on Dunkl transform:
Explicit expressions for the kernel Eκ are known for:

I Z2: sum of 2 Bessel functions

I some low dimensional cases, often with restrictions e.g. on κ

I dihedral groups (see later, this is our work)
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Intertwining operator Vκ:

Theorem

There exists an unique linear and homogenous isomorphism on P
which satisfies Vκ1 = 1 and which intertwines the partial
differential operators and the Dunkl operators,

TjVκ = Vκ∂j , j = 1, 2, . . . ,m.

P is the space of polynomials on Rm

C. F. Dunkl, Operators commuting with Coxeter group actions on polynomials, in Invariant Theory and

Tableaux, Editor D. Stanton, Springer, Berlin - Heidelberg - New York, 1990, 107-117.

C. F. Dunkl, M. de Jeu, E. Opdam, Singular polynomials for finite reflection groups. Trans. Amer. Math.

Soc. 346 (1994), 237-256.



Abstract results on the intertwining operator:

I Vκ can be represented by an integral transform

Vκ(p)(x) =

∫
Rm

p(y)dµ
(κ)
x (y)

I Vκ is positive for κ ≥ 0: it maps positive functions to positive
functions

M. Rösler, Positivity of Dunkl’s intertwining operator. Duke Math. J. 98 (1999), 445-464.

Concrete results on the intertwining operator:
Explicit expressions for integral representation of Vκ:

I Z2: see formula below

I some low dimensional cases, often with restrictions e.g. on κ

I dihedral groups (see later, this is our work)
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Example: one dimensional case
For practical use:

Vk(p)(x) =
Γ(k + 1/2)

Γ(1/2)Γ(k)

∫ 1

−1
p(xt)(1− t)k−1(1 + t)kdt

The Bochner representation

Vk(p)(x) =

∫
R
p(y)dµ

(k)
x (y)

with

dµ
(k)
x (y) ∼ 1

|x |2k
(|x |+ sign(x)y)(x2 − y2)k−11(−|x |,+|x |)(y)dy

reflects the positivity result of Rösler
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Conclusion:

Little is known about the explicit form of the Dunkl transform and
intertwining operator for specific classes of reflection groups.

Why is this problematic?

I hard analysis for Dunkl operators needs these explicit forms

I important for improving the appeal of the theory



What is a ’good’ formula for Eκ or Vκ?

Several points of view possible:

I explain combinatorics / linear algebra behind Vκ
I explain relation with orthogonal polynomials

I just any integral expression is progress

I allow for observational proofs of abstract results

Ideally, the method is somewhat structural

Some examples for dihedral groups (many more in literature)

C. F. Dunkl, Polynomials associated with dihedral groups. SIGMA Symmetry Integrability Geom. Methods

Appl. 3 (2007), Paper 052, 19 pp.

Y. Xu, Intertwining operators associated to dihedral groups. Constr. Approx. 52 (2020), 395-422



Our results:

The (integral over the) simplex seems to play a crucial role in
explicit realizations of Dunkl kernel and intertwining operator.

Evidence:

I conclusive in dihedral case

I for An: special case

I for Bn: special case in progress
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Dihedral groups:

I infinite family of finite reflection groups acting in R2

I the dihedral group Ik is the group of symmetries of the regular
k−gon

I when k is odd, there is one orbit on the root system

κ = α ∈ C

I when k is even, there are two orbits

κ = (α, β) ∈ C2



Dihedral groups
Pick as positive roots j = 0, 1, · · · , k − 1

vj =

(
sin

(
πj

k

)
,− cos

(
jπ

k

))
= e i(

πj
k
−π

2
)

E.g.: I3, symmetries of regular triangle and I4, symmetries of square



Dunkl operators for dihedral group Ik with k odd
They act on functions f (x1, x2) by:

T1 = ∂x1 + α

k−1∑
j=0

sin(jπ/k)
1− σj

sin(jπ/k)x1 − cos(jπ/k)x2

T2 = ∂x2 − α
k−1∑
j=0

cos(jπ/k)
1− σj

sin(jπ/k)x1 − cos(jπ/k)x2

with σj the reflection over the line perpendicular to vj



Xu’s theorem: α = β = λ

Here T k−1 is the simplex defined by

T k−1 :=
{
u ∈ Rk−1 : u1 ≥ 0, . . . , uk−1 ≥ 0, u1 + . . .+ uk−1 ≤ 1

}
.

and u0 = 1− u1 − u2 − . . .− uk−1



Comments:

I proof by direct verification is elementary but complicated
(3 pages of trigonometry)

I Xu: ‘There is little methodology for identifying this integral
transform. The discovery of our formula is motivated by an
integral formula in [Xu, Proc. Amer. Math. Soc. 143 (2015)]
and is the result of trial and error, starting from I4.’

I formula is not as general as we would want (conditions on the
functions, and on κ)

I appearance of integral over simplex is intriguing

Y. Xu, Intertwining operators associated to dihedral groups. Constr. Approx. 52 (2020), 395-422

Y. Xu, An integral identity with applications in orthogonal polynomials. Proc. Amer. Math. Soc. 143

(2015), 5253-5263.
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Our approach:

A well-known formula

Eκ(x , y) = Vκ
(
e〈·,y〉

)
(x)

seems to imply that it is best to start with the intertwining
operator.

This is in our experience not true:

I expression for Eκ easier to obtain than for Vκ



Instead:

I we derive a general formula for Vκ based on knowledge of Eκ
I Eκ for dihedral groups follows from the Poisson kernel

I Eκ for dihedral groups as 2nd Humbert function

I 2nd Humbert function is connected with simplex

Technical details explained for Dunkl Bessel function, not Dunkl
kernel

D. Constales, H. De Bie, P. Lian, Explicit formulas for the Dunkl dihedral kernel and the (κ, a)-generalized

Fourier kernel. J. Math. Anal. Appl. 460 (2018), 900-926.

H. De Bie, P. Lian, The Dunkl kernel and intertwining operator for dihedral groups. J. Funct. Anal. 280,

108932 (2021)



General formulas:

Theorem

Let p be a polynomial and K (iy , z) := e−∆y/2Eκ(iy , z). Then for
any z ∈ Rm, the intertwining operator Vκ satisfies

Vκ(p)(z) =
1

(2π)m/2

∫
Rm

K (iy , z)F
(
p(·)e−|·|2/2

)
(y)dy .

Here

I F is the classical Fourier transform

I ∆y =
∑m

j=1 ∂
2
j

I using an identity of Macdonald

e−∆y/2Eκ(iy , z) =
1

(2π)m/2

∫
Rm

e−i〈x ,y〉e−|x |
2/2Eκ(−x , z)e |y |

2/2dx



Formal manipulations:
Recall K (iy , z) := e−∆y/2Eκ(iy , z)

Vκ(∂jp)(z) =

∫
Rm

K (iy , z)F
(

(∂jp)(·)e−|·|2/2
)

(y)dy

=

∫
Rm

K (iy , z)F
(

(∂j + xj)(p(x)e−|x |
2/2)
)

(y)dy

=

∫
Rm

K (iy , z)i(yj + ∂yj )F
(
p(x)e−|x |

2/2
)

(y)dy

=

∫
Rm

(
i(yj − ∂yj )K (iy , z)

)
F
(
p(x)e−|x |

2/2
)

(y)dy

=

∫
Rm

(
e−∆y/2 (iyjEκ(iy , z))

)
F
(
p(x)e−|x |

2/2
)

(y)dy

= TjVκ(p)(z)



Remarks:

I when κ = 0 then Vκ = id

I case G = Z2 is easy to verify

I the general formula is probably new

I similar formula exists for V−1
κ which satisfies

∂jV
−1
κ = V−1

κ Tj



Generalized Bessel function GBF and invariant polynomials:

Symmetric version of the Dunkl kernel

Jκ(x , y) =
1

|G |
∑
g∈G

Eκ(x , g · y)

Corollary

Let p be a G-invariant polynomial. Then for any z ∈ Rm, the
intertwining operator Vκ satisfies

Vκ(p)(z) =
1

(2π)m/2

∫
Rm

(
e−∆y/2Jκ(iy , z)

)
F
(
p(·)e−|·|2/2

)
(y)dy .

G -invariant means p(gz) = p(z) for all g ∈ G



Now let us specialize to dihedral groups.

Steps:

I compute GBF as Humbert function

I Humbert function represented by integral over simplex

I use previous result to get intertwining operator

We have done the same thing for the Dunkl kernel and the full
intertwining operator
More complicated so I won’t show those details



2nd Humbert function:

Φ
(m)
2 (β1, . . . , βm; γ; x1, . . . , xm) :=

∑
j1,...,jm≥0

(β1)j1 · · · (βm)jm
(γ)j1+···+jm

x j11

j1!
· · · x

jm
m

jm!

Integral representation:

Φ
(m)
2 ∼

∫
Tm

e
∑m

j=1 xj tj

1−
m∑
j=1

tj

γ−
∑m

j=1 βj−1
m∏
j=1

t
βj−1
j dt1 . . . dtm

with Tm the open unit simplex in Rm given by

Tm = {(t1, . . . , tm) : tj > 0, j = 1, . . . ,m,
m∑
j=1

tj < 1}.



Generalized Bessel function GBF

Theorem (Demni, J. Lie Theory, 2012)

The GBF Jκ(z ,w) associated to I2k , k ≥ 2 and κ = (α, β) is

Jκ(z ,w) ∼
∫ 1

−1

∫ 1

−1

(
f2k,α+β(|zw |, ξu,v (kφ1, kφ2), 1)

+f2k,α+β(|zw |,−ξu,v (kφ1, kφ2), 1)

)
dνα(u)dνβ(v)

with ξu,v (φ1, φ2) = v cos(φ1) cos(φ2) + u sin(φ1) sin(φ2) and

f2k,λ(b, ξ, t) =

(
2

b

)kλ ∞∑
j=0

j + λ

λ
Ik(j+λ)(bt)C

(λ)
j (ξ)

with C
(λ)
j Gegenbauer polynomial and Ik mod. Bessel function

Here z = |z |e iφ1 , w = |w |e iφ2 and b = |z ||w |



We find a new expression for

f2k,λ(b, ξ, t) =

(
2

b

)kλ ∞∑
j=0

j + λ

λ
Ik(j+λ)(bt)C

(λ)
j (ξ)



We find a new expression for (later put t = 1)

f2k,λ(b, ξ, t) =

(
2

b

)kλ ∞∑
j=0

j + λ

λ
Ik(j+λ)(bt)C

(λ)
j (ξ)



We find a new expression for (later put t = 1)

f2k,λ(b, ξ, t) =

(
2

b

)kλ ∞∑
j=0

j + λ

λ
Ik(j+λ)(bt)C

(λ)
j (ξ)

Take Laplace transform with respect to t → s with S =
√
s2 − b2

L(f2k,λ)(s) =

(
2

S(s + S)

)kλ ∞∑
j=0

j + λ

λ

(
bk

(s + S)k

)j

C
(λ)
j (ξ)



We find a new expression for (later put t = 1)
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2

b

)kλ ∞∑
j=0

j + λ
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Take Laplace transform with respect to t → s with S =
√
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L(f2k,λ)(s) =

(
2

S(s + S)

)kλ ∞∑
j=0

j + λ

λ

(
bk

(s + S)k

)j

C
(λ)
j (ξ)

Now we can use the Poisson formula:

1− z2

(1− 2ξz + z2)λ+1
=
∞∑
j=0

j + λ

λ
Cλj (ξ)z j

to get a closed form in the Laplace domain!



Lemma

For k ≥ 2, the Laplace transform of f2k,λ(b, ξ, t) with respect to t
is

L[f2k,λ(b, ξ, ·)](s) ∼ 1

S

(S + s)k − (s − S)k

((S + s)k − 2bkξ + (s − S)k)λ+1

∼ d

ds

(
1

((S + s)k − 2bkξ + (s − S)k)λ

)
where S =

√
s2 − b2.

Looks like a complicated function...

I ... but it turns out that the denominator
(S + s)k − 2bkξ + (s − S)k is a polynomial in s that can be
factored completely!
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We have (S =
√
s2 − b2)

L(f2k,λ)(s) ∼ d

ds

(
1

(S + s)k − 2bkξ + (s − S)k

)λ
with

1

2k

(
(S + s)k − 2bkξ + (s − S)k

)
=

k−1∏
l=0

(
s − b cos

(
q − 2πl

k

))
,

where q = arccos ξ

How to invert this Laplace transform?

I λ integer: use partial fraction decomposition to find
expression in elementary functions

I λ non integer: recognize Humbert Φ
(k)
2

I and put t = 1
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We started from

f2k,λ(b, ξ, t) =

(
2

b

)kλ ∞∑
j=0

j + λ

λ
Ik(j+λ)(bt)C

(λ)
j (ξ)

to reach

Theorem

For k ≥ 2, we have

f2k,λ(b, ξ, 1) = Φ
(k)
2 (λ, . . . , λ; kλ; b0, . . . , bk−1)

= eb0Φ
(k−1)
2 (λ, . . . , λ; kλ; b1 − b0, . . . , bk−1 − b0)

where bj = b cos ((q − 2jπ)/k), j = 0, . . . , k − 1 in which
q = arccos(ξ).

I Is this not conservation of misery?

I No: Humbert Φ
(k)
2 can be represented by integral of

exponential over simplex!
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Theorem

The GBF associated to the dihedral group I2k , k ≥ 2, is

Jκ(z ,w) ∼
∫ 1

−1

∫ 1

−1

∫
T k−1

(
e
∑k−1

j=0 a+
j tj + e

∑k−1
j=0 a−j tj

)
×

k−1∏
j=0

tα+β−1
j dt1 . . . dtk−1dν

α(u)dνβ(v)

where t0 = 1−
∑k−1

j=1 tj and a−j = b cos
(
q−2jπ

k

)
,

a+
j = b cos

(
π−q−2jπ

k

)
, j = 0, . . . , k − 1 and q = arccos ξ.

ξ(u, v) = u cos(kφ1) cos(kφ2) + v sin(kφ1) sin(kφ2)

Immediate advantage/consequence:

I Jκ(x , y) > 0

I complexified GBF is bounded by 1

⇒ this is indeed a ‘useful’ formula
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⇒ this is indeed a ‘useful’ formula



Dunkl kernel for dihedral group Ik : with the auxiliary variable t
Starting point for x , y ∈ R2 and b = |x ||y |

Eκ(−ix , y , t) ∼
∞∑
j=0

(−i)jb−〈κ〉Jj+〈κ〉(bt)Pj

(
Ik ;

x

|x |
,
y

|y |

)

Pj is the reproducing kernel of the Dunkl harmonics of degree j

Approach and complications

I We can still Laplace transform in t

I However, Pj is no longer a Gegenbauer polynomial

I Instead of Poisson kernel, we have to use Dunkl Poisson kernel

I Fortunately Dunkl Poisson kernel is already established

S. Ben Säıd, On the integrability of a representation of sl(2,R). J. Funct. Anal. 250 (2007), 249-264.

C. F. Dunkl, Poisson and Cauchy kernels for orthogonal polynomials with dihedral symmetry, J. Math. Anal.

Appl. 143 (1989), 459-470.
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S. Ben Säıd, On the integrability of a representation of sl(2,R). J. Funct. Anal. 250 (2007), 249-264.

C. F. Dunkl, Poisson and Cauchy kernels for orthogonal polynomials with dihedral symmetry, J. Math. Anal.

Appl. 143 (1989), 459-470.



Theorem

For each dihedral group I2k and positive multiplicity function κ,
the Dunkl kernel is given by

Eκ(z ,w) =

∫ 1

−1

∫ 1

−1

[
(1 + u)(1 + v)− 2

α + β
(αu(1 + v) + βv(1 + u))

]
× hα+β(q(u, v))dνα(u)dνβ(v).

where

hα(q(u, v)) = Φ
(k+1)
2 (α, . . . , α, 1; kα + 1; a0, . . . , ak−1, ak)

with al = b cos
(
q(u,v)+2πl

k

)
, l = 0, . . . k − 1 and ak = Re (zw).

I recall that Φ
(k+1)
2 is integral over simplex

I from this expression, the Dunkl kernel satisfies Eκ(z ,w) ≥ 0



The full intertwining operator

From the expression for Eκ:

I expression for full intertwining operator

I various other expressions for Vκ, also on restricted classes of
functions

I conceptual proof of Xu’s result



Outro 1:

I claim that we have found ‘good’ formulas for the Dunkl kernel
and intertwining operator for dihedral groups:

I the abstract results (positivity, boundedness) follow now by
observation

I our approach follows a structural method

Nevertheless, there may be better formulas from a computational
point of view:

I it is possible to rewrite our results in various other ways



Outro 2: Intertwining operator for symmetric groups,
theorem by Xu

I proof elementary (1 page)
I restricted class of functions
I again appearance of simplex!

Y. Xu, Intertwining operator associated to symmetric groups and summability on the unit sphere. J. Approx.

Theory 272 (2021), 105649, 16 pp.
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Our approach:
I consider trigonometric Dunkl case and take limit
I find GBF and Dunkl kernel via 2nd Humbert function
I explains links with simplex!
I reobtain intertwining operator from Dunkl kernel

Theorem

Assume κ ≥ 0, ν ∈ C and x ∈ V ⊂ Rn. The GBF for An−1 is

Jκ(λ, x) = Φ
(n)
2 [κ, . . . , κ, nκ; νx1, . . . , νxn]

= eνxnΦ
(n−1)
2 [κ, . . . , κ, nκ; ν(x1 − xn), . . . , ν(xn−1 − xn)]

where λ =
(
−ν

n , . . . ,−
ν
n ,

(n−1)ν
n

)
and the hyperplane V of Rn is

V = {x ∈ Rn : x1 + x2 + · · ·+ xn = 0}.

N. Shimeno, Y. Tamaoka. The hypergeometric function for the root system of type A with a certain

degenerate parameter. Tsukuba J. Math. 42(2): 155-172 (2018).

H. De Bie, P. Lian, Dunkl intertwining operator for symmetric groups. Proc. Amer. Math. Soc. 149,

4871-4880 (2021).
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