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The original models

Calogero (1971-75), Sutherland (1971-72).

Identical quantum particles in one-dimension, interacting through an
inverse square pair potential:

62
Hy = — 82—#2& ) Y. V(zi-=z;) (NeN)
1<i<j<N
w/ potential function
1/22 (rational)
V(z) =<¢ 1/sin®z (trigonometric)

p(z) (elliptic)
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The original models

Associated integrable system (N commuting PDOs):

N o r

i=1

w/ HY = Hy.

@ Moser (1975) proved integrability at the classical level by
obtaining Lax representations.

@ Olshanetsky & Perelomov (1977) established quantum
integrability.

@ Joint eigenfunctions: Bessel- (rat.) and Heckman—Opdam
hypergeometric functions (trig.) associated w/ Ax_1, Jack
polynomials (trig.), Baker—Akhiezer functions (rat./trig.),...
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Root system generalisations

Input data:

@ a finite collection of vectors A ¢ RY,

@ a ‘multiplicity’ function x : A = C, a — Kq.
Consider the associated Schrddinger operator
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N

2
Ha=-)_ % + ) falbia + 1) (e, a)V((a,z)).

i=1 T acA

@ Integrable when A = R, and x is Weyl group invariant for a root
system R of type Ay_1, By, - .., Es (Debiard, Heckman &
Opdam, Olshanetsky—Perelomov, Oshima & Sekiguchi,...) or
BCly (Inozemtsev, Oshima & Sekiguchi).

@ Joint eigenfunctions: Bessel- and Heckman—Opdam
hypergeometric functions as well as Jacobi polynomials
associated w/ R, Baker—Akhiezer functions,...
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Deformed models

Exist collections of vectors A # R, such that H 4 is integrable!

Ex: Type A(n,m) in R**™ given by vectors and ‘multiplicities’
€ —€j, Kej—e; =K, 1<1<7<ng

Ve — VEej, Keje; =k, n+1<i<j<n+m

e; — Vkej, Feimyie, =1 1<i<n, n+1<j<n+m;

(where AU (—.A) can be viewed as a deformation of a root system of type
An+m—1)-

Calogero—Moser—Sutherland models — Deformed models M. Hallnas



) CHALMERS @UN[VERS]TYOF(;OTHENBURG

Deformed models

Introducing

we get

82
—K)_gata+l) > Viei-w)

2
i=1 i i=1 g 1<i<j<n
FEHDDI D Vi —y)+0+1/k) > Vi
i=1 j=1 1<i<j<m

(When m = 0 or n = 0 we recover ordinary CMS ops: H, o(k) = Hn(x) and
Hom (k) = kHm(1/K).)
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Deformed models

@ Chalykh, Feigin & Veselov (1998) proved integrability when
m =1 and V is rational/trigonometric.

@ For n,m € N arbitrary and V trigonometric, the operator was
introduced and studied by Sergeev (2001). Integrability proved
by Sergeev & Veselov (2004).

@ Khodarinova (2005) established integrability for m = 1 and V'
elliptic.

@ There are intimate connections w/

o Lie superalgebras (Sergeev, Seergev & Veselov),

Cherednik algebras (Feigin),

B-ensembles of random matrices (Desrosiers & Liu),
CFT and the fractional quantum Hall effect (Atai & Langmann),
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Relativistic generalisations

Ruijsenaars (1987) introduced relativistic (quantum Ax_1)
Calogero—Moser—Sutherland models.

Integrable system of commuting difference ops:

DD DI | e R T R}

[z; — 2]
Ic{1,....N}i€l,j¢l
[1]=r
where
z (rational)
[2] = ¢ sinz (trigonometric)

CeCZQU(z | wi,ws) (elliptic)
and 727 =],,; T2,

T:gif(xla"'vxi?"wxn):f(xlw"uxi—’_dw"?xn)'
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Relativistic generalisations

@ Calogero—Moser—Sutherland operators obtained (formally and
up to a change in gauge) in the limit § — 0.

@ The difference ops

Hy := Dg\})(a:) +D§\})(—x) (time transl.)
Py := D\ (z) = D{{)(~z) (space transl.)

By :=—> x; (Lorentz boost)

i=1

yield a representation of the Lie alg. of the Poincaré group in
1+ 1 dimensions; see Ruijsenaars (1987).

@ Intimate connections w/ integrable (quantum) field theories.
(For example, when [z] = sinh(7z/w) joint eigenfuncs. of Dg\’;)
reproduce scattering in the quantum sine-Gordon model (for suitable
0, k); see H. & Ruijsenaars (2020).)
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Noumi & Sano (2020) introduced the difference ops

z; — xj + ( — p5)0]
H}(\?f") _ Z H [ J J
ENN 1<i<j<N i = 5]
lul=r

N
H i = 25 & K STOH (r e N)
_IJ"‘(S]

and proved:
@ For K € N,

Z (=1)"[rk + sé]D%)H](\f) =0 (Wronski relations),
r+s=K

ol uy,.. | =c[p{.....08"].

(Notation: [z] = [2][z + 8] --- [z + (k — 1)d] and T2 = [TV, (T2,)"".)
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Deformed Ruijsenaars and Noumi—Sano ops

Ruijsenaars and Noumi—Sano operators can be unified in a family of
commuting difference operators in two sets of variables
= (x1,...,x,)and y = (Y1, .., Ym):

- Z CI,H("I"7y)Tz(HTy_HH (’I" € N)7
Ic{1,...,n},peN™
[T]+|p|=r

DY),
w/ coefficients

Ti —xj + K]

Croule,y) = ()" ]

i€l,igl [z: — ;]
[J»‘i—wj— [yz_y]_(;
1<E<n [zi — ma] 21]_[1 lyi —yj — K],
T —y; +9] xﬁy]m]
E (E[ — Y5~ ik ]H — (i —1)4) '
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Deformed Ruijsenaars and Noumi—Sano ops

@ Deformed Calogero—Moser—Sutherland operators can be
obtained as limiting cases (6, < — 0).

@ Chalykh (2000, 2002) introduced such deformations of
rat./trig. Ruijsenaars operators in n + 1 variables.

@ The trig. instance of Dﬁ}}n due to Sergeev & Veselov (2009).

@ Feigin and Silantyev (2014) obtained the trig. ops Dﬁf}n for all
r € N and proved commutativity using DAHA techniques.

@ The elliptic operator D,(,lzn was first considered by Atai, H. &

Langmann (2014), who established a corresponding kernel
function identity.
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Main results

Trigonometric case:
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@ We give a new proof of integrability, based on Kajihara’s
transformation formula for multiple basic hypergeometric series
associated with A-type root systems.

@ We show that the Ruijsenaars and Noumi—Sano ops are
simultaneously diagonalised by the super-Macdonald
polynomials.

Elliptic case:

@ We prove integrability, which was not previously known. The
proof is based on identities for theta functions closely related to
transformation formulae for multiple elliptic hypergeometric
series.

Calogero—Moser—Sutherland models — Relativistic generalisations M. Hallnds
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Trigonometric deformed
models

Trigonometric deformed models M. Hallnas
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Multiplicative notation

We take [z] = sin z.

Let

_ 2mix,

Z=e (i=1,...,n) wj:e%iyf

(j=1,...,m).

Then, additive shifts z; — z; + ¢ and y; — y; — s correspond to
z; — qz; and w; — t~'w;, respectively, where

27id

g=e , t:eZ‘n-m.

Hence, our operators become linear combinations of
I —
Tq’th’u’f S f (21, Zn W, W)
I In, .4— —fim
= f(q 1Z1a"'7q Znat #1w17~"7t . wTI’L)a

where
Ic{o,1}", peNm™
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Multiplicative notation

Specifically,
DY), = > CruzwT, Tk (reN),
Ic{1,...,n},peN™
|+ || =r

w/ coefficients

ma—n I (11 (n— tz; — zj
Cru(z,w) = (gt (=)= T =S
1<ij<n ~* J
il ¢l
) A(t “w ﬁ wz/qu l)l»ti‘
A(w Gt (w;/tw;st 1)M
H(H — qw;/z; H 1 —tw;/z; )
Ry —fl—pilgy /4 )0
= ]611 t—riw; /2 j¢11 tri—rilw, [z,
where
k—1 ‘
A= I Gi-=) (@aw=]]0-ad).
1=0

1<i<j<n

M. Hallnas
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Multiplicative notation

Setting m = 0, we recover the ¢-difference operators found in
Macdonald’s 1995 book ‘Symmetric functions and Hall polynomials’:

Dy =D = t(5)=rn=n §° H H o

Z
Ic{1,...,n}iel,j¢I ¢ iel
[I|=r

Macdonald polynomials:
® Py(2) = ma(2) + X, <\ wrumpu(2),
0 DPy(2) = e, (M) Py (2).
(Notation: A = (M1, ..., ), = (i1, .., un) partitions,
)

6=(0,—1,....,1=n),ma(z) =3 cs, 21 2" and

er(z) = Zlgi1<~--<i7‘§n Zip t zi,,‘-)
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Kernel identities

Consider the generating series

( M= ¢ 1 oo
Dn,m(&w;U):WZ“ DI

Theorem (H., Langmann, Noumi & Rosengren)
For|q| <1 and|t| > 1, the function

Wit
(pnmNMszW HH tlzZ q)oo HH ((]Iluwl.[/l;]?t 1)

i=1j=1 1=1j5=1
'HH(l—Zin)'HH(l—wizj)
i=1j=1 i=1j=1

satisfies

Doy (2, Wy W) Pry ;N M (2, w5 Z, W) = DN,vi (Z, Wi50) Py N, (2, w; Z, W),

v
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Kernel identities

When m = M = 0, we recover Macdonald’s (reproducing) kernel
function:

®,0.80(2 2) HH G 1Z :HH,N(tflz,Z)
i=1j= 1 v J’

= baPr(2)PA(2).
A

(The corresponding kernel identity is established in Macdonald’s book.)

Trigonometric deformed models — Kernel identities M. Hallnas
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Kernel identities

Our proof relies on Kajihara’s (2014) transformation formula

d)K’L ai,...,aK blyl,...,bLYL.
X17...,XK CY17...,CYL ’

_ (aﬁu/cL;q)w¢L,K c/bi,...,c/bL
(4 @)oo Yi,...,YL

cXi/aq,.. cXK/aK
CX1,..., XK ,BU/C ’

where a« = a; ---ag and g = by -- - by, for Kajihara and Noumi’s
(2013) multiple basic hypergeometric series

¢K,L ai,...,0K bl’“"bL'u
)
Xl,...,XK Cly...,CL

A (@ X/ X5 0) T T (Xibii g
=3 W igl ((Cl;Xi//ij HH k

[¢
yeNK i=1k=1 Xick;q
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Kernel identities

When K = L = 1, the latter reduces (essentially) to the basic
hypergeometric series

|:0,,b :l 0 . .
201 = 1q,u U
¢ q

k=0

and the former to Heine’s g-analogue of Euler’s transformation
formula for 5 F:

201 [a’b;q, U] = (G?Z;/;;i)”zah {C/aéc/b;q,abU/c ;

We obtain our theorem by taking K =n+m, L = N + M and
specialising:

. 1 .
Xi=z,a =t (i=1,...,n); Xpnpi=wi, anyi=q (E=1,...,m);

Y =2, bj=t (j=1,...,N); Yy =W, bnsj=q ' (G=1,...,M).

Trigonometric deformed models — Kernel identities M. Hallnas



Commutativity
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Using double affine Hecke algebra techniques, Feigin & Silantyev
(2014) proved:

Forallr,s € N,

[D{),, D)) =o.

n,m’ ~n,m

We give a new proof, based on kernel identities and commutativity of
ordinary Macdonald—Ruijsenaars operators.

Trigonometric deformed models — Commutativity M. Hallnas
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Commutativity

Taking M = 0 in kernel ids, we get
Dn,m(zy w; 'U/)(I)mm;N,O(Zy w; Z) = DN(Z7 u)q)n,m;ND(zv w; Z)a

where

Nt oo s "),
Dn(Z;u) = T Z DY

From the well-known commutativity of the Macdonald—Ruijsenaars
operators DE\;)(Z), we infer

D (2, W W) Dy (2, w3 V) Py v 0(2, w3 Z)
=DN(Z;v)DN(Z;u) Py N, 0(2, w3 Z)
=DnN(Z;u)Dn(Z;0)Pp miN0(2, w; Z)
= Dy (2, w; V) Dy o (2, w5 0) Py v 0(2, w3 Z).

Trigonometric deformed models — Commutativity M. Hallnas
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Commutativity

Comparing coefficients of v"v*, we obtain

@ UNIVERSITY OF GOTHENBURG

[anzn(z, w), Dngn(z, w)} D, m:N0(z,w; Z) = 0.
Commutativity is now a direct consequence of the following lemma.

Lemma

Let L, ,,(z,w) be a difference operator in (z,w) of the form

— E —v

anm(’%w) - a#,V(Z7w)T($szt,w?
neN™ yeN™
lul+lv|<d

with meromorphic coefficients a,, , (z,w) and d € N. If
Ly (2, w)®p m:N0(z,w; Z) =0 forall N € N*, then L,, ,,,(z,w) =0 as
a difference operator.

v

Trigonometric deformed models — Commutativity M. Hallnas
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Joint eigenfunctions

Sergeev & Veselov (2009) introduced the so-called Super-Macdonald
polynomials, which can be defined by

m N
Dy mN,0(z,w; Z) = HH = 121 . HH(I

i=1j=1 i=1j=1

=Y "t MbySPy (2, w)Pr(2).

Theorem
As long as ¢'t’ # 1 foralli,j € Nw/i+ j > 1, we have

™)

Dr,m(z, w; u)SPy(z,w) = SP\(z, w)EEhm(q”,t_"_(" su),

where ;1= (A1, ..., n), ¥ = (Ant1, Anto,...) and

=il 1—t1"t =1 (Wigu;t oo (t7mg0 7 ;7)o

R LTI P ust oo (y5¢0 et ) o
Bz yiu) =[] : -H( cen? e i )
J

Trigonometric deformed models — Joint eigenfunctions M. Hallnas
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Joint eigenfunctions

We deduce the result from
Dn,m(za w; u)q)n,m;N,O(Za wy Z) = DN(Z; u)‘bn,m;N,O(zv w5 Z)
and well-known eigenvalues of Dy (Z; u).

From the above definition, we also recover Sergeev & Veselov’s
(2009) expression

SPA(z,wiq,t) = > (=)o (t, q) Pxu (25 ¢, 1) P (w3 t, q).
vCA

Trigonometric deformed models — Joint eigenfunctions M. Hallnas
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Elliptic deformed models
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Reminder: Deformed elliptic Ruijsenaars ops

Let [z] = Ce®* (2 | wi,ws) and consider

DI, = Y Cruay)T)'T,™ (reN),
Ic{1,...,n},peN™
[T]+|pl=r
w/ coefficients
Croulz,y) = m H -_a:]—i-ka]
i€l j¢l
[xi —x; — — [y: —
l<7l];Jj:<n [z: — xJ] le_Il [yi — y] - ’i]

. ﬁ H —y; +9] H y] + K] )
e [zi —y; — N@“] (i — 1)K]
=1 \jel

Elliptic deformed models M. Hallnas
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Commutativity

We have

(D), D] =0

n,m?

forall r,s € N.

Elliptic deformed models M. Hallnas



“y CHALMERS @ UNIVERSITY OF GOTHENBURG

Commutativity

There are two main steps in our proof.

Step 1: We reduce [Dﬁﬂn, Dﬁizn} = 0 to the identities
STZSMH-m—rv /\GNn; 0<r< |/\|7

for
g — 3 11 lyi —yi — 8][yi —y; +0 — ]
0<p; <A, 1<5< ; . [vi — yillys — y; — K]
SHjSA;, 1S5S i€P,j¢ P
pPc{y,..., m},|p|+|P|l=r
) ﬁ ([351 — &5 + 0,y @i — x5 + Klu; [T — x5 — Aj0]u, )
i,j=1 [77 — T+ K’]“'&_“J [1"’ —xj+ 5]Hz [:rl Y ()‘J - 1)6 - ]H

n

[: —y; + Xid][zs —y; + (s — 1) + K]
H(}l[x yJ+uz][xz—yJ+(/\ 1) + K]

2~y — Ol — yy - il — ]
JI e ey —1)6])'

J¢P
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Commutativity

We note that

ﬁ [ml —x; + 6]%*#;‘
=

=1 [‘rl —x; + H}M—#]‘

- 11 [£i — a5 + (i — p3)0] [2i — @5 + 6 — Klui—p;
<isien [z — ;] [wi — a5+ Elu—n; )
where factors of the form [z, — x; + (u; — p;)d] are typical of elliptic
hypergeometric series related to root systems of type A. In fact,

Sk = S|al+m—r is essentially equivalent to an elliptic hypergeometric
transformation formula due to Langer, Schlosser and Warnaar (2009).

Elliptic deformed models M. Hallnas
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Commutativity

Step 2: We obtain the identity Sj, = S|x4.,—» by multiple principal
specialization in
Z H zi— 2z —allzi — 2z — b
[2i — zj][zs — 2j —a — b]
cq{1,..,, N}iel,jgl

[T|=r

2i — b
N Z H i_ZJ][ZZ_[ZJ_a_b}

rc{im Ny el |
[I|=N—r

The latter identity is due to Ruijsenaars (1987).
(He used it to prove commutativity for his elliptic difference operators.)

Specifically, we take N = |A\| + m, a = 4§, b=k — § and set

(2’1,...,2:]\[):(3;‘1,.131 —1—5,...,1‘1—1—(/\1—1)(5,...,
$n7$n+57,$n+(>\n_1)5ay17>ym)

Elliptic deformed models M. Hallnas
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