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. Uniwersytet
Introduction Wroctawski

Goal

Our aim is to define and study objects associated with the Dunkl operators which are parallel to
ones from the classical real harmonic and Fourier analysis.
Important objects in the classical analysis:

e convolution: f * g(x) = [ f(x—y)g(y) dy - translation invariant operators

o Fourier transform: f(&) = [ f(x)e **dx

They allow us to:

@ solve the heat equation d,u(x, t) = Au(x, t), u(x,0) = f or other differential equations

e define and study function spaces like LP spaces, Hardy spaces, Besov spaces, Lipschitz
spaces; via Littlewood-Paley theory, maximal functions, singular integrals

o potential theory - (—A)P, (I—A)P
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Wroctawski

Root system

For0#aeRN, letog(x)=x—2 <|a”2 a be the reflection in RN with respect to a*

«

R is aroot system in RY, finite set of of vectors a such that oq(R)=Rfora€eR
normalized ||a||? =2

G- reflection group - finite group generated by o4, @ € R

k: R — C - multiplicity function, k(o4 (a')) = k(a'), for a,a’ € R, k(a) =0
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Measure and the Dunkl operators Wroctawski

dw(x) = [Tger 1{x, @)[F@ dx - associated measure, w(B(x, 1)) ~ N [Tger((x, a)| + r)F@

w is doubling, that is, w(B(x,2r)) < Cw(B(x, 1)) )
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Measure and the Dunkl operators

dw(x) = [Tger 1{x, a)|¥@ dx - associated measure, w(B(x, 1)) ~ 1N [Tger((x, a)| + r)k@

w is doubling, that is, w(B(x,2r)) < Cw(B(x, 1)) |

N = N+3 ,er k(o) homogeneous dimension
w(B(tx, tr)) = tNw(B(x, 1))

Dunkl operator

k _
Ty f () =0pf(X0)+ ) %(a,n)w

aER (ar x)
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Measure and the Dunkl operators W) Wroclawski

dw(x) = [Tger 1{x, a)|¥@ dx - associated measure, w(B(x, 1)) ~ 1N [Tger((x, a)| + r)k@

w is doubling, that is, w(B(x,2r)) < Cw(B(x, 1)) J

N = N+3 ,er k(o) homogeneous dimension
w(B(tx, tr)) = tNw(B(x, 1))

Dunkl operator

k —
Tnf(x) = anf(x) + Z ﬂ(05,7’)w

a€R 2 <a’ x>

Tj =T, where e; is the canonical basis of RN.

T;;(Polynomial) = Polynomal of a lower degree
f(Tnf)gdw = _ff(Tng)dw
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Leibniz formula T, (f g) = (T, f)g + f (T;g) doesn’t hold J

unless either f or g is G invariant. J
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Leibniz formula T, (f g) = (T, f)g + f (T;g) doesn’t hold

unless either f or g is G invariant.

Dunkl-Laplace operator
N
Arf(x) =) T7
j=1

(does not depend on the choice of the basis)
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Dunkl kernel, transform, translation and convolution ®E ) Wroclawski

Dunkl kernel

For fixed y, E(x, y) is a unique solution of T;, f (x) = (n, y) f (x), f(0) = 1.
E(x, y) generalizes exp((x, y)) and has a unique extension to a holomorphic function on C"V x CV

4

Dunkl transform (generalization the Fourier transform)

Ff©) =C,§1ff(x)E(—ié,x)dW(x)

(M. de Jeu)

IZ flli2aw) = 1 fll2(aw) and FfH= c,;lff(x)E(if, x) dw(x)
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Dunkl kernel, transform, translation and convolution Wroclawski

Generalized translation

o f ) = ¢3! f E(i€, 0.7 fOEGE, y) dw(@)

It is not known if 7, is bounded on L? (d w). J

Ty is a contraction on I2 (dw). J
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Uniwersytet

Dunkl kernel, transform, translation and convolution Wroclawski

Generalized translation

o f ) = ¢3! f E(i€, 0.7 fOEGE, y) dw(@)

It is not known if 7, is bounded on L? (d w). J
Ty is a contraction on I2 (dw). J
Thangavelu-Xu

Moreover, |75 fllz < | fllz if f is radial. J
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Translation of radial function

(M. Rosler)
If f(x) = f(1x]), then

T f(=y) = f (FAGx, y,m) duxm), A(x,y,m) = (1xI + 112 = 2¢y,n) 23,

Uy is a probability measure with support in the convex hull of 0(x) = {o(x) : 0 € G}.

o\ T
o
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Dunkl heat kernel Wroctawski

etAkf(X) =he* f(x) = \[RN h:(x, N f()dw(y),
ho(x) = ¢t en Nt ML
X

=~ L)
V2t V2i

M) = Tx(h)(-y) = 6t @ N2 I
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d(x,y) =min{||lo(x) — yll : o € G} distance of @ (x) to G (y)
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Thanks to

d(x,y) < Alx,y,n) forne conv@(x).

and

Txf(=y) = f (f(A(x, y,m) dux(®),

one deduces

0< hi(x,y) < ct N2 exp(~d(x, y)2/41) ]
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Having the objects like the generalized convolution *, the Dunkl transform &, the
Dunkl-Laplace operator A,and the heat semigroup e’**, we may ask if there are theorems
which are analogue to classical ones.
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Motivation

Having the objects like the generalized convolution *, the Dunkl transform &, the
Dunkl-Laplace operator A,and the heat semigroup e’**, we may ask if there are theorems
which are analogue to classical ones.

Thangavelu-Xu (2005)

If ¥ () = ¥, (%), ¥e(x0) = £ Ny (x/ 1),
then My f(x) = sup,qlx * f(x)| is of weak-type (1.1) and bounded on LP (w), 1 < p < co.
Heat semigroup approach in the spirit of Stein ("Topics in Harmonic Analysis ...").
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Uniwersytet

Motivation Wroctawski

Having the objects like the generalized convolution *, the Dunkl transform &, the
Dunkl-Laplace operator A,and the heat semigroup e’*, we may ask if there are theorems
which are analogue to classical ones.

Thangavelu-Xu (2005)

If ¥ () = ¥, (%), ¥e(x0) = £ Ny (x/ 1),
then My f(x) = sup,qlx * f(x)| is of weak-type (1.1) and bounded on LP (w), 1 < p < co.
Heat semigroup approach in the spirit of Stein ("Topics in Harmonic Analysis ...").

Question. Can we deduce this theorem from estimates for 7, y; (—y) or from estimates of the
heat kernel 7;(x, y) 2
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Motivation cont.

Riesz transforms:

; (&
Rif(x) = eTj(-A0 72100 = &7 (127 1O 0.

(Thangavelu-Xu (2007)) in dimension 1 and Amri-Sifi (2012):
R; are bounded on L” (dw) and of weak-type (1.1).

Questions: Can we build theory of singular integrals of convolution type operators?
Can we find conditions on 72 : R — C such that

Tf(x) =F 1 m@EZF f(©))(x)

is bounded on L” or weak type (1.1)?
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Motivation cont.

Study of A; harmonic functions
A U= 0

(Gallardo-Rejeb)
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Motivation cont.

Study of A harmonic functions
Aru=0

(Gallardo-Rejeb)

Generalized Cauchy-Riemann equations

Problem: Investigate conjugate harmonic functions: u = (uy(t, x), u; (¢, x), ..., un (¢, x)), that is,

N
Y Tju=0, Tjur=Tou;, To=0; 0<jl=<N, (t,x)€(0,00)xR",
j=0

sup | |u(t,x)|dw(x) < oo,
>0 JRN

and build theory of Hardy spaces in the spirit of Stein, Weiss, Fefferman, Coifman, Latter.
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Modern Analysis Related to Root Systems with Applications



iwersytet

Motivation cont. Wroctawski

Problem. Study Schriédinger operators
A +V

in particular
2
—Ar+ x]°.

(Agnieszka Hejna talk)

Investigate higher order operators
N
2 4
N 2T
J=1

or their fractional powers
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Estimates of generalized translations of radial functions Wroctawski

From the estimates

0 < hs(x,y) < ct N ?exp(—d(x, y)?/41) J

we cannot deduce that My, f(x) = sup;q |h; * f(x)| is bounded on LP.
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Estimates of generalized translations of radial functions B Wroctawski

From the estimates

0 < hs(x,y) < ct N ?exp(—d(x, y)?/41) J

we cannot deduce that My, f(x) = sup;q |h; * f(x)| is bounded on LP.

Improvement (J.-Ph. Anker, ].D., A. Hejna)
hi(x,) < Cw(B(x, VD) exp(—cd(x, y)*/1) }

= Mpfx)<C Z My f(o(x)), My isthe Hardy Littlewood max function

oeG

Mppf(x) —sup—f lfWIdw(y).
Bax W (B)

J. Dziubariski (IM UWr.) Selected results Modern Analysis Related to Root Systems with Applications
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Proof of the estimates Wroctawski

Important properties

Txf(=y)<71,8(-y) forradial f<g
suppty f < O(B(x,r)) for radial such thatf, supp f < B(0, r)
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Proof of the estimates

Important properties

Txf(=y) <1.g(-y) forradial f<g
suppty f < O(B(x,r)) for radial such thatf, supp f < B(0, r)

For a function f on RY, let

=t Nf(x/D, filx,y) =1:(f) (=)

The heat kernel does not fit to this notation - parabolic scaling.
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Proof of estimates of generalized translations of radial function

Consider p(x) = p(|x]), where j(s) = c(1+s?)"M/2 and [ p(x) dw(x) = 1.

Then p'(s) < C(1 + %)~ M*V/2 and |V, (5(A(x, y,)))| < CH(A(x, y,m).

Consider B = B(y,1) and let y; € B be such that p(x, yp) = SUp g px,y) =K.

Then 0 < p(x, yo) — p(x,y") = ffol %(pOA)(x,y’ +s(yo—y)dsduxm < CKllyo—y'l.

Thus p(x,y") = K/2 for | yo— y'| < (2C) L.

So,1= [p(x,y)dy = Kw(B(yo, 2C)™1H)/2 = p(x,y) < K S w(B(y,2C)™H) ™t ~ w(B(y,1))7!

Now if g is radial and
lgx)l < @ +1x2) ™21 + x5

then

lg(x, )| < f 1+ A(x,y, n)z)_’p(A(x, ym)dusm S (1+d(x, y)z)_gw(B(y, .

The factor (1 +|x[2)~¢ can be replaced by e~¢I*I",

J. Dziubariski (IM UWr.) Selected results Modern Analysis Related to Root Systems with Applications
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Estimates of translations of radial function - improvement Wroctawski

The estimate h;(x,y) < Cw(B(x, NG exp(—cd(x, y)2/ 1) is symmetric with respect to G.
We expect that the main mass of y — h;(x, y) is concentrated near x.
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Estimates of translations of radial function - improvement Wroctawski

The estimate h;(x,y) < Cw(B(x, NG exp(—cd(x, y)2/ 1) is symmetric with respect to G.
We expect that the main mass of y — h;(x, y) is concentrated near x.

U2t
ht(JC,y)SC(1+M) w(B(x,\/E))—le-Cd(x.y)th. J
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Uniwersytet

Estimates of translations of radial function - improvement Wroctawski

The estimate h;(x,y) < Cw(B(x, NG exp(—cd(x, y)2/ 1) is symmetric with respect to G.
We expect that the main mass of y — h;(x, y) is concentrated near x.

U2t
ht(JC,y)SC(1+M) w(B(x,\/E))—le-Cd(x.y)th. J

This result, with an outline of a proof which uses a Poincaré inequality, was announced W. Hebisch.
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Applications

If f is radial and | f(x)| < (1 +|x)"N"¢"¢, then

- d
'Tx(fr)(—y)|=|ft(x,y)|§(1+”xty") (w(B(x, t))‘1(1+ (xt y))

This type of approach allows us to apply methods of analysis on spaces of homogeneous type.
For example:

(J.-Ph. Anker, J.D., A. Hejna)

build theory of H! spaces in the Dunkl setting and prove characterizations by:
o boundary values of conjugate (9 + A)-harmonic functions + L' (d w) condition
e maximal function: sup;q|h; * f]) € L%(dw)
o Riesz transforms: R; f = Tj(-Ap) "2 f e L' (dw)
e square functions: (f;°1¢0,h; * f|2%)1/2 e LY dw)

e atomic decomposition: a is atom if suppa c B, ||l < w(B)™}, fadw = 0.

J. Dziubariski (IM UWr.) Selected results Modern Analysis Related to Root Systems with Applications
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Generalized translation of non-radial functions Wroctawski

Our goal is to investigate
Txf(=y) = f(x,y) for f-non-radial J
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Generalized translation of non-radial functions Wroctawski

Our goal is to investigate
T f(=y) = f(x,y) for f-non-radial

Bad information
It seams that we cannot apply the formula of Rolser:

T2 f(=y) = f (F(A(x, y,m)) dpex(m)
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Generalized translation of non-radial functions B ) Wroctawski

Our goal is to investigate
T f(=y) = f(x,y) for f-non-radial

Bad information
It seams that we cannot apply the formula of Rolser:

rﬁhwzf@mm%mmmm)

Good information.
We can apply the formula of Rélser:

Tﬁ&ﬂ=f@%%%MMmml

J. Dziubariski (IM UWr.) Selected results Modern Analysis Related to Root Systems with Applications
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Support property of the generalized translation Wroclawski

Suppose that f € L?(dw) is such that supp f < B(0, r).

A

C >~
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Uniwersytet

Support property of the generalized translation Wroclawski

Suppose that f € L?(dw) is such that supp f < B(0, r).
If we consider fy = f(x—"), then supp fr € B(x, ).

A
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Support property of the generalized translation

Uniwersytet
Wroctawski

Suppose that f € L?(dw) is such that supp f < B(0, r).
If we consider fy = f(x—"), then supp fr € B(x, ).
Question: What about supp 7, f(—-)?

A

@

J. Dziubariski (IM UWr.) Selected results
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Support property of the generalized translation

Results of Amri, Anker and Sifi (Paley-Wiener approach) assert:

supp f € B(0,1) = supp 7 f(=) {y:lxl—r=Iyl=<lxl+r}

A

AN

?
&/

8o
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Support property of the generalized translation Wroclawski

Results of Rosler imply that if f is radial, then

supp f € B(0,r) = suppt.f(—) SO(B(x,r)) = U B(g(x),r)={y:d(x,y) <r}.
geG

A

h(x)

® @
®

>

gh(z) g(zx)
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Theorem Wroctawski

Theorem (J.D., A. Hejna)
Let f € L?(dw), supp f < B(0,r), and x € R, Then

suppT.f(—)SOB(x,r) ={y:d(x,y) <r}.

A

h(z) z

Y

gh(z) g(x)

J. Dziubariski (IM UWr.) Selected results Modern Analysis Related to Root Systems with Applications
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Difference Wroctawski

The measure of @ (B(x, r)) is much smaller than the measure of {y: |x|| —r < ||yl < [ x|+ 7}.

A

Y

If r =1 and dw = dx, then |G(B(x,1))| = const, while |anulus| ~ || x[| V! for || x| large.

J. Dziubariski (IM UWr.) Selected results Modern Analysis Related to Root Systems with Applications
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Key Lemma Wroctawski

Lemma (J.D., A. Hejna)
Let ¢ be radial continuous function, supp ¢ < B(0, 1) and let f € L' (dw), supp f < B(0,r2). Then

17x(@ * Ol @w < Crr(r+ r2)N 2l el £l 1 )

Note. The estimate does not depend on x.

J. Dziubariski (IM UWr.) Selected results Modern Analysis Related to Root Systems with Applications
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Application 1. Translations of Schwartz class functions

Theorem (J.D., A. Hejna)
If ge Z(RN), then [|Txg 11 (qw) < C.

-~/ Wroctawski

Theorem (J.D., A. Hejna)

Letpe S (RN). Then
d(x,y))-M

2,11 = Crrw(Blx, )™ 1+ =

Consequently, the maximal function
My f =suple; * f]
t>0

is of weak-type (1.1) and bounded on L” for 1 < p < co.

J. Dziubariski (IM UWr.) Selected results
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Improvement (A. Hejna)

P

16, )1 < Cartw(Blx, )™ (14— :
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Application 2. Hormander’s multiplier theorem Wroclawski

Theorem (J.D. A. Hejna)

Assume that m - not necessarily radial, satisfies Hormander’s condition

sup ly (Ym(e) lws <oo
t>

for certain s > N, where y € C°(R") is radial supported by an annuls.
Then the Dunkl multiplier operator

Tnf=F Y mFf),

is of weak-type (1,1), bounded on L”(dw), and on the Hardy space Hék.

J. Dziubariski (IM UWr.) Selected results Modern Analysis Related to Root Systems with Applications



Uniwersytet

Application 3. Singular integrals B Wroctawski

Theorem (J.D., A. Hejna)
Letn= L%J +2. Assume that K € C™(RN \ {0}), satisfies:

[ KX dw(x)| < oo,
a<|x|l<b

|07 K ()| =yl ™1 for all x € RN\ (0}, 1] < m;

lim Kx)dw(x)=L.

e=0Je<|xl<1
Then the operator

K f(x)=lim TxK(=y) f(y) dw(y)
£—=0JRN\B(0,¢)

is weak type (1.1), bounded on LP (dw), 1 < p < oo, and bounded on H'.
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Application 4. Square functions Wroclawski

Assume that ¢ - not necessarily radial, smooth enough with certain decay. We are able to
establish upper and lower L? (d w)-bounds for square functions, including e.g.

dryl
Svipf(x):= (fo 1tV (s >»<f)(x)||2 ) . J
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. . . Uniwersytet
Application 4. Square functions Wroclawski

Assume that ¢ - not necessarily radial, smooth enough with certain decay. We are able to
establish upper and lower L? (d w)-bounds for square functions, including e.g.

dryl
Svpf(x):= (fo 1V (e * F)(x) 1> — )

J.D., A. Hejna

18,0 flp@@w) = Clfllzr@aw),

1 fllzr@w) < ClISv,o fllLr@w),

the lower bound under the assumption that & ¢ does not vanish along any direction,

(V¢ #0)3t > 0)(F Pp(£8) # 0).
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Wroctawski

For the upper bound we use a vector valued Calderén-Zygmund approach.
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Wroctawski

For the upper bound we use a vector valued Calderén-Zygmund approach.
Lower bound:

o0 dt —
fRN[) t2<vk(¢t*f)(x);vk((,bt*g)(X»T dw(x) =fRNgf(f)9g(f)C<p(f)dW(f), (%)

o dt
cp(&) = ckfo PIENP|1F peé) P —0<8<cy<C,
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Wroctawski

For the upper bound we use a vector valued Calderén-Zygmund approach.
Lower bound:

o0 dt —
fRN[) t2<vk(¢t*f)(x);vk((,bt*g)(X»T dw(x) =fRNgf(f)9g(f)C<p(f)dW(f), (%)

oo dt
cp(&) = Ckfo 2lENIP1F P(20)|? - 0<b6<cy<C, cy, cqgl satisfy assump. of multiplier thm.
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Uniwersytet

-~/ Wroctawski

For the upper bound we use a vector valued Calderén-Zygmund approach.
Lower bound:

o0 dt —
fRNfO t2<Vk(<Pz*f)(X),Vk((,bt*g)(X))TdW(X) =fRNgf(f)9g(f)C¢(f)dW(f), (%)

oo dt
cp(é) = Ckfo 2lENIP1F P(20)|? - 0<b6<cy<C, cy, cqgl satisfy assump. of multiplier thm.

|ffgdw| = |f9f9_gc(zlc¢dw| = |f9’f§(Tc;1g)c¢dw
(x) + Holder ineq- = ”Svk,({)f”LV(dw) ”Svk,(,b(T%l g) ”Lp’ (dw)
upper bounds < C||Sv, ¢ fllzr@w)l (Tc; N aw

multiplier thm. < C'| Sy, fll r(dw) 181 (o) -
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Application 5. Semi-groups generated by even powers of T Wroctawski

For ¢ € N, we study the semigroup generated by

N
Dy = (141 3 726 }
j=i

and prove the estimates for the integral kernel

tl/(Zlg—l)

d , 2[0/(2[0—1)
luy (x, y)| < Cw(B(x, t”(”")))‘lexp(—c oy
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