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1. Rn Theta Functions of Rosengren and Schlosser
e We write the complex plane which is punctured at the origin as
C*:=C\{0}={CeC:0< (] <}

e Let p € C be a fixed number so that 0 < |p| < 1. The theta function with
argument ( € C* and nome p is defined by

s =T1(-a)(1-20)

j=0

e By this definition, we can readily see that lim#((;p) =1— (.

p—0
0(q"- 1 — g
This implies that lim " p) = 7 _. 7]y (¢g-analogue of n € N).
p—0 1 —gq 1 —q
If we consider 0(aq";p) with a = ™2 and ¢ = e~ %%, a, ¢ € [0,27), i := /—1,
lim blag”;p)

p—0 22'\ / Can

= sin(a + n¢) (triginometric function).
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(q, p)-analogues
theta functions

elliptic extensions I

g-analogues
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g-extensions '

classical numbers
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The fact 1111(1)9(C;p) = 1 — ( suggests that the theta function 6((;p) is an
pP—

elliptic analogue of a linear function of (.
What is the elliptic analogue of a polynomial of (7

It might be given by a product of #’s. But should notice the equalities

k—1 k—1
0(¢r: ") =[] 0Cwisp),  6(¢Gp) =] 0P, keN,
§=0 =0

Here w; denotes a primitive k-th root of unity.
The degree of product of #’s depends on a choice of nome.

In order to define a degree of products of 0’s with respect to a specified
nome, Rosengren and Schlosser (2006) generalized the notion of the quasi-

periodicity of the theta function, 6(p(;p) = —%Q(Q;p).

1
We notice that we have also the inversion formula #(1/(;p) = —EQ(C;p), and

the combination of these two proves the periodicity of the theta function,

0(p/Cip) = 0(C.p).
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Definition 1.1 (Rosengren and Schlosser (2006)) Assume that f(() is holo-
morphic in C*. Then if there is a parameter » € C* and f satisfies the

equality, i
1w6) ==L 5000

then f is said to be an A, | theta function of norm r. The space of all

A, 1 theta functions with nome p and norm r is denoted by 515?71”‘_1.

[RS06] Rosengren, H., Schlosser, M.: Elliptic determinant evaluations
and the Macdonald identities for affine root systems. Compositio Math.
142, 937-961 (2006)

By this definition, we can say that 6((;p), satisfying the quasi-periodicity,

1
O(pC;p) = —EH(C;p), is an Ay theta function of norm r = 1.
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e The following is proved.

Lemma 1.2 (Tarasov and Varchenko (1997)) The space 51;4} +~ ! is n dimen-
sional and {wf"_l(C;p,T)};"zl defined below form a basis. For j =1,...,n,

P (Gpor) = OO (=) ")
n—1
=7 [ o0/ Bk p).

k=0

where a and 8 are complex numbers such that o” = p, 87 = (—1)""!r,

respectively, and w,, is a primitive n-th root of unity.

[TV97] Tarasov, V., Varchenko, A.: Geometry of ¢g-hypergeometric func-
tions, quantum affine algebras and elliptic quantum groups. Astérisque
246, 135 pages (1997)
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By lim 6((;p) =1 — (, we see that
p—0

L= (=n"=r¢™, j=1,

An_l : An_l
w.] (C7 07 T) pl Owj (C?p7 T) {Cj 17 j 27 o 7"’L.

Hence 564 "~ spanned by them is a space of polynomials of degree n in the
form

co+c1C+--+c, " with 2= (=1)""1

It implies that dim &y, ' = n.

n
. o An—l . _ An—
It is easy to verify that 13(}’%’53” [wj (Ck; O,r)} — (1 — T'El:[l @) WA-1(¢),
where W4 (¢):= [ (G-¢) ¢=(G.....qeC”
1<j<k<n
(Vandermonde determinant =Weyl denominator of type A,,_1).

n—1

If we set r = 0 as well as p = 0, 8510 is the space of all polynomials of
degree n—1 without any restriction on coefficients. In this case, the above

is reduced to  det [cg—l} = JI (¢ —¢) which is known as the Weyl
>7,R=N .
1<j<k<n

denominator formula of type A4, ;.
yYp n—1 8/56



e The elliptic extension of W47~ is defined as follows.

Definition 1.3 (Macdonald (1972)) For { = ((1,...,(,) € (C*)", the Mac-
donald denominator of type A, _, is defined as

M= Gp) = [ a8 /Gan).

1<j<k<n

e It is easy to confirm that lintl) MA=1(&;p) = WA—L(().
pP—

e The elliptic extension of the Weyl denominator formula of type A, was
proved by Rosengre and Schlosser [RS06]|. See also Proposition 5.6.3 on
page 216 of the textbook of Forrester [Forl0].

Proposition 1.4 (Rosengren and Schlosser (2006))

det [wf‘”'_l(gk;p, fr)} = MQ(Tﬁ@Sp)AfA"_l(CSP)-
(=1

1<j.k<n (pm; p)n

[Mac72] Macdonald, I. G.: Affine root systems and Dedekind’s 7-function.
Invent. Math. 15, 91-143 (1972)

[For10] Forrester, P. J.: Log-Gases and Random Matrices. Princeton
University Press, Princeton, NJ, (2010) 9/56



e There are seven infinite families of irreducible reduced affine root systems,
which are denoted by A, B, BY, C, CV, BC and D [MacT72].

Type
A, = A} O0—0
BC,=B(C} 0—>—0

A=A (122) < 7 o
B, (I123) >o—o-—o—o=)=o
B} (1=23) >o—ov---—o——o=(:o

C, (I1z2) O=>—=0——0— +++ —O0—0—%0
G (1z2) o0=—=0—-0— +:+ —0O—O0——0
BC,=B(C] (I1=2) O=>—0——0— -+ —O——O0—=>=0

D,=D; (I1z4) >O—o———o——o<

[Mac72] Macdonald, I. G.: Affine root systems and Dedekind’s n-function.
Invent. Math. 15, 91-143 (1972)
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There are seven infinite families of irreducible reduced affine root systems,
which are denoted by A, B, BY, C, CV, BC and D [MacT72].

Associated with them, Rosengren and Schlosser [RS06] defined seven
types of theta functions. (The A, _; theta function was already explained.)

Definition 1.5 (Rosengren and Schlosser (2006)) Assume that f(() is holo-
morphic in C*. For R, = B,, B), C,, C., BC,, D,, we call f an R, theta
function if the following are satisfied,

1 1 .
f(p¢) = _pn_lcgn_l f(Q), f(1/¢)= _Ef(C)a if R, = B,,
100 = ==z £ F1/Q) = =f(Q). if R, = B,
1
f(pC) — prigan2 f(C): f(l/C) — _f(C)a if R, = Cy,
1 1 )
f(p¢) = Wf((), f(1/¢) = —Ef(C), if R, = C},

F(p0) = Wﬂo, F(1/¢) = —%f(C), if R, — BC,,

F(p0) = pn_lzzn_zf(o, F(1/C) = f(C). if Ry = D,

The space of all R,, theta functions with nome p is denoted by Ef”.
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e In order to clarify the common structure, we introduce the notations,

(on—1, R, =B,
2n, R,=B C’,
N=NE=lont+2 R,=C,,
2n+1, R, = BC),,
2n—2, R, = D,,

(17 Rn:Bn: Cfp\”/uBCn:
07 Rn — By\z/a Cna D?’M

n ) _17 RTL — BTMB;/U
g = g pr—
""" 7|1, R,=C.C.BC,D,
(1, R,=B,.B',C, C/.BC,.

09 :(75“” t= <

. D,

e Then the above equations are simply expressed as

/(<) 1
f(pC) :O-lp(./\/'—a)/QCN’ f(]‘/C) :O-QEf(C)
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e In addition to the above, we put

=

n j_na Rn:BTMCX?BCn?DTL?
Oéj = = ) v
]_n_la RTL:BTNCTIJ
/83(p) — BjRn(p) = _alpaj+(N_a)/27 RTL — Bn? BX? CTL? CX7 BCTL? Dnv

Lemma 1.6 (Rosengren and Schlosser (2006)) For R, = B,, B, C,, C,
BC,, D,, the space é’f’” is n dimensional and a basis is formed by

I (Cp) = C90(Bi(p)CN pN) + oo OB ()N pY), =1,

e The explicit expressions are given below;

PP (Gp) = B ) - I,

OB (Cp) = IO ) — I R P,

YT (Gp) = TITIO(—p BIER pPTR) — (TI(—p (TR PR,

0 (Cop) o= (A ) — I A ),
U7 (Gp) = TP ) = (T M,

WP (Cop) o= (I ) I I )
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e In addition to the Macdonald denominator of type A, given by Defi-
nition 1.3, the following other six kinds of Macdonald denominators are

defined.

Definition 1.7 (Macdonald (1972)) For ¢ = ((1,...,(,) € (C*)", let
MP (¢ p) Hé’ ir) 1] GGG O /Gp).
1<j<k<n
MEGp) =16 0GP T ¢ 0GG oG /G,
€: 1<j<k<n
M (¢Gp) =1 0cEn) T G O(GG: oG/ Gp).
(=1 1<j<k<n
MO (¢Cip) =[]0 T & '0(CGk: O /Ceip).
/=1 1<j<k<n
MBC(¢ip) He Cpbesn’) 1] GGG G/ Gip),
1<j<k<n
IWD"(C;p) = H C;lQ(CjCkQP)H(Cj/Ck;p)-
1<j<k<n
They are called the Macdonald denominators of type R, for R, = B,, B,
C,. C}f, BC,. D,, respectively.
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e The above are regarded as the elliptic extensions of the Weyl denomina-
tors of types B,,. C,, and D,,,

WBR(C) —  det [C}Z—n n—O—l j} H C-l n 1 L Cﬁ H (Ck . Cj)(l . CjCk)

1<5.k<n ,
1<j<k<n
= 111% JL[B”(C p) = hm ME (C;p) = hm JMBC”(C;p),
p—
j—n—1 n 1— n
WO (¢) = det |G -Gt = Hcg - I @-a-¢a)
SRS 1<j<k<n
— lim M B~ (C;p) = 11111 M (¢ p).
p—0
Wh(¢) = det [T+ = IR | RS
>J),R=N (=1 1<j<k<n

= 2 lim MP (¢ p).
p—0

Notice the degeneracy in the limit p — 0.
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e Rosengren and Schlosser proved the following.

Proposition 1.8 (Rosengren and Schlosser (2006)) The following equali-
ties hold for ¢ = ((y,....(,) € (C)™,

5 :wf ’ (C"”p): = (anQ—(lp;;;Q)n%l)goﬂf B (¢:p),
o [0 Gop)] = AP g
13(%2271 :chn (C’C3p): = @%JE%?%%Q)&MC”(C;p)a
e e
13(},61}5” [wfcn Kk;p): — @%Eiig%l)g@A{BC”’(C;p)a
5 W n (C’“p): - (p2n4—(21?;$%2)20 MP(¢ip).

[RS06] Rosengren, H., Schlosser, M.: Elliptic determinant evaluations
and the Macdonald identities for affine root systems. Compositio Math.
142, 937-961 (2006)
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2. Orthogonality of Rn Theta Functions

e Since the theta function 6((;p) is holomorphic for ¢ € C*, it allows the
Laurent expansion,

o(Cip) = —— S (—1mplien,

(P;P)oo £

where

e From now on we will assume p € R and r € R. That is,

pe(0,1),  reR\{0.

e In this case, 0((;p) = 0((;p).
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2.1 Orthonormal An-1 Theta Function

e We write the unit circle on the complex plane as
T:={z€C:|z| =1} =R/2nZ (one-dimensional torus).
Each point in T is expressed by e,z € [0, 27).

e For the space Sz‘fﬁ_l of the A, theta functions, we introduce the following
inner product,

(o= | FQe@H
T Jl=1
=5 | HENl e fge gl

where / denotes the arc length measure on T normalized as /(T) = 2.
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Proposition 2.1 Let p,p € (0,1) and r,7 € R\ {0}. Then

A, A, ~ A, ~
W77 Cspar), g, T D)) = BT (0, DT O

for j,k=1,...,n, where

b 0 r7) = (1) s ()",

Proof. We apply the Laurent expansion of the theta function and obtain

Mj 1
A, .
U C RS Z( 1)epna) (—1) (=D, (=DE ginta
ez
Y IR e—i(k a - o o
%; 1(61$;p7(r) — W (_1)mﬁn(2)(_1)(n 1)m7/2mﬁ(i€ 1)m€ inmz.
Pt £,
The inner product of them includes the integrals
1 2t
Iﬁf"% =5 GGk +n(t—m)}z g

A

as (U7 (5p,r), A”‘l(--ﬁ )T
ZZ( )yt (5) 55 ) plpm g, = Dgt=1m pAn

Jktm:*
> eZ mez

(P ")
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Wi (Gpyr) = T T (1) ")

It is easy to verify that

IAn—l e ]'

2m
= 5 /0 MR En I gy = 1((j — k) +n(l —m) =0).

Since ¢,m € Z, while j,k € {1,...,n}, |J—k| < n—1 < n and thus the nonzero
condition of Iﬁf”gé is satisfied if and only if j — k=0 and / —m = 0. That
is, we have the equalities,

A, _
I —1

jkem = 5}k5€m fOI‘ j, IC - {1, - .,n}, g,m & 7.

Therefore, we obtain
An— An_ AN AN
<¢3 1(';p77ﬂ)11:bk; l(';p:?ﬂ)>'ﬂ‘

Ot S " 0p)" ) (7Y (pp) U
- T+ T2 . AN (pp) 2 (TT) (pp) .
(p ap )oo(p 7p )oo =/

Again we use the Laurent-series expression of the theta function and the
assertion is proved. g
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When p # p, r # r, we have two distinct sets of functions {wA”_l(-;p, T) I
and {wf”_l( D, A) . In such a general case, the property

<w;'4n_1( ) wkn 1( D. A)>T T h " 1(]7 ﬁ?rr)éﬂm Jak T 1 © e '7n7
shall be called biorthononality.

As a special case with p=p and r =7, {wf"_l( D, T ) " . makes an orthog-

onal basis of &, ,” '. Here we consider this simphﬁed situation.

But now we replace © € R by a complex argument z =z + iy, z,y € R.

Lemma 2.2 Let pe (0,1) and r € R\ {0}. For j,k=1,...,n, the orthogonal
relations hold;

1 [T _

5= [ O p )l () p ) e = D p )
27 0

B _ 2n. ,2n ,
with h;ln_l (y,p7 7") _ 6—2(3—1)@; (p P %OO 0(_T2€—2nyp2(j—1);p2n).
(P p")5e

Proof. Just note wf”_l(eimﬁy);p, r)=e" - 1yw e p reT). g
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e For the nome p € C, |p| < 1, we define the nome modular parameter 7 by

o 6271'2'7'

p= =: p(T).

Lemma 2.3 (Jacobi’s imaginary transformation) We define

~ —2mi/T

p=p(=1/1)=e

Then the following equality holds for ( € C,

~1/8(7.
' mi/4 P PiP)oo —1 T 1 —1 T —i (/T
9(€ZC;p) — 7,/4p1/8gp;]3007_ 1/2e iC? /4 6@{/26 i /2 9(6 i/ ;@-
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e Since we have assumed p € (0,1), 7 is pure imaginary and written as
T =i|7|; that is, p=e 277l

e Moreover, we fix the norm r as

r = (_1)n€—n7r|7'] _ (_1)npn/2'

e Then we find the following;

o~

B4 (s, 1) = Cr(nlr]) (e /Il /Il 2el7Il=1)2/meny? 2m

< 9(Ca(n|7|, (j = L +n/2)|r|)e= VT e/ j=1,...n,

where
1 e/t —(dis—1)7/2t
C1(t) := V2t (e=27t; e=2mt)2 Co(t,s) == (is—L)m/28,
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e There are three important points;

~ 2 : c : ‘
A1 (g p, 1) o exp (2T — 12 4 Dy 0(Coe /Tl /i),
J n 27T

Lemma 2.4 Assume p = e 2™l and r = (—=1)"p"/%. Then

1

27 |7

27 |7| N ,
/ e—ny2/27r]7']hfn—1 (y;p7 r)dy — (n|7_’)€27r|7|(3—1)2/n_
0

Proof. When C does not depend on v,

1 ]ZWTQ(Ceiz’y/T.p)d - — > (=Dkpl)et L[ il
2m|T| Jo o (pip)oc keZ 2rirl Jo :
1 k 1
— (~1)*pla) CPoy =
(02 7) k% " (rp)s

Then the assertion is immediately obtained. j
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—m/t

e With p=¢ 27"l and C(t) = ﬁ ez define

A, Y

\Ijj 1(2)—qjj (2] T))
—rlT|(j—=1)*/n

== e Tl (5 p, (< 1)), 2=z +iy €C
Ci(nl7)

e Consider a rectangular domain in C,

Doz orl7)) = {z =r4+iyeC:0<r<2m,0<y < 27T|7'|}.

e Introduce the inner product for holomorphic functions f,g on D(ax or|7))3

-9 Daniin = T f S

(27, 27|7|)

27 277 _
W/o dm/o dy f(x +iy)g(x + iy).

The above results are summarized as follows.

.. Ay A, .
Proposition 2.5 (¥’ I R L k=1,....n

Doy onir)y — Yiks
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2.2 Other Orthonormal Rn Theta Functions

o Let

(j—n—1/2, R, =B, C!.BC,,
J(j)=J% () =a;—a/2=j-n—-1, R,= B, Cy,

\j_na Rn:Dm
where ¢ = o and j = af” are defined above, and
flv .j:l?"'?n? Rn:CmCX:BCm
(2, =1,
R, 4 ] Rn:BmB¥7
Cj = ¢ 1= \1, J=2,....n,
(2, = 1,n,
< J R, =D,
\\1, 7 =2,....,n—1,
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Proposition 2.6 For R, = B, B,, C,, C/, BC,, D,, define

\IIR ( ) qu ( ‘ |) e_W|T|J(j)2/N Ny? /az|T|+ y/2wR ( ' )
T (z2) =Wt (2| T]) = e mriTa (e p),
9 3 V2e,CLNTT) jey

j=1,...,n, where a = aftn, N = NEn ¢, = cf”), and J(j) = JB(j) are given
above. Then

Rn Rn . y -
<w3 7@]{‘ >D(27r,27r\7'\) — jk7 ],k— 17...777/.
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2.3 Doubly-Quasi-Periodicity

e The orthonormal functions {kIJjR“}';?-:.l have the following doubly-quasi-
periodicity and can be extended for z € C.

Lemma 2.7 Assume p = ¢ 277l The following hold,

U (z 4 2m) = Ui (2),

An— y —1 Rn Rn y —i Rn
Uz o+ 2milT]) = 7MW (2), W (2 o+ 2milT]) = o ZNm\I!j (2),

j=1,...,n, where N = Nf and o, = U]R” as above.

Proof. The periodicity with period 27 is obvious, since {\I!R'”'( )}j=, are

functions of ¢*. For 'Lbf”‘_l(eiz;pa(—l)” ) e el 1y Vit (e p) € EF,

An—1/ i ; ‘ A, j -
1//’3- 1 (eE(Z+2ﬂ|T‘?);p’ (_1)npn/2) _ wj 1 (peaz;p’ (_1)npn/2)

_ (_1)?1 ?/)An_l(eiz' (_1)n n/2) _ €nw|r|enye—inm,¢fln—1(61'2_ ?“)
o (_l)np-n/Q(eiz)n J ' D p o g :PsT),

R?l " ] Rn )
wj (ez(z+27r|7"|’z,);p) _ ’%- (pezz;p)
1

n( 0z, _ (N a)w|T| Ny —iNz, Ry
for others. Irrelevant factors are cancelled by
6—n(y+27r\’r|)2/47r|7| — e—nw\T|e—ny€—ny2/4ﬁ\T| and
e~ N(y+2n|7|)? /ar|r|+aly+2n|7)) /2 _ o~ N =a)7|r| Ny —Ny?/An|7T|+ay/2 1
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3. Determinantal Point Processes (DPPs) on a 2-Dim Torus
and their Infinite Particle Limits

3.1 A Brief Review of DPPs

e Let a space S be a subset of RY with d € N equipped with a reference
measure .

e A random point process with n points, n € N, on a space S is a statistical
ensemble of nonnegative integer-valued Radon measures

=) = Yo%, ().
j=1

e Here §,(-),y € S denotes the delta measure such that ¢,({z}) =1 if 2 =y
and 6,({r}) = 0 otherwise.

e In general, the configuration space of point process is given by

Conf(S { Zéf@ r; € 5, £(A) < cofor all bounded set A C S} .
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The distribution of points {X; };?:1 on S is governed by a probability mea-
sure P. We assume P has probability density p with respect to \(dx).

That is, for the set of points X := (X,,...,X,),
P(X € dx) = p(x)A(dx), dx CS".
Since the labeling order of n points {acj}?zl is irrelevant for point config-

uration ¢ = Z?Zl d0z,, the probability density should be normalized as

% o p(x)A(dx) = 1.

The point process is denoted by a triplet (=, p, A(dx)).

For (=, p, A(dx)), the m-point correlation function, 1 < m < n, is defined by

n

1
Pm(T1, .., Tn) = (n_—m),/nm P(T1, .o Ty Tt s+ ) H )\(diﬁj),
J=m++1
(1,...,2y) € S™. By definition, for any m € {1,....,n}, the correlation
function p,, is a symmetric function on 5"
Pm(Tays - s To(m)) = Pm (21, ..., xy)  for all o € Gy,
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e Let B.(5) be the set of all bounded measurable complex functions on S of
compact support. For ¢ € Conf(S) and ¢ € B.(S5) we set

@@:mewm=ZMwy
j=1

e Then the expectation of the random variable (=, ¢) with respect to P is
given by

ﬂ@ﬁHZLw@m@MMI

In other words, the first correlation function p;(z) gives the density of
point at =z € S with respect to the reference measure \(dzx).

e For 2 <m < n, from £ € Conf(S) we define ¢, := )
Then for all ¢ € B.(5™),

ila“-aiﬂl:ij#ikaj#k: 5Ii1 S 6$'i”rn *

m

EKEma ¢>] — 45(35'1, ce amm)pm(q}la ce axm) H )\(dxj)

STT?. J:]_
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e With ¢ € B.(5), k € R, the characteristic function of (Z,p, A(dz)) is defined
by
1

V(g k] = E {e“’(E’@} = E/ e"<£’¢>p(x))\(dx),

which can be regarded as the Laplace transform of the probability density
function p.

e Put
X(@) = x(a; k) =1 — "),
Then we can show that

m

Uik =1+ 3 (" [ porsevan) [T {x@r@n .
m=1 ) " k=1

This expression means that the characteristic function is regarded as the
generating function of correlation functions.
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If every correlation function is expressed by a determinant in the form

P (21, ) = 1S§%%TYL[K($j,:Uk)], m=1,...,n,

with a two-point continuous function K(z,y), x,y € S, then the point
process is said to be a determinantal point process (DPP) and K is called
the correlation kernel.

In particular, the density of point with respect to A on S is given by

pi(x) = K(x,2), x€S.

The characteristic function is given by

(L

m 1
Wik = 1+ 30 (0" [ det [K(a)x(a)] [[Mdoo
m=1 -~ (=1

= Det [5(33 —y) — K(x, y)x(y)} (Fredholm determinant).
(S\),2,yES

We denote the DPP by a triplet (Z, K, A\(dx)).
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an example of DPP (Ginibre DPP)

Poisson point process
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(Computer simulation by T. Matsui (Chuo U.))
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another example of DPP
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Figure: Spherical ensemble (left) and Poisson (right) (N = 500)

(Computer simulation by T. Shirai (Kyushu U.))
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e The following fact of DPPs is proved using a basic property of determi-
nant.

Lemma 3.1 Consider a non-vanishing function f : § — C. Even if the
correlation kernel K(x,y) is transformed as

1
fly)

all correlation functions are the same and hence

K(x,y) = K¢(x,y) == f(z)K(x,y) T,y €8S,

— (law)
(:,K,A(CZJZ‘)) — (szfaA(daj))

e The above transformation is called the Gauge transformation and the
above property of DPP is referred to Gauge invariance.
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Theorem 3.2 Fix n € N and assume that a set of functions {f;}_; on S
with a reference measure \(dz) satisfies the orthogonality relatlon,

/ fj fk dﬂ?) = hjéjk j,kE {1,...,%}.
Then we can define a point process with n particles on S such that the

probability density function with respect to A(dx) is given by
2

1 n
P = | det [l . xS

where 1/Z is a normalization factor so that (1/n!) [, p(x)A(dx) = 1. Then
this is a DPP (=, K, A\(dx)) such that the correlation kernel is given by

v) =Y 5 T, wye s,
/=1

e This theorem is well known in random matrix theory. For example, see
Appendix C in [K19].

[K19] Katori, M.: Macdonald denominators for affine root systems, or-
thogonal theta functions, and elliptic determinantal point processes. J.

Math. Phys. 60, 013301/1-27 (2019)
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Theorem 3.2 Fix n € N and assume that a set of functions {f;}_; on S
with a reference measure \(dz) satisfies the orthogonality relatlon,

/ fj fk dﬂ?) = hjéjk j,kE {1,...,%}.
Then we can define a point process with n particles on S such that the

probability density function with respect to A(dx) is given by
2

1 n
P = | det [l . xS

where 1/Z is a normalization factor so that (1/n!) [, p(x)A(dx) = 1. Then
this is a DPP (=, K, A\(dx)) such that the correlation kernel is given by

v) =Y 5 T, wye s,
/=1

e A general framework to construct DPPs based on the notion of partial
isometry is given in [K-Shirai21]| not only for DPPs with finite number of
particles n € N, but also for DPPs with an infinite number of particles.

[K-Shirai21] Katori, M., Shirai, T.: Partial isometries, duality, and deter-
minantal point processes. Random Matrices: Theory and Applications.
2250025, 70 pages (2021)
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So far we have fixed n € N for each system. We can consider a series of
systems with increasing n; increasing the number of particles for DPPs.

According to the change of n, we change the scale of coordinates, which
is called dilatation of DPPs.

Definition 3.3 For a DPP (=, K, A(dz)) with == ). dx; on a space S, given
a factor ¢ > 0,

coZ = E OcX, s
J

co K(x,y) ::K(%,%), r,y € cS:={cr:xeS},

coA(dx) := Adx/c).

Then the dilatation by factor c of the DPP is defined by
co(Z,K,\(dx)) :=(co=Z,co K,co\(dzx)).

Notice the following equivalence. For g € B.(S) such that ¢: S — (0,00),

(2, K(2,y), g(x)A(dx)) 2 (@ Vg K (2, y)Va(). Mda)).
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I will give limit theorems for DPPs at the end of this talk.

Consider a DPP which depends on a continuous parameter, or a series of
DPPs labeled by a discrete parameter (e.g., the number of points n € N),
and describe the system by (=, K, A\,(dx)) with the continuous or discrete
parameter p.

If (£, K, \p(dx)) converges to a DPP, (E, K. A(dz)), as p — oo, weakly in the
vague topology, we write this limit theorem as

(2, K, M\y(de)) = (2, K, Mdx)).

The weak convergence of DPPs is verified by the uniform convergence of
the kernel K, — K on each compact set C C S x S [ST03].

[ST03] T. Shirai and Y. Takahashi, Random point fields associated with

certain Fredholm determinants I: fermion, Poisson and boson point pro-
cess, J. Funct. Anal. 205 (2003) 414-463 (2003)
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3.2 DPPson a 2-dim Torus [¥7(z +2mi|r|) = o1e” V"0l (2)

e For R, = A, ., B,, B, C,, C', BC,, D,, we put

kR" (z, Z = Z‘I’R ), Z,Z’ S D(27T=27T\T|)'

By Lemma 2.7, the following double periodicity is proved (N 4-! :=n),
o B (2 +2m, 2" +2m) = kR”(Z, Z'),
e—i./\/':v

R?’l
b (7 7)

kB (2 4 2n|7)i, 2/ + 27 |7)i) =

~ kBn(2,2") (by Gauge invariance), z, 2 €C.

e Now we apply Theorem 3.2 to our seven types of orthonormal theta
functions. Then we obtain seven types of DPPs on C such that their cor-
relation kernels are given by kf» satisfying the above double periodicity.

e In other words, if we define the two-dimensional torus denoted as
T? :={2€C:z2+2r=2z2+2n|7]i = 2} ~ (R/27Z) x (R/27|7|Z),

then we have the seven types of DPPs on TZ.
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two-dimensional torus

14

T? = M ={z€C:z42r=2z,24+2m|7i =z}
~ (R/27Z) x (R/27|7|Z),
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Theorem 3.4 The seven types of point processes

=R () = 3Gy ()
j=1

for R, = A, 1, B,, B/, C,, C., BC,, D, are well defined on T? so that
they have probability densities p/ (z)

2

1
, z=1(21,...2y) € (Tz)n,

Pl (2) = o | det [WF(z)

1<j.k<n

with respect to the Lebesgue measure dz = [[}_; dR2;d3z; on (T?)". Here

1/Z%» are the normalization factors such that (1/n!)f(T2)n p%”(z)dz = 1.
They are DPPs with the correlation kernels

K (2,2) = ’ Z \IJR” (2) \IJR” (z), =z,2 € T2,

(27T 2|7

with respect to the Lebesgue measure dz = dRzdSz.
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We define the reflection and shift of DPP on T2 as follows.

Definition 3.5 Consider a DPP (=, K, A(dz)) on T?, where we write

E(J ::Ejjész)'

(i) The inversion operator R is defined by

== Z 0—z;. RK(z.2):=K(—-z-2"), RAMdz):= \—dz).
J

We write (R=, RK, RA(dz)) simply as R(Z, K, A(dz)).
(ii) For u € C, the shift operator S, is defined by

Sy = Z 0z, —u. SuK(2,2") = K(z+u 2 +u), S,Adz):=u+dz).
J

We write (S,=,S,K,S,\(dz)) simply as S(=, K, \(dz)).
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We can prove the following symmetry which characterizes the seven types
of DPPs on T°.

Proposition 3.6 (i) For R, = B,, B, C,, C, BC,, D,, the reflection
invariance is established: R(Z, K, \(d2)) "2 (2, K, A(d=)).

(ii) The following shift invariance are satisfied:

Sanpn(E K d2) "= (B K dz),
Somirii/m (B K151 dz) (2, KA dz),
SH(Z KB d )(: (E,K%”,dz), R, = B',C,.D,.
)2 (=,

Hg’

Sﬂ'lTlZ(_W KR dz

S K% dz), R,=C, C/,BC, D,

T27

(iii) The densities of points p%"(z) = K,H%”(Z, z), z € T? with respect to the
Lebesgue measure dz have the following zeros:
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3.3 Infinite Particle Limits

e We note that the periods 27/n € (0, ) and 27|7|i/n € i(0, 00) of (Z, KTA{Ll,dz)
shown by Proposition 3.6 (ii) become zeros as n — oco. Hence, as the n — o
limit of (=, Kiflg'”_l ,dz), it is expected to obtain a translation-invariant sys-

tem of infinite number of points on C.
e Here we introduce three kinds of infinite DPPs on C.

e Let the reference measure be the complex normal distribution,

1
AN(dz) = —e 1 gz,

T
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Put

/
]Céinibre(zﬁ Z,) =e*7,
1 — =
_(ezz’ —e zz’)’

— 1, = o
KE: iro(2,2") = cosh(z2/) = 5(6” +e ), 2,2 eC.

]Cginibre(zﬂ ZI) — SiIlh(Z?) —

Then the Ginibre DPPs of type R are defined by (Z, K& . . Ax(dz)) for
R=A,C, and D, respectively.

The Ginibre DPP of type A describes the eigenvalue distribution of the
Gaussian random complex matrix in the bulk scaling limit [Gin65]. The
density of points is uniform with the Lebesgue measure dz on C and
translation-invariant as

1
Péinibre(l')dz = ]Céinibre(za 2)AN(dz) = —dz, =z € C.
T

[Gin65] Ginibre, J.: Statistical ensembles of complex, quaternion, and
real matrices, J. Math. Phys. 6 440-449 (1965)
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e Put

/

]Céinibre(zﬁ Z,) = e** )

1 =
_(ezz’ —e zz’)’

— 1, = o
KE: iro(2,2") = cosh(z2/) = 5(6” +e ), 2,2 eC.

]Cginibre(zﬂ ZI) — SiIlh(Z?) —

e Then the Ginibre DPPs of type R are defined by (Z,K&. . .. Ax(dz)) for
R=A,C, and D, respectively.

e The Ginibre DPP of type A describes the eigenvalue distribution of the
Gaussian random complex matrix in the bulk scaling limit [Gin65]. The
density of points is uniform with the Lebesgue measure dz on C and
translation-invariant as

1
Péinibre(l')dz = ]Céinibre(za 2)AN(dz) = —dz, =z € C.
T

[Gin65] Ginibre, J.: Statistical ensembles of complex, quaternion, and
real matrices, J. Math. Phys. 6 440-449 (1965)
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Finite approximation of Ginibre DPP of type A:
eigenvalues of Gaussian random complex matrix

(Computer simulation by T. Matsui (Chuo U.))
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e On the other hands, the Ginibre DPPs of types C and D with the corre-
lation kernels,

]Cginibre(zr ZI) — Sinh(Z?) — (ez? — e—zz")j

]CIG)inibre(Z: ZI) — COSh(Z?) — (GZ? + e—z?)’ <y Z, S (Ca

b | = DN

are rotationally symmetric around the origin, but non-uniform on C and
the translation-symmetry is broken. The density of points with the
Lebesgue measure dz on C are given by

1 L
PGinibre (2)dT = KGinipre (2, ©) Ax (dz) = %(1 —e 2N dz, zecC,

1
pginibre(z)dz — ]C(l})'inibre(zﬂ Z))\N(dz) — %(1 + €_2|2|2)dza z € C.

They were first obtained by the following limit theorems.
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e These three types of Ginibre DPPs on C are obtained by the infinite
particle limits of our seven types of DPPs on TZ.

Proposition 3.7 The following weak convergence is established,

1 —n f— An— n—oo [ — A
5 W’T’ © (:7 K’]I‘Q 1, Z) — (:7 }CGinibrev AN(CZ,Z))7
" = R, n— — O
27T|7-| O (57[{’1‘2 7dZ) :O>O (:7]CGinibre7 AN(dZ))7 Rn — an BX, CT“ CX7 BCT“
" = 5 Dn n—00 (= D
27T|7-’ o (:.7 KTE ’ dﬂ?) — (::7 ]CGinibrev AN (dz)) .

e Remark that we have the degeneracy from the seven finite DPPs to three
infinite DPPs.

e Here we show a sketch of proof for the first limit theorem by showing the
convergence of the correlation kernels of type A, _;. Similar calculation
proves the other two limit theorems.
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A Sketch of Proof.

e By definition of U{""'(z) with the fact lim §(¢;p") =1 ¢ for p = e 2717,

n—oo
we can evaluate

le;fln—l (2 /W_ﬂz) - 6—n7r|7-]/4(2’T|)1/4n1/4€—y2
n

—1—n/2\" —1—n/2
X exp {—WT (j n/) —i—Qz\/Wz] n/]

Vv Vi

x {e‘i\/mz exp (WTI\/ﬁj = i/_ﬁn/2> eV ey (_WT\/ﬁj - 1\/%”/2>}

as n — 0.
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e Hence we have

2
KA (2 [z, [l ) (2 /fr|fr|)
n n n

1

~ e ) 2O D |
)T

1 & j—1-n/2\* _. j—1-n/2, —
xmjzoexp l—27T|T< NG ) + 2i\/m|T]| 7 (z —2')

| —1—n/2 - —1-—n/2Y]
% |e—iVnTlTlz exp (W’T’\/EJ \/_n/ ) + eiv/nmlT|z exp (ﬂﬂ\/ﬁj \/_n/ )
n mn

- 7 1 —1—n/2 : 7 — 1 —n/2
x |V oxp (W|T|\/ﬁj \/_n/ ) + eV oxp (—W|T|\/ﬁj \/_n/ \]
n n

1/2 _ —
el 2ATD2 {e=VmmTIE=0 1, 4 2 cos(v/nmlrl(z + 2) I + e VPrTIE=0 1,

-

as n — oQ.
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e Here

I ]\/ﬁ/z o= 2m|ru22i /Al (2= yut2n |y Au g,

—Vn/2
— enﬂ'|7']/2€:|:z'\/nﬁ|7](z—?)e_(z_?)2/2 /bi—i(z—z’)/Q\/ﬂT .

a+—i(z—2")/2+/7|7]

_ 2
27|T|v dv

with ay = -b_ = —/n, bo =a_ =0, and
I /‘\/5/2 6—2W|T’u2+2" /_TF!TKZ—?)udu _ 6_(’2_?)2/2 /\/ﬁ/Z—i(z—z )/2+/7 |7 e_zﬂT’”de_
i/ —V//2=i(z=2")/2y/]7]
We see
1 1 : o} =2
I ~ nr|r|/2 = +iv/nrw|r|(z—2") ,—(2—2")* /2
=TE 2R ) |
1 2
(z—2")"/2
1o (ZWT])l/QGZ ., N —
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e Therefore, we have

2
( /7T|7' [ ]7’ ,)( /7’('7') %le—(y2+y’2)—(z—?)2/2_
TI'

e Since

— —ixy

Le-wryh-G-222 _ & " 7L —(epeip)
™ € —u'y’
—/LQZ’

’ \/—e 22 % 27 x \/—e b
e~ —ixly
with |
A / 22! —|2|?
]CGinibre(sz ) =c AN(dZ) — ;8 & dz,

the Gauge invariance of DPP (Lemma 3.1) and the equivalence

(2, K (2, 9), g(x)Mdr)) "2, /o@) K (2, y) /g (y), Mda))

imply the assertion. g
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Thank you very much
for your attention.
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