Addition of matrices at high and low temperatures

Vadim Gorin

University of Wisconsin - Madison and Institute for Information Transmission Problems of Russian Academy of Sciences

October 2021

General question

Self-adjoint $N \times N$ matrices A and B: $\begin{cases} \text{known eigenvalues and} \\ \text{unknown eigenvectors.} \end{cases}$

Q1: Eigenvalues of $M \times M$ corner A_M ?

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ \hline A_{41} & A_{42} & A_{43} & A_{44} \end{pmatrix}$$

Q2: Eigenvalues of sum C = A + B?

(today)

Q3: Eigenvalues of product C = AB?

Parameters in play:

- Dimension N
- $\beta = 1/2/4$ for real/complex/quaternion matrices

Deterministic point of view

Task: characterize all possible eigenvalues.

Deterministic point of view

Task: characterize all possible eigenvalues.

Theorem. (Cauchy, Poincare, Rayleigh) Eigenvalues of $N \times N$ matrix A_N and $(N-1) \times (N-1)$ submatrix A_{N-1} interlace:

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ \hline A_{41} & A_{42} & A_{43} & A_{44} \end{pmatrix} \quad \lambda_1 \leq \mu_1 \leq \lambda_2 \leq \dots \leq \mu_{N-1} \leq \lambda_N$$

Deterministic point of view

Task: characterize all possible eigenvalues.

Theorem. (Cauchy, Poincare, Rayleigh) Eigenvalues of $N \times N$ matrix A_N and $(N-1) \times (N-1)$ submatrix A_{N-1} interlace:

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ \hline A_{41} & A_{42} & A_{43} & A_{44} \end{pmatrix} \quad \lambda_1 \leq \mu_1 \leq \lambda_2 \leq \cdots \leq \mu_{N-1} \leq \lambda_N$$

Theorem. (Weyl, Horn, Klyachko, Knutson-Tao) C = A + B case: One equality Trace C = Trace A + Trace B and a set of inequalities

E.g.,
$$\lambda_{\max}^A + \lambda_{\max}^B \ge \lambda_{\max}^C$$
 and many more!

Probabilistic point of view

Random self-adjoint matrices invariant under (unitary) conjugations.

Eigenvectors are uniformly distributed conditionally on eigenvalues. (=no information about eigenvectors)

Q: You are given eigenvalues of independent A and B. What are eigenvalues of C = A + B?

They are random and high-dimensional (last slide for support)

Probabilistic point of view

Random self-adjoint matrices invariant under (unitary) conjugations.

Eigenvectors are uniformly distributed conditionally on eigenvalues. (=no information about eigenvectors)

Q: You are given eigenvalues of independent A and B. What are eigenvalues of C = A + B?

They are random and high-dimensional (last slide for support)

Task: Investigate asymptotic questions.

Possible regimes: $N \to \infty$ $\beta \to \infty$ $\beta \to 0$

Toy example: Gaussian β ensemble

 $N \times N$ matrix X with i.i.d. real/complex/quaternion Gaussian random variables normalized so that their real parts are $\mathcal{N}(0, \frac{2}{\beta})$.

$$M = rac{X + X^*}{2} = egin{pmatrix} M_{11} & M_{12} & \dots \ M_{21} & M_{22} \ dots & & \ddots \end{pmatrix}$$

 $\beta = 1, 2, 4$ is the dimension of the base (skew-) field. Fixed point (up to rescaling) of addition and cutting corners.

Toy example: Gaussian β ensemble

 $N \times N$ matrix X with i.i.d. real/complex/quaternion Gaussian random variables normalized so that their real parts are $\mathcal{N}(0, \frac{2}{\beta})$.

$$M = rac{X + X^*}{2} = egin{pmatrix} M_{11} & M_{12} & \dots \\ M_{21} & M_{22} & & \\ \vdots & & \ddots \end{pmatrix}$$

 $\beta = 1, 2, 4$ is the dimension of the base (skew-) field.

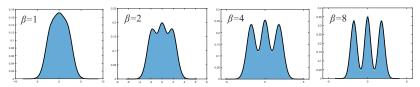
Fixed point (up to rescaling) of addition and cutting corners.

The density of eigenvalues $x_1 < x_2 < \cdots < x_N$:

$$\sim \prod_{1 \leq i \leq N} (x_j - x_i)^{\beta} \prod_{i=1}^N \exp\left(-\frac{\beta}{4}(x_i)^2\right).$$

Meaningful for any **inverse temperature** $\beta > 0!$

G
$$\beta$$
E as $\beta \to \infty$: concentration
$$\prod_{1 \le i < j \le N} (x_j - x_i)^{\beta} \prod_{i=1}^{N} \exp(-\frac{\beta}{4}(x_i)^2).$$



Theorem. (x_1, \ldots, x_N) converges as $\beta \to \infty$ to N roots (h_1,\ldots,h_N) of Hermite polynomial $H_N(x)$ (of weight $\exp(-\frac{x^2}{2})$).

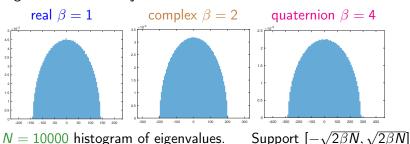
$$N = 1$$
:
 $N = 2$:
 $N = 3$:
 $N = 4$:
 $x^2 - 1$
 $x^3 - 3x$
 $x^4 - 6x^2 + 3$

Equivalent property of classical orthogonal polynomials (Hermite, Laguerre, Jacobi) known already to Stieltjes (\approx 1885).

G β E at inverse temperature β : random $x_1 < \cdots < x_N$ of density

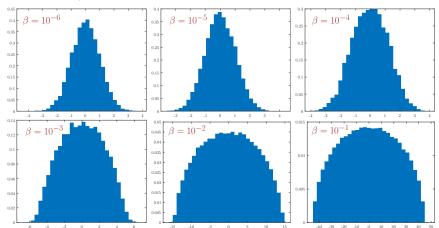
$$\sim \prod_{i < j} (x_j - x_i)^{\beta} \prod_{i=1}^N \exp\left(-\frac{(x_i)^2}{2}\right).$$

Eigenvalues of self-adjoint matrices with i.i.d. Gaussian entries:



Wigner semicircle law of density
$$\frac{1}{2\pi R^2}\sqrt{4R^2-x^2}$$

$$\prod_{i < j} (x_j - x_i)^{\beta} \prod_{i=1}^{N} \exp\left(-\frac{(x_i)^2}{2}\right), \qquad N = 10000$$



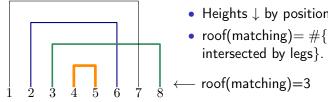
Small β leads to Gauss \rightarrow semicircle crossover.

$$\prod_{i < j} (x_j - x_i)^{\beta} \prod_{i=1}^{N} \exp\left(-\frac{(x_i)^2}{2}\right)$$

Theorem. [Benaych-Georges, Cuenca, G., 2021] Suppose $\beta N \rightarrow 2\gamma$

Then
$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N\delta_{\mathbf{x}_i}=\mu_{\gamma}$$
, weakly, in probability.

$$\int_{\mathbb{R}} x^k \mu_{\gamma}(\mathrm{d} x) = \sum_{\text{perfect matchings of } \{1,\dots,k\}} (\gamma+1)^{\text{roof(matching)}}.$$



- Heights ↓ by position of left leg.
- roof(matching)= #{roofs not

From no weight at $\gamma = 0$ to non-crossing matchings at $\gamma = \infty$.

$$\prod_{i < i} (x_j - x_i)^{\beta} \prod_{i=1}^{N} \exp\left(-\frac{(x_i)^2}{2}\right)$$

Theorem. [Benaych-Georges, Cuenca, G., 2021] Suppose $\beta N \rightarrow 2\gamma$

Then
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1} \delta_{\mathbf{x}_i} = \mu_{\gamma}$$
, weakly, in probability.

$$\int_{\mathbb{R}} x^k \mu_{\gamma}(\mathrm{d} x) = \sum_{\text{perfect matchings of } \{1,\dots,k\}} (\gamma+1)^{\text{roof(matching)}}.$$

Earlier results: limit with no simple formula for the moments

- [Allez, Bouchaud, Majumdar, Vivo, 2012] Gamma → Marchenko-Pastur
- [Duy, Shirai, 2015] integrals for density
- [Benaych-Georges, Péché, 2015] moments= \sum of integrals over paths

Earlier results: Moments with no connection to $G\beta E$:

- [Drake, 2012] orthogonality of associated Hermite polynomials
- [Bozejko, Dołega, Ejsmont, Gal, 2021] in asymptotic rep. theory

Toy example: Gaussian β ensemble

 $N \times N$ matrix X with i.i.d. real/complex/quaternion Gaussian random variables normalized so that their real parts are $\mathcal{N}(0, \frac{2}{\beta})$.

$$\frac{X+X^*}{2} = \begin{pmatrix} M_{11} & M_{12} & \cdots \\ M_{21} & M_{22} & \\ \vdots & & \ddots \end{pmatrix} \qquad \begin{array}{c} \beta = 1, 2, 4 \\ \text{dimension of the base field.} \end{array}$$

Conclusions:

• There is a meaningful extension of eigenvalues to $\beta > 0$

$$\sim \prod_{1\leq i\leq j\leq N} (x_j-x_i)^{\beta} \prod_{i=1}^N \exp\left(-\frac{\beta}{4}(x_i)^2\right).$$

- There are rich limits as:
 - 1. $\beta \to \infty$
 - 2. $N \to \infty$
 - 3. $\beta N \rightarrow 2\gamma$

Addition of matrices as $\beta \to \infty$ (low temperature)

Theorem. (G.–Marcus) $\{a_i\}$, $\{b_i\}$, $\{c_i\}$ — eigenvalues of A, B, C. Take **Haar**—random orthogonal/unitary/symplectic U and V. Then

$$\lim_{eta o\infty} \boxed{\textit{C} = \textit{UAU}^* + \textit{VBV}^*}$$
 is given by

$$\prod_{i=1}^{N} (z - c_i) = \frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N} (z - a_i - b_{\sigma(i)})$$

And the identity is true in expectation for each $\beta > 0$.

Finite free convolutions of polynomials.

Addition of matrices as $\beta \to \infty$ (low temperature)

Theorem. (G.–Marcus) $\{a_i\}$, $\{b_i\}$, $\{c_i\}$ — eigenvalues of A, B, C. Take **Haar**–random orthogonal/unitary/symplectic U and V. Then

$$\lim_{\beta \to \infty} \boxed{C = UAU^* + VBV^*}$$
 is given by

$$\prod_{i=1}^{N}(z-c_i)=\frac{1}{N!}\sum_{\sigma\in S(N)}\prod_{i=1}^{N}(z-a_i-b_{\sigma(i)})$$

And the identity is true in expectation for each $\beta > 0$.

Finite free convolutions of polynomials.

How exactly do we add matrices at general $\beta > 0$?

Addition of general β random matrices

Theorem. Random $N \times N$ self-adjoint independent matrices A, B. The law of the sum C = A + B is uniquely determined by

$$\boxed{\mathbb{E}\exp\left(i\mathrm{Trace}(\mathit{CZ})\right) = \mathbb{E}\exp\left(i\mathrm{Trace}(\mathit{AZ})\right) \cdot \mathbb{E}\exp\left(i\mathrm{Trace}(\mathit{BZ})\right)},$$

which should be valid for each self-adjoint Z.

Definition. A: deterministic eigenvalues $(a_1, ..., a_N)$ and uniformly random eigenvectors (invariant under $A \mapsto UAU^*$).

Then law of Trace(AZ) depends only on eigenvalues $(z_i)_{i=1}^N$ of Z and we define the multivariate Bessel function through

$$B_{a_1,\ldots,a_N}(iz_1,\ldots,iz_N;\,\beta/2)=\mathbb{E}\exp\left(i\mathrm{Trace}(AZ)\right)$$

Reformulation. For eigenvalues, addition $c = a \coprod_{\beta} b$ is fixed by

$$\mathbb{E}B_{c_1,...,c_N}(z_1,\ldots,z_N; \beta/2) = B_{a_1,...,a_N}(z_1,\ldots,z_N; \beta/2) \cdot B_{b_1,...,b_N}(z_1,\ldots,z_N; \beta/2)$$

Addition of general β random matrices

Definition. *A*: deterministic eigenvalues $(a_1, ..., a_N)$ and uniformly random eigenvectors (invariant under $A \mapsto UAU^*$).

Then law of $\operatorname{Trace}(AZ)$ depends only on eigenvalues $(z_i)_{i=1}^N$ of Z and we define the multivariate Bessel function through

$$B_{a_1,\ldots,a_N}(\mathsf{i} z_1,\ldots,\mathsf{i} z_N;\,\beta/2) = \mathbb{E}\exp\left(\mathsf{i}\mathrm{Trace}(AZ)\right)$$

Extension to general $\beta > 0$ through eigenfunctions of (symmetric) Dunkl operators

$$D_i := rac{\partial}{\partial z_i} + rac{eta}{2} \sum_{i:i
eq i} rac{1}{z_i - z_j} \circ \left(1 - s_{i,j}
ight)$$

$$\sum_{i=1}^{N} (D_i)^k B_{a_1,\ldots,a_N}(z_1,\ldots,z_N; \frac{\beta}{2}) = \sum_{i=1}^{N} (a_i)^k B_{a_1,\ldots,a_N}(z_1,\ldots,z_N; \frac{\beta}{2})$$

MATRIX lectures: My homepage \rightarrow Teaching for materials.

Addition of general β random matrices

Definition. Given deterministic eigenvalues $(a_i)_{i=1}^N$ and $(b_i)_{i=1}^N$ we define (random) eigenvalues $(c_i)_{i=1}^N$ of the sum of independent β -matrices with uniformly random eigenvectors through

$$\mathbb{E}B_{c_1,...,c_N}(z_1,\ldots,z_N; \beta/2) = B_{a_1,...,a_N}(z_1,\ldots,z_N; \beta/2) \cdot B_{b_1,...,b_N}(z_1,\ldots,z_N; \beta/2)$$

- $c = a \boxplus_{\beta} b$ at $\beta = 1, 2, 4$ is the same old addition of matrices.
- At general β > 0 one needs to show the existence of probability measure defining (c_i)^N_{i=1}.
- It is well-defined as a generalized function (distribution), but being a measure is a known open problem.

[≈ need positivity of structure constants of multiplication for Macdonald polynomials]

MATRIX lectures: My homepage \rightarrow Teaching for materials.

Addition of matrices as $\beta N \rightarrow 2\gamma$ (high temperature)

Theorem. [Benaych-Georges, Cuenca, G., 2021] Suppose for all k

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N(a_i)^k=m_k(A),\qquad \lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N(b_i)^k=m_k(B).$$

Define $c = a \boxplus_{\beta} b$. Then there exists a limit as $\beta N \to 2\gamma > 0$:

$$\lim_{\substack{N\to\infty\\\beta N\to 2\gamma}}\frac{1}{N}\sum_{i=1}^N(c_i)^k=m_k^\gamma(A+B)$$

$$\gamma$$
-convolution: $(\{m_k(A)\}, \{m_k(B)\}) \mapsto \{m_k^{\gamma}(A+B)\}$

$$\begin{pmatrix} A \end{pmatrix} \longleftrightarrow \begin{array}{c} \text{eigenvalues} \\ a_1 \leq a_2 \leq \cdots \leq a_N \\ \hline \frac{1}{N} \text{Trace}(A^k) \end{array} \qquad \begin{array}{c} \text{empirical measure } \mu_A \\ \hline a_1 \quad a_2 \quad a_N \\ \hline \int_{\mathbb{R}} x^k \mu_A(dx) \end{array}$$

γ -convolution

A binary operation $(\{m_k(A)\}, \{m_k(B)\}) \mapsto \{m_k^{\gamma}(A+B)\}$

- 1. Conventional convolution at $\gamma = 0$:
 - Independent random variables ξ and η .
 - $\mathbb{E}\xi^k = m_k$ and $E\eta^k = \tilde{m}_k$.
 - Then $\mathbb{E}(\xi+\eta)^k = \sum_{\ell=0}^k \binom{k}{\ell} m_\ell \tilde{m}_{k-\ell}$
- 2. Free convolution at $\gamma = \infty$.
 - Independent N × N Hermitian random matrices A and B.
 - (Unitary) conjugation–invariant laws $A \mapsto UAU^*$, $B \mapsto UBU^*$.
 - Assume $\lim_{N\to\infty} \frac{1}{N} \operatorname{Trace}(A^k) = m_k(A)$ and $\lim_{N\to\infty} \frac{1}{N} \operatorname{Trace}(B^k) = m_k(B)$.
 - Then $\lim_{N\to\infty} \frac{1}{N} \mathrm{Trace}(A+B)^k = (\text{expression in } m_\ell(A), m_\ell(B))$

γ -convolution

A binary operation $(\{m_k(A)\}, \{m_k(B)\}) \mapsto \{m_k^{\gamma}(A+B)\}$

- 1. Conventional convolution at $\gamma = 0$:
 - Independent random variables ξ and η .
 - $\mathbb{E}\xi^k = m_k$ and $E\eta^k = \tilde{m}_k$.
 - Then $\mathbb{E}(\xi+\eta)^k=\sum_{\ell=0}^k \binom{k}{\ell} m_\ell \tilde{m}_{k-\ell}$
- 2. Free convolution at $\gamma = \infty$.
 - Independent $N \times N$ Hermitian random matrices A and B.
 - (Unitary) conjugation–invariant laws $A \mapsto UAU^*$, $B \mapsto UBU^*$.
 - Assume $\lim_{N\to\infty} \frac{1}{N} \operatorname{Trace}(A^k) = m_k(A)$ and $\lim_{N\to\infty} \frac{1}{N} \operatorname{Trace}(B^k) = m_k(B)$.
 - Then $\lim_{N\to\infty} \frac{1}{N} \mathrm{Trace}(A+B)^k = (\text{expression in } m_\ell(A), m_\ell(B))$

In terms of γ -cumulants:

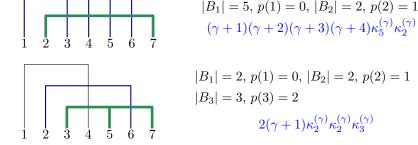
$$\kappa_{\ell}^{(\gamma)}(A) + \kappa_{\ell}^{(\gamma)}(B) = \kappa_{\ell}^{(\gamma)}(A+B)$$

γ -cumulants $\kappa_\ell^{(\gamma)}$ are defined recursively

$$m_k := \sum_{\pi=B_1\sqcup\cdots\sqcup B_h\in\mathscr{P}(k)}\prod_{i=1}^h\left[\kappa_{|B_i|}^{(\gamma)}\cdot(\gamma+p(i)+1)_{|B_i|-p(i)-1}\cdot(1)_{p(i)}\right]$$

$$(x)_n = x(x+1)\cdots(x+n-1)$$
 $\mathscr{P}(k) = \{\text{set partitions of } \{1,2,\ldots,k\}\}$

 $p(i) = \#\{\text{roofs of } B_i \text{ which intersect legs}\}$



γ -cumulants $\kappa_\ell^{(\gamma)}$ are defined recursively

$$m_k := \sum_{\pi = B_1 \sqcup \dots \sqcup B_h \in \mathscr{P}(k)} \prod_{i=1}^h \left[\kappa_{|B_i|}^{(\gamma)} \cdot (\gamma + p(i) + 1)_{|B_i| - p(i) - 1} \cdot (1)_{p(i)} \right]$$

$$(x)_n = x(x+1) \cdots (x+n-1) \qquad \mathscr{P}(k) = \{ \text{set partitions of } \{1, 2, \dots, k\} \}$$

$$p(i) = \#\{\text{roofs of } B_i \text{ which intersect legs}\}\$$

- 1. Conventional cumulants at $\gamma = 0$. The weight does not depend on p(i).
- 2. Free cumulants at $\gamma = \infty$. Only non-crossing partitions remain.

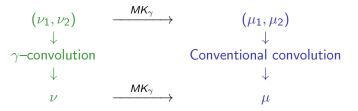
Another point of view on γ -convolution

Following [Faraut–Fourati-14], [Mergny–Potters-21] we define:

Probability measure
$$\nu$$
 Probability measure μ
$$\exp\left(-\gamma\int_{\mathbb{R}}\log(z-u)\nu(du)\right) = \int_{\mathbb{R}}\frac{1}{(z-t)^{\gamma}}\mu(dt)$$

Claim.

The diagram is commutative:



Another point of view on γ -convolution

Following [Faraut-Fourati-14], [Mergny-Potters-21] we define:

Claim. The diagram is commutative:

$$\begin{array}{cccc} (\nu_1,\nu_2) & \xrightarrow{\quad MK_{\gamma} \quad} & (\mu_1,\mu_2) \\ \downarrow & & \downarrow & \\ \gamma\text{--convolution} & & \text{Conventional convolution} \\ \downarrow & & \downarrow & \\ \nu & \xrightarrow{\quad MK_{\gamma} \quad} & \mu \end{array}$$

- $\gamma = 1$: relative of the **Markov-Krein transform** popularized by Kerov. Bijection of Markov and Hausdorff moment problems.
- The image of MK_{γ} is unknown. [Even at $\gamma = 1$.]

A mysterious duality

Low temperature. In dimension N=D, $c=\lim_{\beta\to\infty}a\boxplus_{\beta}b$ is:

$$\prod_{i=1}^{D} (z - c_i) = \frac{1}{D!} \sum_{\sigma \in S(D)} \prod_{i=1}^{D} (z - a_i - b_{\sigma(i)})$$

High temperature. $\lim_{\substack{N \to \infty \\ N \to \infty}} a \boxplus_{\beta} b$ is γ -convolution:

$$\kappa_{\ell}^{(\gamma)}(A) + \kappa_{\ell}^{(\gamma)}(B) = \kappa_{\ell}^{(\gamma)}(A+B)$$

- Operations are analytic continuations of each other.
- Formulas coincide under $\gamma = -D$.

A mysterious duality

Low temperature. In dimension N=D, $c=\lim_{\beta\to\infty}a\boxplus_{\beta}b$ is:

$$\prod_{i=1}^{D} (z - c_i) = \frac{1}{D!} \sum_{\sigma \in S(D)} \prod_{i=1}^{D} (z - a_i - b_{\sigma(i)})$$

High temperature. $\lim_{\substack{N \to \infty \\ \beta N \to 2\alpha}} a \boxplus_{\beta} b$ is γ -convolution:

$$\kappa_{\ell}^{(\gamma)}(A) + \kappa_{\ell}^{(\gamma)}(B) = \kappa_{\ell}^{(\gamma)}(A+B)$$

- Operations are analytic continuations of each other.
- Formulas coincide under $\gamma = -D$.

The end.