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Superpolynomials and the Symmetric Group

Start with 2N variables xi (bosonic, xixj = xjxi ), θi (fermionic
θi θj = �θj θi ), xi θj = θjxi , and the symmetric group SN (permutations of
f1, 2, . . . ,Ng. The transpositions are denoted by (i , j) and si := (i , i + 1).
The braid relations are si si+1si = si+1si si+1 and si sj = sj si for ji � j j � 2
(and s2i = 1).

For w 2 SN let wp (x ; θ) = p
�
xw (1), . . . , xw (N ); θw (1), θw (2), . . . , θw (N )

�
.

Example: s1θ1θ2 = �θ1θ2; s2θ1θ3 = θ1θ2.
Basis elements for polynomials in fθig are de�ned by

φE := θi1 � � � θim , E = fi1, i2, � � � , img , 1 � i1 < i2 < � � � < im � N.

Denote span fφE : #E = mg by Pm . The span is over some extension
�eld of Q (typically Q (κ) or Q (q, t)), where κ is a generic parameter,
transcendental or real 6= m/n with 2 � n � N,m 2 Z, m/n /2 Z)

The bosonic variables are spanned by xα =
N
∏
i=1
xαi
i , α 2 NN

0 . De�ne

sPm := span
�
xαφE : α 2 NN

0 ,#E = m
	
.
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Dunkl operators

The Dunkl and Cherednik-Dunkl operators are (1 � i � N, p 2 sPm)

Dip (x ; θ) :=
∂p (x ; θ)

∂xi
+ κ ∑

j 6=i

p (x ; θ (i , j))� p (x (i , j) ; θ (i , j))
xi � xj

,

Uip (x ; θ) := Di (xip (x ; θ))� κ
i�1
∑
j=1
p (x (i , j) ; θ (i , j)) .

The same commutation relations as for the scalar case hold, that is,

DiDj = DjDi , UiUj = UjUi , 1 � i , j � N
wDi = Dw (i )w , 8w 2 SN ; sjUi = Ui sj , j 6= i � 1, i ;
siUi si = Ui+1 + κsi , Ui si = siUi+1 + κ, Ui+1si = siUi � κ.

Simultaneous eigenfunctions of fUi : 1 � i � Ng are called nonsymmetric
Jack polynomials. These are a special case of the generalized Jack
polynomials constructed by S. Gri¤eth for the family G (n, p,N) of
complex re�ection groups, TAMS 2010.
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Submodules of Pm

To determine the irreducible SN -modules de�ne ∂i by ∂i θiφE = φE and
∂iφE = 0 for i /2 E (example ∂2θ1θ2θ3 = �θ1θ3) and D := ∑N

i=1 ∂i , then
D2 = 0. Also de�ne

Mp (θ) =
N

∑
i=1

θip (θ)

(example: N = 4,M (θ1θ3) = �θ1θ2θ3 + θ1θ2θ4). Then M2 = 0, M and
D commute with the group action and MD +DM = N. Denote

Pm,0 = kerD \ Pm , sPm,0 = kerD \ sPm
Pm,1 = kerM \ Pm , sPm,1 = kerD \ sPm .

The relations for M,D imply sPm = sPm,0 � sPm,1.(See C. D.
Ramanujan J. 2021)
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Young Tableaux

Representations of SN are indexed by partitions of N. Given a partition λ
(λ 2 NN

0 ,λ1 � λ2 � . . . and jλj = N) there is a Ferrers diagram : boxes
at (i , j) with 1 � i � ` (λ) = max fj : λj > 0g and 1 � j � λi . The
module is spanned by reverse standard Young tableaux (abbr. RSYT) - the
numbers 1, . . . ,N are inserted into the Ferrers diagram so that the entries
in each row and in each column are decreasing. If i , i + 1 are in the same
row, resp. column of RSYT Y then siY = Y , resp. �Y .
If k is in cell (i , j) of RSYT Y then the content c (k,Y ) = j � i ; the
content vector [c (k,Y )]Nk=1 determines Y uniquely. The Jucys-Murphy
elements ωi = ∑N

j=i+1 (i , j) satisfy ωiY = c (i ,Y )Y for each i . So if one
�nds a simultaneous eigenfunction of fωig then the eigenvalues determine
the label (partition) of an irreducible. representation.
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Isotypes of the submodules

Illustration: let
N = 5,m = 2,E = f3, 4, 5g , τE := D (θ3θ4θ5) = θ4θ5 � θ3θ5 + θ3θ4
then τE is an eigenfunction of each ωi with eigenvalues [2, 1,�2,�1, 0]
(i = 1, 2, . . . , 5) - this is the content vector of245 2 1

4
3

35
and indeed the rep. is (3, 1, 1) (degree 6). (called a hook tableau).
In general let τE0 := DφE0 where E0 = fN �m,N �m+ 1, . . . ,Ng, the
eigenvalues [N �m� 1, � � � , 1,�m, 1�m, � � � ,�1, 0] correspond to the
content vector of�

N N �m� 1 � � � � � � � � � 1
� N � 1 � � � � � � N �m

�
(displayed with column 1 folded under row 1 to save space). Thus the
isotype of Pm,0 is (N �m, 1m). The analysis of Pm,1 is very similar and is
omitted in this talk; the isotype is

�
N �m+ 1, 1m�1

�
.
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Construction of basis

For a subset E de�ne invE = #
�
(i , j) 2 E � EC : i < j

	
so invE0 = 0

and invE1 = m (N �m� 1) where E1 := f1, 2, . . . ,m,Ng (maximum).
Let YE denote the RSYT with the entries of column 1 consisting of E , and
c (i ,E ) := c (i ,YE ) . Let E0 := fE : #E = m+ 1,N 2 Eg; for each
E 2 E0 there is a polynomial τE 2 Pm,0 such that ωiτE = c (i ,E ) τE and

τE = DφE + ∑
invF<invE

aF ,EDφF

constructed by induction on invE . Suppose (i , i + 1) 2 EC � (En fNg)
then inv (siE ) = invE + 1 and

τsiE = siτE +
1

c (i + 1,E )� c (i ,E )τE .

If fi , i + 1g � E then siτE = �τE and if fi , i + 1g � EC [ fNg then
siτE = τE .
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Example

N = 5,m = 2

τf3,4,5g = θ3θ4 � θ3θ5 + θ4θ5

τf2,4,5g = θ2θ4 � θ2θ5 �
1
3

θ3θ4 +
1
3

θ3θ5 +
2
3

θ4θ5

τf1,4,5g =
1
4
(4θ1 � θ2 � θ3) (θ4 � θ5) +

1
2

θ4θ5

τf1,2,5g = θ1θ2 �
1
3
(θ1 � θ2) (θ3 + θ4 + θ5)

Observe the actions: s1τf3,4,5g = τf3,4,5g, s2τf1,4,5g = τf1,4,5g and
s4τf1,4,5g = �τf1,4,5g. Note dim (3, 1, 1) = (

4
2) and

∑E2E0 q
invE = [42]q = 1+ q + 2q

2 + q3 + q4 (in general this sum equals

[N�1m ]q).
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Eigenfunctions

For each α 2 NN
0 ,E 2 E0 there is a fUig-simultaneous eigenfunction

Jα,E 2 sPm,0 .The expression uses a partial order on NN
0

α � β ()
i

∑
j=1

αj �
i

∑
j=1

βj , 1 � i � N, α 6= β,

αC β () (jαj = jβj) ^
��

α+ � β+
�
_
�
α+ = β+ ^ α � β

��
.

and the rank function

rα (i) := # f1 � j � i : αj � αig+# fj > i : αj > αig ;
thus rα 2 SN , and rα = I if and only if α 2 NN ,+

0 (α1 � α2 � � � � � αN ).
Example: α = (4, 5, 0, 4) , rα = [2, 1, 4, 3], and rαα = (5, 4, 4, 0) = α+

Then
Jα,E (x ; θ) = x

α
�
r�1α τE

�
+ ∑

αBβ

x βvα,β,T (κ; θ) ,

where vα,β,T (κ; θ) 2 Pm,0. The coe¢ cients of the polynomials
vα,β,T (κ; θ) are rational functions of κ. Note r�1α τE (θ) = τE

�
θr�1α

�
.
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Spectral vector

These polynomials satisfy

UiJα,E = ζα,E (i) Jα,E ,

ζα,E (i) := αi + 1+ κc (rα (i) ,E ) , 1 � i � N.

Then
�
ζα,E (i)

�N
i=1 is called the spectral vector of α,E (note α is

clearly determined by ζα,E and then rα recovers the content vector of
E ).

Example N = 4,m = 2, α = (0, 1, 1, 0) , E = f2, 3, 4g 2 E0,
[c (j ,E )]4j=1 = [1,�2,�1, 0] (thus rα = [3, 1, 2, 4] ,
ζα,E = [1� κ, 2+ κ, 2� 2κ, 1])

Jα,E =

�
x2x3 �

κx2x4
1� 2κ

�
(�θ1θ3 + θ1θ4 � θ3θ4)

+
κx3x4

(1� 2κ) (1+ κ)

�
(1� κ) θ1θ2 � (1� 2κ) (θ1θ3 � θ2θ3)

�κ (θ1θ4 � θ2θ4)

�
.
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Inner Product and Norms

Require the properties: hf , gi = hsi f , sigi = hg , f i; hxi f , gi = hf ,Digi, if
deg f 6= deg g then hf , gi = 0. Write kf k2 = hf , f i without claiming
positivity.
At the lowest x-degree, declare the φE to be an orthonormal set so that
hτE 0, τE0i = m+ 1, and for E 2 E0

kτE k2 = (m+ 1) ∏
1�i<j<N
(i ,j)2E�E C

 
1� 1

(c (i ,E )� c (j ,E ))2

!

(follows from hτE , τsiE i = 0, the fωig-eigenfunction property). Note if
(i , j) 2 E � EC and i < j then c (i ,E )� c (j ,E ) � �2.
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Norms II

From the adjacency relation for αi < αi+1

Jsi α,E =
�
si �

κ

ζα,E (i)� ζα,E (i + 1)

�
Jα,E

and the orthogonality hJα,E , Jsi α,E i = 0 we relate kJα,E k2 to kJα+,E k2 .
For α 2 NN

0 , z = 0, 1 let

Rz (α,E ) = ∏
1�i<j�N

αi<αj

�
1+

(�1)z κ

αj � αi + κ (c (rα (j) ,E )� c (rα (i) ,E ))

�

R is for �rearrangement� , let R (α,E ) = R0 (α,E )R1 (α,E ) then

kJα,E k2 = R (α,E )�1 kJα+,E k2 .

C.F. Dunkl (U. of Virginia ) Jack and Macdonald Superpolynomials 10/21 12 / 38



Norms III

To change degrees we use the a¢ ne step JΦα,E = xNw�1N Jα,E where
Φα := (α2, α3, . . . , αN , α1 + 1) and wN = s1s2 � � � sN�1 (a cyclic
shift). For λ 2 NN ,+

0 , E 2 E0 let

P (λ,E ) =
N

∏
i=1
(1+ κc (i ,E ))λi

� ∏
1�i<j�N

λi�λj

∏
`=1

 
1�

�
κ

`+ κ (c (i ,E )� c (j ,E ))

�2!
.

Then
kJλ,E k2 = kτE k2 P (λ,E )

The inner product is positive-de�nite for �1/N < κ < 1/N. The
norm formula is a special case of Gri¤eth�s results.
Example:N = 4,m = 2, α = (0, 1, 1, 0) , E = f2, 3, 4g

kJα,E k2 =
3 (1� 3κ) (1+ 2κ) (1� κ)

(1+ κ) (1� 2κ)
.
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The Hecke algebra

We keep the braid relations of fsig but change the quadratic relation:
introduce a parameter t (such that tn 6= 1 for 2 � n � N) then HN (t) is
the unital associative algebra generated by T1, . . . ,TN�1 satisfying
TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi for ji � j j � 2, and
(Ti � t) (Ti + 1) = 0. Use an extension �eld K of Q (q, t). There is a
linear (not multiplicative!) isomorphism between the group algebra KSN
and HN (t). Given u 2 SN there is a shortest expression u = si1si2 � � � si`
where ` = # f(i , j) : i < j , u (i) > u (j)g and set T (u) = Ti1Ti2 � � �Ti`
(well-de�ned because of the braid relations). The representation theory is
very similar to that of SN (partitions, RSYT etc.). First de�ne an action
of HN (t) on Pm - the example su¢ ces:

T11 = t, T1θ1 = θ2,

T1θ2 = tθ1 + (t � 1) θ2, T1θ1θ2 = �θ1θ2,

so that T1 (θ1 + θ2) = t (θ1 + θ2). Example: T2θ1θ2θ4 = θ1θ3θ4 and
T2θ1θ3θ4 = tθ1θ2θ4 + (t � 1) θ1θ3θ4.
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Submodules

The operators M,D are de�ned in this setting: M is the same while
D := ∑N

i=1 t
i�1∂i . Then M,D commute with each Ti ,M2 = 0,D2 = 0

and

MD +DM = [N ]t :=
1� tN
1� t .

With the same notations Pm,0 = kerD \ Pm , and Pm,1 = kerM \ Pm ,
both are irreducible HN (t)-modules.
The analogous Jucys-Murphy elements are

ωi = t i�NTiTi+1 � � �TN�1TN�1TN�2 � � �Ti

for i < N while ωN = 1. The Hecke algebra is represented on the span of
RSYT�s Y of a given shape and ωiY = tc (i ,Y )Y . If i , i + 1 are in the
same row, resp. column of Y then TiY = tY resp. �Y . (As before the
eigenvalues of an fωig-eigenvector determine a partition of N.)
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Start of the Basis Construction

Illustration: let N = 5,m = 2,E = f3, 4, 5g , τE = D (θ3θ4θ5) =
t2θ4θ5 � t3θ3θ5 + t4θ3θ4 then ωiτE =

�
t2, t, t�2, t�1, 1

�
i τE

(i = 1, 2, . . . , 5) - this is the t-exponential content vector of�
5 2 1
� 4 3

�
.

In general let τE0 := DφE0 where E0 = fN �m,N �m+ 1, . . . ,Ng,
the fωig-eigenvalues correspond to the t-exponential content vector
of �

N N �m� 1 � � � � � � � � � 1
� N � 1 � � � � � � N �m

�
,

of isotype (N �m, 1m), degree (N�1m ). Acting on τE0 with fTig
generates the submodule Pm,0. (Details in C.D. SIGMA 21-054)
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Basis

Let YE denote the RSYT with the entries of column 1 consisting of E , and
de�ne c (i ,E ) := c (i ,YE ).

Example: let N = 8,m = 3,E = f2, 5, 7, 8g then

YE =
�
8 6 4 3 1
� 7 5 2

�
and [c (i ,E )]8i=1 = [4,�3, 3, 2,�2, 1,�1, 0] .

Let E0 := fE : #E = m+ 1,N 2 Eg; for each E 2 E0 there is a
polynomial τE 2 Pm,0 such that ωiτE = tc (i ,E )τE 8i and

τE = DφE + ∑
invF<invE

aF ,EDφF

constructed by induction on invE , starting with E0. Suppose
(i , i + 1) 2 EC � (En fNg) then inv (siE ) = invE + 1 and

τsiE =

 
Ti +

(t � 1) tc (i ,E )
tc (i+1,E ) � tc (i ,E )

!
τE .
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Tools and example

Utility functions:

u0 (z) :=
t � z
1� z , u1 (z) :=

1� tz
1� z , u (z) := u0 (z) u1 (z)

example N = 5,m = 2 (recall [n]t = (1� tn) / (1� t))

τf3,4,5g = t
4θ3θ4 � t3θ3θ5 + t2θ4θ5

τf2,4,5g = t
5θ2θ4 � t4θ2θ5 +

t3

[3]t
(θ3θ5 � tθ3θ4 + [2]t θ4θ5)

τf1,4,5g = t
4
�
tθ1 �

1
[4]t

(θ2 + θ3)

�
(tθ4 � θ5) +

t4 [2]t
[4]t

θ4θ5

τf1,2,5g = t
7θ1θ2 �

t6

[3]t
(tθ1 � θ2) (θ3 + θ4 + θ5) .

(omitted τf2,3,5g, τf1,3,5g)
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(θ3θ5 � tθ3θ4 + [2]t θ4θ5)

τf1,4,5g = t
4
�
tθ1 �

1
[4]t

(θ2 + θ3)

�
(tθ4 � θ5) +

t4 [2]t
[4]t

θ4θ5

τf1,2,5g = t
7θ1θ2 �

t6

[3]t
(tθ1 � θ2) (θ3 + θ4 + θ5) .

(omitted τf2,3,5g, τf1,3,5g)
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Inner Product

The motivation for the de�nition is to make Ti (and thus ωi ) into a
self-adjoint operator so that the fτE g will be mutually orthogonal (tacit
assumption: t > 0)
For E ,F � f1, 2, . . . ,Ng de�ne hφE , φF i = δE ,F t�inv(E ) and extend the
form to P by linearity. This satis�es hTiφE , φF i = hφE ,TiφF i for each i .
For a set F and k = 0, 1 let

Ck (F ) = ∏
1�i<j<N ,c (i ,F )<0<c (j ,F )

uk
�
tc (i ,F )�c (j ,F )

�
Suppose E 2 E0 then

kτE k2 = t2(N�m�1) [m+ 1]t C0 (E ) C1 (E ) .
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Action on Superpolynomials

Suppose p 2 sPm and 1 � i < N then set

Tip (x ; θ) := (1� t) xi+1
p (x ; θ)� p (xsi ; θ)

xi � xi+1
+ Tip (xsi ; θ) .

Note that Ti acts on the θ variables (according to the previous de�nition).
Let T (N ) := TN�1TN�2 � � �T1 (like a shift). Introduce another parameter
q, then for p 2 sPm and 1 � i � N de�ne

wp (x ; θ) := T (N )p (qxN , x1, x2, . . . , xN�1; θ) ,

ξ ip (x ; θ) := t i�NTiTi+1 � � �TN�1wT�11 T�12 � � �T�1i�1p (x ; θ) .

The ξ i are Cherednik (IMRN 1995) operators, (also Baker and Forrester,
IMRN 1997). The ξ i mutually commute. There is a basis of sPm
consisting of simultaneous eigenvectors of fξ ig and these are the
nonsymmetric Macdonald superpolynomials (henceforth abbreviated to
�NSMP�). The HN (t)-module version is due to C.D. and Luque SLC
2012.
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Macdonald Superpolynomials

Suppose p (θ) is independent of x then Tip = Tip and

ξ ip (θ) = t
i�NTiTi+1 � � �TN�1 (TN�1 � � �T2T1)T�11 T�12 � � �T�1i�1p (θ)

= t i�NTiTi+1 � � �TN�1TN�1 � � �Tip (θ) = ωip (θ) ,

that is ξ i agrees with ωi on polynomials of x-degree 0. For α 2 NN
0

the rank is used in Rα := T (rα)
�1 (if rα = si1si2 . . . sik then

Rα = (Ti1Ti2 � � �Tik )
�1)

Suppose α 2 NN
0 and E 2 Y0, then there exists a (ξ i )-simultaneous

eigenfunction NSMP

Mα,E (x ; θ) = t
e(α+)qb(α)xαRα (τE (θ)) + ∑

βCα

x βvα,β,E (θ; q, t)

where vα,β,E (θ; q, t) 2 Pm,0 and whose coe¢ cients are rational
functions of q, t. Also ξ iMα,E (x ; θ) = ζα,E (i)Mα,E (x ; θ) where
ζα,E (i) = q

αi tc (rα(i ),E ) for 1 � i � N. The exponents
b (α) := ∑N

i=1 (
αi
2 ) and e (α

+) := ∑N
i=1 α+i (N � i + c (i ,E )).
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Yang-Baxter Graph Method

The nodes of the graph are labeled by (α,E ) and directed edges join
adjacent labels (idea of Lascoux).

if α = (0, 0, . . . , 0) then Mα,E = τE

if αi < αi+1 then let z = ζα,E (i + 1) /ζα,E (i) and

Msi α,E =

�
Ti +

t � 1
z � 1

�
Mα,E ,

if αi = αi+1 and j = rα (i) , (j , j + 1) 2 EC � En fNg then let
z = ζα,E (i + 1) /ζα,E (i) = t

c (j+1,E )�c (j ,E ) and

Mα,sjE =

�
Ti +

t � 1
z � 1

�
Mα,E ,

If αi = αi+1 and j = rα (i) then (1) fj , j + 1g � E implies
TiMα.E = �Mα,E (2) fj , j + 1g � EC [ fNg implies
TiMα.E = tMα,E
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A¢ ne step and an Example

For any α let Φα = (α2, α3, . . . , αN , α1 + 1) then MΦα,E = xNwMα,E .
The transformed spectral vector is
ζΦα,E =

�
ζα,E (2) , ζα,E (3) , . . . , ζα,E (N) , qζα,E (1)

�
. The proofs use

commutation rules such as wTi+1 = Tiw, ξNxNw = qxNwξ1 and
ξ ixNw = xNwξ i+1 for 1 � i < N.

Example: Let N = 5,m = 2,E = f3, 4, 5g and α = (0, 0, 1, 0, 0)
(thus rα = [2, 3, 1, 4, 5])

Mα,E = t
6x3
�
t3θ2θ4 � t2θ2θ5 + θ4θ5

�
+

(t � 1) t9q
qt3 � 1

�
x4
�
t3θ2θ3 � tθ2θ5 + θ3θ5

�
� x5

�
t2θ2θ3 � tθ2θ4 + θ3θ4

�	
.

The spectral vector is
�
t, t�2, qt2, t�1, 1

�
and T4Mα,E = �Mα,E .

Observe a typical pole at q = t�3.
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Inner product and D operators

We would like an analog of the Jack-type inner product in which the Jack
polynomials are mutually orthogonal and which satis�es a degree-changing
relation hxi f , gi = hf ,Digi. Baker and Forrester de�ned an analog of Di :
Suppose f 2 sPm then

DN f :=
1
xN
(f � ξN f ) , Di f :=

1
t
TiDi+1Ti f , i < N.

These operators map polynomials to those of lower x-degree: Suppose
α 2 NN

0 and E 2 E0;
if αN = 0 then rα (N) = N, c (N,E ) = 0, ξNMα,E = Mα,E and
(1� ξN )Mα,E = 0 so that DNMα,E = 0;

if αN � 1 then α = Φβ with jβj = jαj � 1 and
(1� ξN )Mα,E =

�
1� ζα,E (N)

�
Mα,E

=
�
1� ζα,E (N)

�
xNwMβ,E thus DNMα,E =

�
1� ζα,E (N)

�
wMβ,E

The operators fDig mutually commute.
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Axioms for the Inner Product

(1) hTi f , gi = hf ,Tigi , 1 � i < N (2) hξN f , gi = hf , ξNgi
then ξ i = t

�1Ti ξ i+1Ti implies hξ i f , gi = hf , ξ igi for all i , implying the
orthogonality of fMα,E g. (recall u (z) = (t � z) (1� tz) / (1� z)2)

Suppose αi < αi+1 then these axioms imply hMα,E ,Msi α,E i = 0 and

kMsi α,E k
2 = u

�
qαi+1�αi tc (rα(i+1),E )�c (rα(i ),E )

�
kMα,E k2 .

For k = 0, 1 let

Rk (α,E ) := ∏
n
uk
�
qαj�αi tc (rα(j),E )�c (rα(i ),E )

�
: i < j , αi < αj

o
.

and R (α,E ) := R0 (α,E )R1 (α,E ) then

kMα+,E k2 = R (α,E ) kMα,E k2 .
Axiom (3) is



w�1DN f , g

�
= (1� q) hf , xNwgi (the Jack property

does not work); the reason for the factor (1� q) is to allow the limit
t ! 1 when q = t1/κ.The idea is to derive a formula using the
axioms and then prove it works , C.D. SLC 2019.
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Degree raising

Suppose E 2 E0, α 2 NN
0 then

kMΦα,E k2 =
1� qα1+1tc (rα(1),E )

1� q kMα,E k2 .

Proof : set g = Mα,E and f = MΦα,E then
(1� q) hf , xNwgi = (1� q) kMΦα,E k2, also

DN f =
1
xN
(1� ξN ) f =

1
xN

�
1� ζΦα,E (N)

�
MΦα,E

=
�
1� ζΦα,E (N)

�
wMα,E ,


w�1DN f , g
�
=
�
1� ζΦα,E (N)

�
hMα,E ,Mα,E i ,

thus kMΦα,E k2 =
1� ζΦα,E (N)

1� q kMα,E k2 and

ζΦα,E (N) = qζα,E (1) = q
α1+1tc (rα(1),E ).
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Using edges of YB-graph for norm computation

Then we derive a hypothetical formula for kMλ,E k2 in terms of a lower
degree value. Suppose λ 2 NN ,+

0 , with λk � 1 and λj = 0 for k < j � N
then use the above formulas to express the norms, so compute the squared
norm in terms of the previous value at each stage of

(λ1, . . . ,λk�1,λk � 1, 0.., 0)
T��! (λk � 1,λ1, . . . ,λk�1, 0, . . . , 0)

Φ! (λ1, . . . ,λk�1, 0, . . . , 0,λk )
T��! λ.

We are led to the following formula. Note that it is required to prove that
di¤erent paths to the same (α,E ) produce the same value. The start is at
the level kτE k2.
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Formula for squared norms

The formulas are (λ 2 NN ,+
0 , α, β 2 NN

0 , E 2 E0)

Mα,E ,Mβ,F

�
= 0, (α,E ) 6= (β,F )

kMα,E k2 = R (α,E )�1 kMα+,E k2 ,

kMλ.E k2 = tk (λ) kτE k2 (1� q)�jλj
N

∏
i=1

�
qtc (i ,E ); q

�
λi

� ∏
1�i<j�N

�
qtc (i ,E )�c (j ,E )�1; q

�
λi�λj

�
qtc (i ,E )�c (j ,E )+1; q

�
λi�λj�

qtc (i ,E )�c (j ,E ); q
�2

λi�λj

.

where (a; q)n = ∏n
i=1

�
1� aqi

�
, k (λ) = ∑N

i=1 (N � 2i + 1) λi . This form
does satisfy the axioms. Furthermore kMα,E k2 > 0 if q > 0 and
min

�
q�1/N , q1/N � < t < max �q�1/N , q1/N �.

C.F. Dunkl (U. of Virginia ) Jack and Macdonald Superpolynomials 10/21 28 / 38



Evaluation in Special Cases

Let F = f1, 2, � � � ,m,Ng ,λ 2 NN ,+
0 with λi = 0 for i > m and let

x (1) =
�
1, t�1, t�2, . . . , t1�N

�
. Then

Mλ,F

�
x (1); θ

�
= qβ(λ)te1(λ)

�
qt�N ; q, t�1

�
λ

�
qt�m ; q, t�1

�
λ

(qt1�N ; q, t�1)λ hq,1/t (qt�1;λ)
τF (θ) ,

where ((i , j) 2 λ refers to the Ferrers diagram of λ)

(a; q, t)λ : =
N

∏
i=1

�
at1�i ; q

�
λi

hq,t (a;λ) : = ∏
(i ,j)2λ

�
1� aqarm(i ,j ;λ)t leg(i ,j ;λ)

�
arm (i , j ;λ) := λi � j , leg (i , j ;λ) := # fk : i < k � ` (λ) , j � λkg, and
` (λ) := max fi : λi � 1g. The exponents are β (λ) := ∑m

i=1 (
λi
2 ) and

e1 (λ) := ∑m
i=1 λi (N �m� i). (see C.D. Symmetry 2021, 13(5))
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Symmetrization

Given a particular Mα,E what polynomials Mβ,F can be produced by a
sequence of steps of the form Ti + b? We describe the HN (t)-module
generated by Mα,E , this is based on the following:
For α 2 NN

0 and E 2 E0 let bα,Ec denote the tableau obtained from YE
by replacing i by α+i for 1 � i � N. Let
M (α,E ) := span

�
Mβ,F : bβ,F c = bα,Ec

	
. This is indeed the

HN (t)-module generated by Mα,E (C.D. and Luque). Note
M (α,E ) =M (α+,E ), and bβ,F c = bα,Ec implies ζβ,F is a
permutation of ζα,E .
Example: let N = 9,m = 4,E = f2, 3, 6, 8, 9g, α = (3, 5, 6, 2, 2, 1, 4, 4, 6),
α+ = (6, 6, 5, 4, 4, 3, 2, 2, 1) and

YE =
�
9 7 5 4 1
� 8 6 3 2

�
, bα,Ec =

�
1 2 4 4 6
� 2 3 5 6

�
.

Is there a symmetric polynomial inM (α,E ), that is, p (x ; θ) such that
Tip = tp for 1 � i < N? (warning: not the same as SN -symmetry)
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Column-strict Property

(Due to C.D. and Luque): if bα,Ec is column-strict (the entries in column
1 are increasing) then there is a unique non-zero (up to scalar
multiplication) symmetric p 2 M (α,E ) otherwise there is none.
We use methods of Baker and Forrester (Ann. Comb. 1999) to analyze
the symmetric p. Blondeau-Fournier, Desrosiers, Lapointe, and Mathieu
(J. Combin. 2012) constructed Macdonald superpolynomials which are
conceptually di¤erent from ours - however their de�nition of superpartition
is relevant here: for fermionic degree m it is an N-tuple
(Λ1, . . . ,Λm ;Λm+1, . . . ,ΛN ) which satis�es Λ1 > Λ2 > � � � > Λm and
Λm+1 � Λm+2 � � � � � ΛN . In the example the superpartition is
[6, 5, 3, 2; 6, 4, 4, 2, 1] . In general for isotype (N �m, 1m) the numbers
(Λ1, . . . ,Λm ,ΛN ) are the entries in column 1 of bα,Ec and thus
ΛN < Λm). The number of tableaux of shape (N �m, 1m) with entries
nondecreasing in row 1 and strictly increasing in column 1 with sum of
entries = n is the coe¢ cient of qn in
qm(m+1)/2

��
1� qN

�
(q; q)m (q; q)N�m�1

	�1
.
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Expansion of the Symmetric Polynomial

p = ∑
�
A (β,F )Mβ,F : bβ,F c = bα,Ec

	
,Tip = tp 8i

�nd equations satis�ed by the A (β,F ); not di¢ cult because under the
action of Ti the spaceM (α,E ) decomposes into a direct sum of two-
and one-dimensional submodules (one-dim from TiMβ,F = tMβ,F )
Suppose (case 1) βi < βi+1 then the matrix of Ti acting on the span of
Mβ,E ,Msi β,E is (with z = ζβ,E (i + 1) /ζβ,E (i))"

� t�1
z�1

(1�zt)(t�z )
(1�z )2

1 z (t�1)
z�1

#

then [A (β,E ) ,A (si β,E )]
T is an eigenvector with eigenvalue t when

A (β,E ) = t�z
1�zA (si β,E ).
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Calculation of Coe¢ cients

It is possible for di¤erent E to appear, we arrange by the inv-count.
Suppose (case 2) βi = βi+1, j = rβ (F ) and c (j ,F ) < 0 < c (j + 1,F )
then inv (sjF ) = inv (F )� 1 and (with z = tc (j ,F )�c (j+1,F ))

TiMβ,sjF = �
t � 1
z � 1Mβ,sjF +Mβ,F

and the eigenvalue equation implies A (β, sjF ) =
t � z
1� z A (β,F ). Among

these E there are two extreme cases: the root ER which minimizes the
entries of YE in row 1 (and thus inv (E )), and the sink ES which
maximizes these entries (depends on α implicitly). In the example

YE =
�
9 7 5 4 1
� 8 6 3 2

�
, bα,Ec =

�
1 2 4 4 6
� 2 3 5 6

�
.

ER = E and ES = f1, 3, 6, 7, 9g , inv (ER ) = 7, inv (ES ) = 9.
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The symmetric polynomial

Suppose p = ∑
�
A (β,F )Mβ,F : bβ,F c = bα,Ec

	
satis�es Tip = tp then

(case 1) A (β,F ) =
R0 (β,F )
R0 (si β,F )

A (si β,F ) = R0 (β,F )A
�

β+,F
�
since

R0
�

β+,F
�
= 1 and (case 2) A (β, sjF ) =

C0 (F )
C0 (sjF )

A (β,F ).

Set A (β,F ) =
C0 (ES )
C0 (F )

R0 (β,F ) (and λ = β+ = α+) then

pλ,E = ∑
bβ,F c=bλ,E c

C0 (ES )R0 (β,F )
C0 (F )

Mβ,F

is the supersymmetric polynomial inM (λ,E ), unique when the
coe¢ cient of Mλ,ES is 1.
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Examples of symmetric superpolynomials

N = 3,λ = (1, 0, 0) ,E = f2, 3g then

p = t3 (θ2 + θ3 � t (t + 1) θ1) x1 + t3
�
t3θ1 � t (t + 1) θ2 + θ3

�
x2

+t4
�
t2θ1 + t2θ2 � (t + 1) θ3

�
x3

N = 4,λ = (2, 1, 0, 0) ,E = f1, 2, 4g, sample terms

x21 x2t
6q
�
t2 (t + 1) θ1θ2 � (tθ1 � θ2) (θ3 + θ4)

	
x1x22 t

7q
�
�t2 (t + 1) θ1θ2 + (tθ1 � θ2) (θ3 + θ4)

	
x21 x3t

6q
�

θ1
�
�t4θ2 + t2 (t + 1) θ3 � tθ4

�
� (t � 1) θ2θ4 + θ3θ4

	
x1x2x3t6q

�
t (t � 1)

�
t3θ1θ2 + t (t + 1) θ1θ3 + θ2θ3

�
+

(t � 1) (tθ1 + t (t � 1) θ2 � θ3) θ4

�
.
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Symmetrization

De�ne X0 = 1,Xi = 1+TiXi�1 for i � 1 and S (N ) = X1X2 � � �XN�1 then
for any p 2 sPm

Ti
�
S (N )p

�
(x ; θ) = t

�
S (N )p

�
(x ; θ) , 1 � i < N,

and
�
S (N )

�2
= [N ]t !S

(N ) (idea of proof: replace Ti by si and show that
one obtains the SN -symmetrization operator). In fact
S (N ) = ∑u2SN T (u), also S

(N ) is self-adjoint since T (u)� = T
�
u�1

�
(e.g. hTiTj f , gi = hf ,TjTigi) and ∑u2SN T (u) = ∑u2SN T

�
u�1

�
.

(Recall [N ]t ! := ∏N
n=1 [n]t .)

From this it follows that if bα,F c = bλ,Ec then S (N )Mα,F = cpλ,E for
some constant c , because of the uniqueness of pλ,E inM (λ,E ). This
leads to the evaluation of kpλ,E k2, which does not use summation over all
bα0,F 0c = bλ,Ec .
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Evaluation of squared norm

D
pλ,E ,S

(N�1)Mα,F

E
= c hpλ,E , pλ,E i =

D
S (N�1)pλ,E ,Mα,F

E
= [N ]t ! hpλ,E ,Mα,F i = [N ]t !

C0 (ES )R0 (α,F )
C0 (F )

kMα,F k2 .

Let α = λ�, the nondecreasing rearrangement of λ, and F = F = ER . For
each i � λ1 let mi be the multiplicity of i in row 1 of bλ,ES c, that is
mi = # fj : bλ,ES c [1, j ] = ig. Then the coe¢ cient of Mλ,ES in
S (N )Mλ�,ER is ∏λ1

i=0 [mi ]t ! (and the coe¢ cient of Mλ,ES in pλ,E is 1). Thus

kpλ,ES k
2 =

[N ]t !
∏
i�0
[mi ]t !

C0 (ES )R0
�
λ�,ER

�
C0 (ER )

Mλ�,ER

2
=

[N ]t !
∏
i�0
[mi ]t !

C0 (ES )R0
�
λ�,ER

�
C0 (ER )R

�
λ�,ER

� kMλ,ER k
2 .
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Conclusion!

With some computation we obtain

kpλ,ES k
2 = t2(N�m�1)+k (λ) [m+ 1]t (1� q)

�jλj
N

∏
i=1

�
qtc (i ,ES ); q

�
λi

� ∏
1�i<j�N

�
qtc (i ,ES )�c (j ,ES )�1; q

�
λi�λj

�
qtc (i ,ES )�c (j ,ES )+1; q

�
λi�λj�1�

1� qλi�λj tc (i ,ES )�c (j ,ES )
� �
qtc (i ,ES )�c (j ,ES ); q

�2
λi�λj�1

� [N ]t !
∏
i�0
[mi ]t !

C0 (ES ) C1 (ER ) .

the last line involves only t. (recall k (λ) := ∑N
i=1 (N � 2i + 1) λi ).

Let q = t1/κ and let t ! 1 to obtain formulas for symmetric Jack
superpolynomials.

Thank you.
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