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Superpolynomials and the Symmetric Group

Start with 2N variables x; (bosonic, xix; = x;x;), ; (fermionic

0i6; = —0,0,), x;0; = 0;x;, and the symmetric group Sy (permutations of
{1,2,..., N}. The transpositions are denoted by (7, /) and sj := (i, i+ 1).
The braid relations are s;s;;15; = sj115;5;+1 and s;s; = s;s; for li—j|>2
(and s? = 1).

For w € Sy let wp (X; 9) =p <XW(1) ..... Xw(N) Gw(l), 9W(2) ..... 8w(N)>
Examp/e: 519192 = —9192; 529193 = 9192.
Basis elements for polynomials in {6;} are defined by

47E129,'1"'9,'m, E:{il,iz,"',im},1§i1<l'2<"'<l'm§/v.

Denote span {¢ : #E = m} by Pp,. The span is over some extension
field of Q (typically Q (k) or Q (g, t)), where x is a generic parameter,
transcendental or real # m/nwith2 <n< N meZ, m/n¢& Z)

N
The bosonic variables are spanned by x* = ] x", o € ]N(')V. Define
=1

1

sPp :=span {x"¢p. : o« € N{/, #E = m} . B
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Dunkl operators

The Dunkl and Cherednik-Dunkl operators are (1 < i < N,p € sPp,)

Dip (x;0) := apéie) +xY p(x:6(iJ)) ;p_(i(’l) ;0 (’J))
! J#i P X

i—1
Uip (x;0) =D (xip (x:0)) =% 3 p (x (1.1) 16 (i.)) .

j=1
The same commutation relations as for the scalar case hold, that is,
DiD; =D;D;, Uil =Uild;, 1 <i,j <N
wD; = DW(,-)W,VW €Sy, sUi=Us;, j#i—1,1;
silisi = Uiv1 + ks;, Ujsi = sildir1 +x, Uiyisi = sildi — .
Simultaneous eigenfunctions of {U; : 1 < i < N} are called nonsymmetric
Jack polynomials. These are a special case of the generalized Jack

polynomials constructed by S. Griffeth for the family G (n, p, N) of
complex reflection groups, TAMS 2010.
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Submodules of P,,

To determine the irreducible Sy-modules define d; by 0;0;¢ = ¢ and
dipe = 0 for i ¢ E (example 92010,03 = —6103) and D := YN, 9;, then
D? = 0. Also define

Mp (6) = i&-p (6)

(example: N=4M (9193) = —0:160,03 + 919264). Then M2 = 0, M and
D commute with the group action and MD + DM = N. Denote

Pmo = kerDNPp,sPmo=kerDNsPy,
Pmi = kerMN Py, sPn1=kerDNsPy.

The relations for M, D imply sPy, = sPpo @ sPm.1.(See C. D.
Ramanujan J. 2021)
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Young Tableaux

Representations of Sy are indexed by partitions of N. Given a partition A
(A e ]N(’)V,/\l > Ay > ...and |A| = N) there is a Ferrers diagram : boxes
t (7/,j) with1 <i<l(A)=max{j:A;>0}and1<j<A; The
module is spanned by reverse standard Young tableaux (abbr. RSYT) - the
numbers 1,..., N are inserted into the Ferrers diagram so that the entries
in each row and in each column are decreasing. If i,i 4 1 are in the same
row, resp. column of RSYT Y then s;Y =Y, resp. —Y.

If kis in cell (7,/) of RSYT Y then the content c (k,Y) = j — i; the
content vector [c (k, Y)]QI:l determines Y uniquely. The Jucys-Murphy
elements w; = ZJN:,-H (i,J) satisfy w;Y = c(i,Y) Y for each i. So if one
finds a simultaneous eigenfunction of {w;} then the eigenvalues determine
the label (partition) of an irreducible. representation.
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Isotypes of the submodules

Illustration: let

N=5m=2E= {3, 4, 5} L Te:=D (939495) = 0405 — 0305 + 030,
then Tf is an eigenfunction of each w; with eigenvalues [2, 1,-2, -1, 0]
(i=1,2,...,5) - this is the content vector of

5 2 1
4
3

and indeed the rep. is (3,1,1) (degree 6). (called a hook tableau).
In general let Tg, := D¢ where Ey = {N—mN—-—m+1,...,N}, the

eigenvalues [N—m—1,---,1,—m,1—m,---,—1,0] correspond to the
content vector of

N Nem—1 - ... 1

N N—1 T VA

(displayed with column 1 folded under row 1 to save space). Thus the
isotype of P is (N —m,1™). The analysis of Pp, 1 is very similar and is
omitted in this talk: the isotype is (N —m+1.1m"1)
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Construction of basis

For a subset E define invE = # {(i,j) € E x EC :i < j} so invEy = 0
and invE; = m(N — m—1) where £, :={1,2,..., m, N} (maximum).
Let Yg denote the RSYT with the entries of column 1 consisting of E, and
c(iE):=c(i,Ye). Let & :={E:#E=m+1, N € E}; for each

E € & there is a polynomial Tg € Pp, such that w;Tg = ¢ (i, E) T and

Te=Dpe+ ),  areDg,

invF <invE

constructed by induction on invE. Suppose (i,i +1) € E¢ x (E\ {N})
then inv (s;E) = invE + 1 and

1
c(i+1,E)—c(i,E)

TsE = SiTE + TE.

If {i,i+1} C E then 5;tr = —7¢ and if {i,i +1} C EC U{N} then
SiTE = TE.
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N=5m=2
Ti345) = 0304 — 0305+ 0405

1 1 2
T45 = 0,04 — 6,05 — §9394 + 59395 + §9495

1 1
T{ast = 7 (401 — 6, — 03) (02 — 65) + 59495
1
T2y = 616 — 3 (01— 02) (03 + 04 + 05)

Observe the actions: S1T(3,45) = T{34,5), 2T{1,45} = T{1,4,5) and
S4T(14,5) = —T{145)- Notedim(3,1,1) = (3) and
Yeee, 9™E = [g]q =1+ q+2¢*>+ ¢+ g* (in general this sum equals

M)
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Eigenfunctions

For each a € N/, E € & there is a {U;}-simultaneous eigenfunction
JuE € SPmo .The expression uses a partial order on lN(’)V

a<pB =) ;<) B, 1<i<N, a#p,
j=1 j=1

a<dp <= (la| = [B) A [(a" < BT)V (at =B Na < B)].

and the rank function
(N =#{1<j<itaj>wa}+#{>i:a;>ua};
thus r, € Sy, and r, = I if and only if & € ]N(')V'Jr (g >ap > -+ > apy).
Example: o« = (4,5,0,4),r, =[2,1,4,3], and rp,a = (5,4,4,0) = a™
Then
Je (x:0) =x* (ritte) + ) X‘BV(X’[-;'T (x;0),
«>p

where v, g 7 (;0) € Pmo. The coefficients of the polynomials
vap,7 (1 0) are rational functions of x. Note r, *7g (6) = ¢ (6, 1).
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Spectral vector

@ These polynomials satisfy

Uide = Co e (1) JuE.
Coe(i)i=ai+1+xc(r(i),E), 1<i<N.

Then [Z, ¢ (i)}l{vzl is called the spectral vector of a, E (note « is
clearly determined by , ¢ and then r, recovers the content vector of
E).
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Spectral vector

@ These polynomials satisfy

Uide = Co e (1) JuE.
Coe(i)i=ai+1+xc(r(i),E), 1<i<N.

Then [Z, ¢ (i)}l{vzl is called the spectral vector of a, E (note « is
clearly determined by , ¢ and then r, recovers the content vector of
E).

e Example N=4,m=2, «=(0,1,1,0), E={2,3,4} € &,
[c (. E))}y = [1,—2,—1,0] (thus r, = [3,1,2,4],
Coe=[1—%x2+x2—2K1])

KXo X,
JnE = <X2X3 1 _22‘;(> (—61603 + 01604 — 0304)

KX3Xa (1 — K) 9192 — <1 — 2K) (919 — 929 )
+(1—21()(14—1{) { —x (0104 — 0204) ’ ’ }
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Inner Product and Norms

Require the properties: (f, g) = (sif,sig) = (g, f
deg f # degg then (f,g) = 0. Write ||f|* = (f,
positivity.

At the lowest x-degree, declare the ¢ to be an orthonormal set so that
(TE0, Tg,) = m+1, and for E € &

2 _(m - !
ltel* = (m+1) H (1 <c<,-,E>—c<j,E>>2>
(ij)EExEC

)i (xif. g) = (f. Dig), if
f) without claiming

(follows from (Tg, Ts,r) = 0, the {w; }-eigenfunction property). Note if
(i,j) € Ex EC and i < j then ¢ (i,E) —c(j, E) < —2.
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Norms I

From the adjacency relation for a; < ajy1

K

T E = <Si  Gae (D)= Gue (it 1)) e

and the orthogonality (Jy £, Jsa,£) = O we relate || Jy £||° to || Jys £]|” -
For o € ]Név,z=0,1 let

e (-1)"x
Re(.E) _1§i1<—J[§N <1+aj—ﬂéi+K(C(fa(f)vE)_C(“X(")'E)))

<«
R is for “rearrangement” , let R (&, E) = Ro (a, E) R1 («, E) then

[ ll* = R (a0, E) ™ | o |
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Norms Il1

To change degrees we use the affine step Jopu g = xn W,\71J,X,E where
Pa = (ag, a3, ..., an, 1+ 1) and wy = sy - - - sy_1 (a cyclic
shift). For A € N)"'™", E € & let

N
PMNE) = H(1+Kc(i, E))A,-

i=1

. 1<,-I<_JI<NAﬁj (1 - <£+K(C(i, Il'{) —c(j, E))>2> '
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Norms Il1

@ To change degrees we use the affine step Jo, £ = X W,\71J,X,E where
Pa = (ag, a3, ..., an, 1+ 1) and wy = sy - - - sy_1 (a cyclic
shift). For A € N)"'™", E € & let

N

PAE) = JTQ+xc(iE)),,

i=1

. 1<,-I<_JI<NAﬁj (1 - <€+K(C(i, Il'{) —c(j, E))>2> '

[ hell” = [ITell> P (A, E)

The inner product is positive-definite for —1/N < x < 1/N. The
norm formula is a special case of Griffeth’s results.

@ Then
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Norms Il1

@ To change degrees we use the affine step Jo, £ = X W,\71J,X,E where
Pa = (ag, a3, ..., an, 1+ 1) and wy = sy - - - sy_1 (a cyclic
shift). For A € N)"'™", E € & let

N

PAE) = JTQ+xc(iE)),,

i=1

x 1<£JI<NAZ (1 - (E—I—K(c(i, ;—{) 0 E))>2> |

[ hell” = [ITell> P (A, E)

The inner product is positive-definite for —1/N < x < 1/N. The
norm formula is a special case of Griffeth’s results.
e ExampleN =4, m=2, « =(0,1,1,0), E ={2,3,4}

ol = 3(1—3x) (142x) (1 —x)
“E (1+x)(1—2c)

@ Then
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The Hecke algebra

We keep the braid relations of {s;} but change the quadratic relation:
introduce a parameter t (such that t” # 1 for 2 < n < N) then Hy (t) is
the unital associative algebra generated by T1,..., Ty_1 satisfying
TiTipaTi=TiqaTiTiy1, T;T; = T;T; for |i — j| > 2, and

(Ti —t)(T;i +1) = 0. Use an extension field K of Q (g, t). There is a
linear (not multiplicative!) isomorphism between the group algebra IKSy
and Hy (t). Given u € Sy there is a shortest expression u = s;s;, - - - s,
where £ = #{(i,j):i<j,u(i)>u(j)}andset T (u)=T,T;,--- T,
(well-defined because of the braid relations). The representation theory is
very similar to that of Sy (partitions, RSYT etc.). First define an action
of Hy (t) on Py, - the example suffices:

Ti11 = t, T160; = 05,
T10, = t91+(t—1)92, 71010, = —616,,

so that T3 (91 + 92) =t (91 + 92) Example: T,0160,04 = 010364 and
T>0103604 = t0160,04 + (t — 1) 01036,.
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Submodules

The operators M, D are defined in this setting: M is the same while
D := 2,’-\’:1 t"=19;. Then M, D commute with each T;, M2 =0,D? =0
and

11—tV
MD + DM = [N}, := T
With the same notations P, o = ker DN'Py,, and Pp 1 = ker MNPy,
both are irreducible Hy (t)-modules.

The analogous Jucys-Murphy elements are

wi=t""TiTi Ty Ty Tz T

for i < N while wy = 1. The Hecke algebra is represented on the span of
RSYT's Y of a given shape and w;Y = t<("Y)Y_If i, i+ 1 are in the
same row, resp. column of Y then T;Y = tY resp. —Y. (As before the
eigenvalues of an {w;}-eigenvector determine a partition of N.)
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Start of the Basis Construction

o lllustration: let N =5,m=2,E = {3,4,5},7g = D (030465) =
t204605 — 0305 + t*0304 then wiTe = [t2,t,t7%, 71 1] T
(i=1,2,..., 5) - this is the t-exponential content vector of

5 2 1
2
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Start of the Basis Construction

o lllustration: let N =5,m=2,E = {3,4,5},7g = D (030465) =
t204605 — 0305 + t*0304 then wiTe = [t2,t,t7%, 71 1] T
(i=1,2,..., 5) - this is the t-exponential content vector of

5 21
N 4 3|
@ In general let T, := D(/)EO where By = {N—m,N—m+1,..., N},
the {w;}-eigenvalues correspond to the t-exponential content vector

of
N N=m—=1 -+ ... 1
. N—1 ee ... N—m '

of isotype (N — m, 1™), degree (NI;I). Acting on Tg, with {T;}
generates the submodule P, o. (Details in C.D. SIGMA 21-054)
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Basis

Let Yr denote the RSYT with the entries of column 1 consisting of E, and
define ¢ (i, E) := c (i, Yg).
o Example: let N =8,m=3,E ={2,5,7,8} then
8 6 4 3 1
N7 5 2

and [c (i, E)]2_, = [4,—3,3,2,-2,1,—1,0].

ve |
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Basis

Let Yr denote the RSYT with the entries of column 1 consisting of E, and
define ¢ (i, E) := c (i, Yg).
o Example: let N =8,m=3,E ={2,5,7,8} then
8 6 4 3 1
Ye= [\ 75 2 }
and [c (i, E)]2_, = [4,—3,3,2,-2,1,—1,0].
o Let & :={E:#E=m+1,N € E}; for each E € & there is a
polynomial Tg € Py such that w;teg = t<(.E)re Vi and
Te=Dpc+ ), areD¢
invF <invE

constructed by induction on invE, starting with Ey. Suppose
(i,i+1) € EC x (E\ {N}) then inv (s;E) = invE + 1 and

_ (t— 1) tUE)
TsiE = (T" + #c(i+1E) _ $c(i,E) TE:
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Tools and example

o Utility functions:
t—z 1—tz
up (z) := T, () := T, U (z) :=up (2) u1 (2)
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Tools and example

o Utility functions:
t—z 1—tz
up (z) := T, () := T, u(z):=uy(z) u1(z)

o example N =5,m =2 (recall [n], = (1—t")/(1—1))

Ti3a5) = t'0304 — t30305 + 0405
3

t
T(245) = t59294 - t49295 + [37]1; (9395 — t0304 + [2]1: 9495)
1 t4[2
T(145) = t* (t91 — [TL (92 + 93)) (t64 — 95) + [i]t]t9495
t6

Ti1p5) = t'01607 — (t01 — 62) (63 + 04 + 65) .

3]

(omitted T(2,35} T{1,3,5})
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Inner Product

The motivation for the definition is to make T; (and thus w;) into a

self-adjoint operator so that the {Tg} will be mutually orthogonal (tacit
assumption: t > 0)

For E,F C {1,2,..., N} define (¢, pr) = 0 rt™(E) and extend the
form to P by linearity. This satisfies (Ti¢p., o) = (¢g, Ti¢pg) for each i.
Foraset F and k =0,1 let

Ci (F) = 1 Uy (tc(i,F)fc(j,F)>

1<i<j<N,c(i,F)<0<c(j,F)

Suppose E € & then

Ie|® = N [m+1], Co (E)Ci (E).
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Action on Superpolynomials

Suppose p € sP, and 1 < i < N then set
p(x;0) — p(xsj;0)

X — X,'+]_

Tip (X;Q) = (1 — t) Xi4+1

+ Tip (xsi;0) -

Note that T; acts on the 6 variables (according to the previous definition).
Let TV .= Ty 1Ty Ty (like a shift). Introduce another parameter
g, then for p € sP,,, and 1 < i < N define

wp (x;0) := T(N)p (gxn, x1, %2, .-, Xn—1;0),
Ep(x:0) =t N T, Ty Ty wT T - T p(x:0).

The ¢; are Cherednik (IMRN 1995) operators, (also Baker and Forrester,
IMRN 1997). The ¢; mutually commute. There is a basis of sPp,
consisting of simultaneous eigenvectors of {¢;} and these are the
nonsymmetric Macdonald superpolynomials (henceforth abbreviated to
“NSMP"). The Hy (t)-module version is due to C.D. and Luque SLC
2012.
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Macdonald Superpolynomials

@ Suppose p (6) is independent of x then T;p = T;p and
Ep(0)=t""TiTia Ty (Thor- ToT) Ty T T2 p (6)
=t NTi T Tyaa T+ Tip (8) = wip (),
that is ¢; agrees with w; on polynomials of x-degree 0. For a € ]N(’)V

the rank is used in R, := T(r(,é)f1 (if o = sysi, ... s;, then
-1
Ry = (TflTiz T Tik) )
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Macdonald Superpolynomials

@ Suppose p (6) is independent of x then T;p = T;p and
Ep(0)=t""TiTia Ty (Thor- ToT) Ty T T2 p (6)
=t NTi T Tyaa T+ Tip (8) = wip (),
that is ¢; agrees with w; on polynomials of x-degree 0. For a € ]N(’)V

the rank is used in R, := T(r(,é)f1 (if o = sysi, ... s;, then
Ry = (Tll Tiy - - Tik)il)
o Suppose & € INY and E € ), then there exists a (&;)-simultaneous
eigenfunction NSMP
My e (x;0) = te(“+)q (W xR, (te (0)) + Zxﬁvaﬂg (0;q,1)

B<la
where v, g £ (0; g, t) € Pm,o and whose coefficients are rational
functions of g, t. Also ;M e (x;0) = {, g (/) My,E (x;0) where
Cor (i) = gt E) for 1 < j < N. The exponents
b(a) =YLy (5) and e (a) =Ty aff (N —i+c (i, E))
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Yang-Baxter Graph Method

The nodes of the graph are labeled by («, E) and directed edges join
adjacent labels (idea of Lascoux).

o ifa=(0,0,..., 0) then My g = 7¢
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Yang-Baxter Graph Method

The nodes of the graph are labeled by («, E) and directed edges join
adjacent labels (idea of Lascoux).

o ifa=(0,0,..., 0) then My g = 7¢
o ifa; <wajyithenlet z=7C, g (i+1)/C, g (i) and

z—1

t—1
Ms,-zx,E = <Ti + ) Ma,E:
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Yang-Baxter Graph Method

The nodes of the graph are labeled by («, E) and directed edges join
adjacent labels (idea of Lascoux).

o ifa=(0,0,..., 0) then My g = 7¢
o ifa; <wajyithenlet z=7C, g (i+1)/C, g (i) and

t—1
Ms,-zx,E = <Ti + ) Ma,E:

z—1

) ile,‘ =iy andj: a (,),(J,J_|_ 1) c EC % E\{N} then let
z2=C,p (I4+1) /e (i) = +c(i+1,E)=c(.E) and

t—1
Mﬂl,SjE = (T/ + > Ma,E-
z—1
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Yang-Baxter Graph Method

The nodes of the graph are labeled by («, E) and directed edges join
adjacent labels (idea of Lascoux).
o ifa=(0,0,..., 0) then My g = 7¢
o ifa; <wajyithenlet z=7C, g (i+1)/C, g (i) and
t—1
Ms,-zx,E = <Ti + > Ma,E:

z—1

) ile,‘ =iy andj: a (,),(J,J_|_ 1) c EC % E\{N} then let
z2=C,p (I4+1) /e (i) = +c(i+1,E)=c(.E) and

Z —

t—1
Mﬂl,sjE = (Ti + 1) Ma,E.

o If o; =wjq and j = r, (i) then (1) {j,j+ 1} C E implies
TiMyg=—-Mye (2) {j,j+1} C ECU {N} implies
TiMye = tMy g
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Affine step and an Example

e For any a let o = (ap, a3, ..., an, a1 + 1) then Moy g = xywM, .
The transformed spectral vector is
g(ba,E = [ga,E (2) 'goc,E (3) v ga,E (N> ' qga,E (1)] The proofs use
commutation rules such as wT;;1 = T;w, {yxyw = gxyw¢; and
Cixnw = xywg; 1 for 1 < i < N.
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Affine step and an Example

e For any a let o = (ap, a3, ..., an, a1 + 1) then Moy g = xywM, .
The transformed spectral vector is

gtba,E = [goc,E (2) 'goc,E (3) vy ga,E (N) ' qga,E (1)] The proofs use
commutation rules such as wT;;1 = T;w, {yxyw = gxyw¢; and

e Example: Let N=5m=2E ={3,4,5} and x = (0,0,1,0,0)
(thus ry, = [2,3,1,4,5])

My, = t2x; (£26204 — 260,05 + 6465) +

t—1)t
(qt)q {xs (£0203 — t0,05 + 0305) — x5 (t20205 — 0204 + 0304) }

The spectral vector is [t, t72, qt?, t 71, 1] and TaMy g = —M, g.
Observe a typical pole at g = t73.
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Inner product and D operators

We would like an analog of the Jack-type inner product in which the Jack
polynomials are mutually orthogonal and which satisfies a degree-changing

relation (x;f, g) = (f, Djg). Baker and Forrester defined an analog of D;:
Suppose f € sPp, then

Dyf = i (f—é,wc), D;f .= 1-|-,'D,'_~_1-|-,'f, i< N.
XN t

These operators map polynomials to those of lower x-degree: Suppose
x € NY and E € &

o if ay =0 then r, (N) = N,c(N,E) =0, EyMyg = My and
(1—&y) My g =0 so that DyM, g = 0;
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Inner product and D operators

We would like an analog of the Jack-type inner product in which the Jack
polynomials are mutually orthogonal and which satisfies a degree-changing
relation (x;f, g) = (f, Djg). Baker and Forrester defined an analog of D;:
Suppose f € sPp, then

Dyf = i (f—é,wc), D;f .= 1-|-,'D,'_~_1-|-,'f, i< N.
XN t

These operators map polynomials to those of lower x-degree: Suppose
x € NY and E € &

o if ay =0 then r, (N) = N,c(N,E) =0, {yMy g = My and
(1—Cp) My =0 so that DyM, g = 0;

o if ay > 1 then a = OB with || = |a| — 1 and
(1—=Cn) Mue = (1 —Cak (N)) M., e
= (1 Cue (V) xywMy g thus DyMye = (1 L, g (N)) why e
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Inner product and D operators

We would like an analog of the Jack-type inner product in which the Jack
polynomials are mutually orthogonal and which satisfies a degree-changing
relation (x;f, g) = (f, Djg). Baker and Forrester defined an analog of D;:
Suppose f € sPp, then

Dyf = i (f—é,wc), D;f .= 1-|-,'D,'_~_1-|-,'f, i< N.
XN t

These operators map polynomials to those of lower x-degree: Suppose
x € NY and E € &

o if ay =0 then r, (N) = N,c(N,E) =0, {yMy g = My and
(1—Cp) My =0 so that DyM, g = 0;
o if ay > 1 then a = OB with || = |a| — 1 and
(1—=Cn) Mue = (1 —Cak (N)) M., e
= (1o (M) WM e thus DMy e = (1, ¢ (N)) wh g
@ The operators {D;} mutually commute.

C.F. Dunkl (U. of Virginia ) Jack and Macdonald Superpolynomials 10/21 24 / 38



Axioms for the Inner Product

(1) (Tif.g) =(f Tig),1<i<N  (2) {nf.g) = (F.Cng)
then &; = t7'T,&;,, T, implies (¢;f,g) = (f,&;g) for all i, implying the

orthogonality of {M, g}. (recall u(z) = (t —z) (1 —tz) / (1 —2)?)
@ Suppose &; < w;41 then these axioms imply (M g, Ms,o £) = 0 and

||MS,'DC,E||2 —u (q“;+1—a;tc(ra(i-i—l),E)—C(ra(i),E)) ||M0¢,E||2 .
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Axioms for the Inner Product

(1) (Tif.g) =(f Tig),1<i<N  (2) {nf.g) = (F.Cng)
then &; = t7'T,&;,, T, implies (¢;f,g) = (f,&;g) for all i, implying the

orthogonality of {M, g}. (recall u(z) = (t —z) (1 —tz) / (1 —2)?)
@ Suppose &; < w;41 then these axioms imply (M g, Ms,o £) = 0 and
IMsae]? = u (qa;+1—a;tc(ra(i-i-l),E)—c(ra(i),E)> Mo gl
@ For k=0,1 let
R (a, E) := H{”k <q"‘f—""'tc(r“(j)'E)_c(r“(i)’E)> < jap < zxj} )
and R (a, E) :=Ro (, E) R1 (a, E) then
IMyr ]* = R (2, E) [ Ma e
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Axioms for the Inner Product

(1) (Tif.g) =(f Tig),1<i<N  (2) {nf.g) = (F.Cng)
then &; = t7'T,&;,, T, implies (¢;f,g) = (f,&;g) for all i, implying the
orthogonality of {M, g}. (recall u(z) = (t —z) (1 —tz) / (1 —2)?)

@ Suppose &; < w;41 then these axioms imply (M g, Ms,o £) = 0 and

IIMs,-a,E||2 —u (qa;+1—a;tc(ra(i-i-l),E)—c(ra(i),E)> Mo gl
@ For k=0,1 let
R (0, E) =] {uk <qaj—a,- tc(ram,f)—c(rm,f)) i<y < ,Xj} _
and R (a, E) :=Ro (, E) R1 (a, E) then
IMyr ]* = R (2, E) [ Ma e

o Axiom (3) is (w 'Dpf,g) = (1 — q) (f, xywg) (the Jack property
does not work); the reason for the factor (1 — q) is to allow the limit
t — 1 when g = t1/*.The idea is to derive a formula using the
axioms and then prove it works , C.D. SLC 2019.
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Suppose E € & ,a € ]N(’)V then

ap+1 tc(ra(l),E

1—
|Mong | = —T5—

)

M e[|
Proof: set g = M, g and f = Mg, g then
(1—q) (f,xywg) = (1 — q) ||[Mowe]|*, also

Dyf = = (1=Cy)f= L (1= Cone (N)) Moy e
XN XN

= (1= Cone (N)) WM, £,
<W_1DNf'g> = (1 - C(sz,E (N)) <sz,E, Ma,E>.

1—Conr (N
thus || Mag,el|” = ICD_D"E() | My ]|* and

CQM,E (N) = qCa,E (1) = q“1+1tc(’a(1)rE)_
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Using edges of YB-graph for norm computation

Then we derive a hypothetical formula for ||I\/I;L'E||2 in terms of a lower
degree value. Suppose A € N(I)V'+, with Ay > 1and A; =0for k< j <N
then use the above formulas to express the norms, so compute the squared
norm in terms of the previous value at each stage of

()\1,.. JAk—1, A —1,0.. O) ()\k—l Al,...,Ak_l,O,..‘,O)

B Ao A1, 0000, 0, A) 5 AL

We are led to the following formula. Note that it is required to prove that
different paths to the same (&, E) produce the same value. The start is at
the level || T[>
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Formula for squared norms

The formulas are (A € N, &, B € NY, E € &)

(Mag, Mpp) =0, (a,E) # (B, F)
IMel|* =R (o, E) " | Mo ]

IMye P = ) e | '“H (a5 q)

- (qtc(:, )—c(i.E)-1 ;q)m_k (qtcwl, >—c(j,E>+1;q>
y /A,

, 2
1<i<j<N (qte(hE)=cU.E); Q)Ai_Aj

A=A

where (a;q), =TT (1—aq'), k(A) = N, (N —2i+1)A;. This form
does satisfy the axioms. Furthermore || M, g||> > 0 if ¢ > 0 and
min (qfl/N,ql/N) < t < max (qfl/N,ql/N).
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Evaluation in Special Cases

Let F={1,2,---,m N}, A e N)*

with A; = 0 for i > m and let
xM = (1,¢71,¢72, ... t1=N). Then

—N. -1 —m. -1
1), g) = e (a0 7)), (gt Mt ),
M)\F ( 9) q (qtl_N; q, t_l)/\ hqll/t (qt_l,)L) TF (9),

where ((i,j) € A refers to the Ferrers diagram of A)
U
(g, 1), : = H (at - q)

hoe (A) H ( armlj A)tleg(i,j;A))

(ij)er

arm (i, j;A) :=Aj—j  leg (i, j;A) :=#{k:i <k <l(A),j <Ak}, and
(M) :=max {i:A; > 1}. The exponents are B (A) := Y™, (%) and
et(A):=Y" 1A (N—m—1). (see C.D. Symmetry 2021, 13(5))
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Symmetrization

Given a particular M, g what polynomials Mg ¢ can be produced by a
sequence of steps of the form T; 4+ b? We describe the Hy (t)-module
generated by M, g, this is based on the following:
For « € N} and E € & let |a, E| denote the tableau obtained from Yg
by replacing i by a; for 1 < i < N. Let
M (a,E) :=span {Mgr : | B, F] = | E]}. This is indeed the
Hn (t)-module generated by M, g (C.D. and Luque). Note
M (a, E) = M (a",E), and |B, F] = [a, E] implies {g  is a
permutation of {, .
Example: let N =9, m=4,E = {2,3,6,8,9}, a = (3,5,6,2,2,1,4,4,6),
at =(6,6,54,4,3,2,2,1) and
9 7 5 41 1 2 4 46
YE:[\ 8 6 3 2]'L""EJ:[\ 2 35 6]'

Is there a symmetric polynomial in M (a, E), that is, p (x; 0) such that
Tip=tpforl <i< N? (warning: not the same as Sy-symmetry)
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Column-strict Property

(Due to C.D. and Luque): if |, E| is column-strict (the entries in column
1 are increasing) then there is a unique non-zero (up to scalar
multiplication) symmetric p € M («, E) otherwise there is none.

We use methods of Baker and Forrester (Ann. Comb. 1999) to analyze
the symmetric p. Blondeau-Fournier, Desrosiers, Lapointe, and Mathieu
(J. Combin. 2012) constructed Macdonald superpolynomials which are
conceptually different from ours - however their definition of superpartition
is relevant here: for fermionic degree m it is an N-tuple

(A1, ..., Am; Amy1, .., An) which satisfies A; > Ay > --- > Ay, and
Api1 2 Apyo > -+ > Ap. In the example the superpartition is
[6,5,3,2;6,4,4,2,1] . In general for isotype (N — m, 1™) the numbers
(A1,...,Am, An) are the entries in column 1 of |, E| and thus

AN < Am). The number of tableaux of shape (N — m, 1™) with entries
nondecreasing in row 1 and strictly increasing in column 1 with sum of
entries = n is the coefficient of g" in

gm(m+1)/2 {(1 — q’V) (g:9),, (g; Q)N—m—l}_l'
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Expansion of the Symmetric Polynomial

p=2 {ABF)Mgr:|BF|]=|aE|} Tip=tpVi

find equations satisfied by the A (B, F); not difficult because under the
action of T; the space M (a, E) decomposes into a direct sum of two-
and one-dimensional submodules (one-dim from T; Mg r = tMg r)
Suppose (case 1) B; < B;; then the matrix of T; acting on the span of
Mg.e. Msp,e is (with z = Cg £ (i +1) /0 e (7))

[_t—i Uzt)(fZZ)]

= (1-2)
z(t—1

R

A (siB, E)]T is an eigenvector with eigenvalue t when
A(B E)=1=ZA(sB.E).
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Calculation of Coefficients

It is possible for different E to appear, we arrange by the inv-count.
Suppose (case 2) B; = B, j=rg(F)and c(j,F) <0<c(+1F)
then inv (s;F) = inv (F) — 1 and (with z = t¢U.F)=cU+L.F))

t—1
TiMgsF = —ﬁMﬁ,st + Mg F

t—=z

and the eigenvalue equation implies A (B, s;F) = A(B. F). Among
—z

these E there are two extreme cases: the root Er which minimizes the

entries of Yg in row 1 (and thus inv (E)), and the sink Es which
maximizes these entries (depends on « implicitly). In the example

YE:[97541 12446]_

.8 6 3 2]'L""EJ:[\ 2356

Er = E and Es = {1,3,6,7,9} ,inv (Eg) = 7,inv (Es) = 9.

C.F. Dunkl (U. of Virginia ) Jack and Macdonald Superpolynomials



The symmetric polynomial

Suppose p =Y. {A(B. F) Mg r : |B. F] = |a, E|} satisfies Tip = tp then

(case 1) A(B. F) = MA (siB. F) = Ro (B, F)A(B",F) since
Ro (BT, F) =1 and (case 2) A(B,s;F) = CCOO((SQ)A(}S, F).
Set A(B,F) = %)0(5__5)) Ro (B, F) (and A = B = a™) then

Co(ES)R a
Y 0 (Es)Ro (B )M,g,p
|B.F]=[AE]

PAE =

is the supersymmetric polynomial in M (A, E), unique when the
coefficient of M) g, is 1.
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Examples of symmetric superpolynomials

e N=3,A=(1,0,0), E = {2,3} then

p = (0403 —t(t+1)01)x +t> (261 —t(t+1)60+63) x
—|—t4 (t291 —+ t292 — (t + 1) 93) X3
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Examples of symmetric superpolynomials

e N=3,A=(1,0,0), E = {2,3} then

p = (0403 —t(t+1)01)x +t> (261 —t(t+1)60+63) x
—|—t4 (t291 —+ t292 — (t + 1) 93) X3

o N=41A=(21,00),E ={1,24}, sample terms

xPxt0q {t* (t+1) 0102 — (t01 — 6) (03 + 604) }
x1Gt'q{—t* (t+1)60102 + (t01 — 6) (03 +64) }
X12X3t6q {91 (—t492 + t2 (t+ 1) 03 — t94) — (t — 1) 0,04 + 9394}

6 t(t—l) (t39192+t(t+1) 9193+9293)+
*1xXst q{ (t—1)(t0; +t(t—1)0, —03) 6, '
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Symmetrization

Define Xo = l,X,' =1 —|—T,'X,'_1 for i Z 1 and S(N) = X1X2 N 'XN—l then
for any p € sPp,

T (51%) ()= (510) 0. 15 <.

and <5(N)>2 = [N]tIS(N) (idea of proof: replace T; by s; and show that
one obtains the Sy-symmetrization operator). In fact

SN =¥ cs, T (u), also SN is self-adjoint since T (u)" = T (u™?)
(eg (T/Tif,g) = (£, T;Tig)) and Lypcs, T (1) = Les, T (u71).
(Recall [N],! :— [T, [n],)

From this it follows that if |a, F| = A, E| then SMM, r = cpy g for
some constant ¢, because of the uniqueness of py g in M (A, E). This

leads to the evaluation of ||py £||*, which does not use summation over all
|/, F'| = |AE].
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Evaluation of squared norm

<PA,E:5(N_1)M04,F> = c(prE PALE) = <S(N_1)P/\,Ev Mtx,F>

Es)Ro (a, F)
Co (F)

Let « = A7, the nondecreasing rearrangement of A, and F = F = Eg. For

each i < Ay let m; be the multiplicity of / in row 1 of [A, Es|, that is

m; = #{j: |A Es|[1.j] = i}. Then the coefficient of M) g in

S(N)M/\_,ER is Hto [mj],! (and the coefficient of M) g, in py g is 1). Thus

Ippe. |2 = Mt Co(Es) Ro (A7, Er
PAEs T1 [m,-]t! Co (ER)

i>0
_ [N Co(Es)Ro (A, Eg) e
il;[o [mi],! Co (Er) R (A™, ER) MERI -

— [N (pre, M) = (W], IMar I

2

o4
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Conclusion!

@ With some computation we obtain

||p/\,E5”2 — t2(N—fTI—1)+k( ) [m+ —|A] H <qt i,Es). )
c(i,Es)—c(j,Es)—1. c(i,Es)—c(j,Es)+1.
H (qt e ’q)A,-—Aj (qt e ,q)
1<icien (1= qhAitc(iEs)—c(iEs)) (qeeliEs)—cU.Es),; q)i,—/\j—l
(V]!

[T [mi],!

i>0

Ai

Ai—Aj—1

X Co (Es)C1 (ER)

the last line involves only t. (recall k (A) := YN, (N —2i+1)A;).
Let g = t1/% and let t — 1 to obtain formulas for symmetric Jack
superpolynomials.
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Conclusion!

@ With some computation we obtain

||p/\,E5”2 — t2(N—fTI—1)+k( ) [m+ —|A] H <qt i,Es). )
c(i,Es)—c(j,Es)—1. c(i,Es)—c(j,Es)+1.
H (qt e ’q)A,-—Aj (qt e ,q)
1<icien (1= qhAitc(iEs)—c(iEs)) (qeeliEs)—cU.Es),; q)i,—/\j—l
(V]!

[T [mi],!

i>0

Ai

Ai—Aj—1

X Co (Es)C1 (ER)

the last line involves only t. (recall k (A) := YN, (N —2i+1)A;).
Let g = t1/% and let t — 1 to obtain formulas for symmetric Jack
superpolynomials.

@ Thank you.
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