Compact representation of distances in a graph : a tour around 2-hop labelings

Laurent Viennot (Univ. Paris - Inria - Irif)
Joint work with Siddharth Gupta (Univ. of Warwick), Adrian Kosowski (NavAlgo) and Przemysław Uznański (NavAlgo)

The beginning of the story

SODA 2017 :

- Chepoi, Dragan, Vaxès : Core congestion is inherent in hyperbolic networks.
- Kosowski, V. : Beyond highway dimension : small distance
labels using tree skeletons.

The beginning of the story

SODA 2017:

. Chepoi, Dragan, Vaxès : Core congestion is inherent in
hyperbolic networks

- Kosowski, V. : Beyond highway dimension : small distance labels using tree skeletons.

The beginning of the story

> SODA 2017:
> - Chepoi, Dragan, Vaxès: Core congestion is inherent in hyperbolic networks. - Kosowski, V. : Beyond highway dimension : small distance labels using tree skeletons.

Encoding distances in a graph

We are given a (weighted) (di-) graph $G=(V, E)$ with n nodes and m edges.

Make any useful pre-computation to answer efficiently online distance queries: what is distance $\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)$?, $d\left(u_{2}, v_{2}\right) ? d\left(u_{3}, v_{3}\right) ?$

Encoding distances in a graph

We are given a (weighted) (di-) graph $G=(V, E)$ with n nodes and m edges.

Make any useful pre-computation to answer efficiently online distance queries: what is distance $\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)$?, $\mathrm{d}\left(\mathbf{u}_{2}, \mathbf{v}_{2}\right) ?, \mathrm{~d}\left(\mathbf{u}_{3}, \mathbf{v}_{3}\right) ?, \ldots$.

Encoding a graph metric: distance oracles

Encoding a graph metric : distance labelings

Encoding a graph metric : 2-hop labelings

A 2-hop labelings is a very simple kind of distance labeling.

The main idea is to associate a set $H_{u} \subseteq V$ of "hubs" to each node u and to store the distances $\mathrm{d}(\mathrm{u}, \mathrm{v})$ for all $\mathrm{v} \in \mathrm{H}_{u}$.

Also known as hub labeling, or landmark labeling.

Encoding a graph metric: 2-hop labelings

A 2-hop labelings is a very simple kind of distance labeling.

The main idea is to associate a set $H_{u} \subseteq V$ of "hubs" to each node u and to store the distances $d(u, v)$ for all $v \in H_{u}$.

Also known as hub labeling, or landmark labeling.

Encoding a graph metric: 2-hop labelings

A 2-hop labelings is a very simple kind of distance labeling.

The main idea is to associate a set $H_{u} \subseteq V$ of "hubs" to each node u and to store the distances $d(u, v)$ for all $v \in H_{u}$.

Also known as hub labeling, or landmark labeling.

2-hop labeling

Hub sets

Covering property :
A collection of hub sets $H_{u} \subseteq V$ for all $u \in V$ is said to cover graph G if for all u, v, there exists $w \in H_{u} \cap H_{v}$ with $d(u, v)=d(u, w)+d(w, v)$.

Distance labels : $L_{u}=\left\{(\mathbf{w}, \mathbf{d}(\mathbf{u}, \mathbf{w})): \mathbf{w} \in H_{u}\right\}$
Distance query: $\operatorname{Dist}\left(L_{u}, L_{v}\right)=\min _{w \in H_{u} \cap H_{v}} d(u, w)+d(w, v)$
Introduced by [Gavoille et al. '04; Cohen et al. 2003],
applied to road networks [Abraham et al. 2010-2013],
and other practical networks [Akiba et al. 2013].
Approximability results: [Babenko et al. 2013, Angelidakis
et al. 2017].

Hub sets

Covering property :
A collection of hub sets $H_{u} \subseteq V$ for all $u \in V$ is said to cover graph G if for all u, v, there exists $w \in H_{u} \cap H_{v}$ with
$d(u, v)=d(u, w)+d(w, v)$.

Distance labels : $L_{u}=\left\{(\mathbf{w}, \mathbf{d}(\mathbf{u}, \mathbf{w})): \mathbf{w} \in H_{u}\right\}$
Distance query: $\operatorname{Dist}\left(L_{u}, L_{v}\right)=\min _{w \in H_{u} \cap H_{v}} d(u, w)+d(w, v)$
Introduced by [Gavoille et al. '04; Cohen et al. 2003], applied to road networks [Abraham et al. 2010-2013], and other practical networks [Akiba et al. 2013].
Approximability results : [Babenko et al. 2013, Angelidakis et al. 2017].

Hub sets

Covering property :
A collection of hub sets $H_{u} \subseteq V$ for all $u \in V$ is said to cover graph G if for all u, v, there exists $w \in H_{u} \cap H_{v}$ with $d(u, v)=d(u, w)+d(w, v)$ (equivalently, $\left.H_{u} \cap H_{v} \cap I(u, v) \neq \emptyset\right)$.

Equivalently, for all $u, v, H_{u} \cap H_{v} \cap I(u, v) \neq \emptyset$ where the interval $I(u, v)$ is the union of shortest paths from u to v.

Note that using

Hub sets

Covering property :
A collection of hub sets $H_{u} \subseteq V$ for all $u \in V$ is said to cover graph G if for all u, v, there exists $w \in H_{u} \cap H_{v}$ with $d(u, v)=d(u, w)+d(w, v)$ (equivalently, $\left.H_{u} \cap H_{v} \cap I(u, v) \neq \emptyset\right)$.

Equivalently, for all $u, v, H_{u} \cap H_{v} \cap I(u, v) \neq \emptyset$ where the interval $I(u, v)$ is the union of shortest paths from u to v.

Note that using Sergio Cabello framework:
$V \times V=\bigcup_{w \in V} H_{w}^{-1} \times H_{w}^{-1}$ where $H_{w}=\left\{u: w \in H_{u}\right\}$.

Hub sets covering a path

This results in covering hub sets of size $O(\log n)$.
A similar construction works for trees and bounded-treewidth graphs.

Hub sets covering a path

This results in covering hub sets of size $O(\log n)$.
A similar construction works for trees and bounded-treewidth graphs.

Hub sets covering a path

This results in covering hub sets of size $O(\log n)$.
A similar construction works for trees and bounded-treewidth graphs.

Hub sets covering a path

This results in covering hub sets of size $O(\log n)$.
A similar construction works for trees and
bounded-treewidth graphs.

Hub sets covering a path

This results in covering hub sets of size $O(\log n)$.
A similar construction works for trees and bounded-treewidth graphs.

Hub sets covering a path

This results in covering hub sets of size $O(\log n)$.

Hub sets covering a path

This results in covering hub sets of size $O(\log n)$.
A similar construction works for trees and bounded-treewidth graphs.

Hub sets covering a path

This results in covering hub sets of size $O(\log n)$.
A similar construction works for trees and bounded-treewidth graphs.

This talk is about

What graphs do have small hubsets?

No hope for dense graphs:

- average hub-set size is at least $\frac{m}{2 n}$ as :
- for each edge uv $\in E$, we must have $u \in H_{v}$ or $v \in H_{u}$.

Planar graphs have covering hub sets of size $O(\sqrt{n})$, with a best known lower bound of $\Omega\left(\mathrm{n}^{1 / 3}\right)$ (unweighted). [Gavoille, Peleg, Pérennes, Raz '04].

This talk is about

What graphs do have small hubsets?

No hope for dense graphs:

- average hub-set size is at least $\frac{m}{2 n}$ as :
- for each edge $u v \in E$, we must have $u \in H_{v}$ or $v \in H_{u}$.

Planar graphs have covering hub sets of size $O(\sqrt{n})$, with a
best known lower bound of $\Omega\left(n^{1 / 3}\right)$ (unweighted). [Gavoille, Peleg, Pérennes, Raz '041.

This talk is about

What graphs do have small hubsets?

No hope for dense graphs:

- average hub-set size is at least $\frac{m}{2 n}$ as :
- for each edge $u v \in E$, we must have $u \in H_{v}$ or $v \in H_{u}$.

Planar graphs have covering hub sets of size $O(\sqrt{n})$, with a best known lower bound of $\Omega\left(\mathbf{n}^{1 / 3}\right)$ (unweighted). [Gavoille, Peleg, Pérennes, Raz '04].

Part I : Do sparse graphs have covering hub sets with o(n) size?

Can we have sublinear size for sparse graphs $(m=O(n)$?

Or even constant degree graphs?

Best known upper bound is $O\left(\frac{n}{\log n}\right)$.

 Knudsen, Porah '16] [Gawrychowski, Kosowski, Uznanski '16]
Best known lower bound was $\Omega(\sqrt{n})$ [Gavoille, Peleg, Pérennes,

 Raz '04].Can we have sublinear size for sparse graphs $(m=O(n)$)?

Or even constant degree graphs?

Best known upper bound is $O\left(\frac{n}{\log n}\right)$.

Best known lower bound was

Can we have sublinear size for sparse graphs ($m=O(n)$)?

Or even constant degree graphs?

Best known upper bound is $O\left(\frac{\mathrm{n}}{\log n}\right)$. [Alstrup, Dahlgaard, Beck, Knudsen, Porah '16] [Gawrychowski, Kosowski, Uznanski '16]

Best known lower bound was $\Omega(\sqrt{n})$ [Gavoille, Peleg, Pérennes, Raz '04].

Can we have sublinear size for sparse graphs ($m=O(n)$)?

Or even constant degree graphs?

Best known upper bound is $O\left(\frac{\mathrm{n}}{\log n}\right)$. [Alstrup, Dahlgaard, Beck, Knudsen, Porah '16] [Gawrychowski, Kosowski, Uznanski '16]

Best known lower bound was $\Omega(\sqrt{n})$ [Gavoille, Peleg, Pérennes, Raz'04].

Theorem (Kosowski, Uznański, V. '19)
(1) There exists graphs of degree at most 3 where any collection of covering hub sets has average size $\frac{n}{20(\sqrt{\log n})}$. (2) Any graph has a collection of hub sets of $O\left(\frac{n}{R Q(n)^{1 / 7}}\right)$ size where $2^{\Omega\left(\log ^{*} n\right)} \leq R S(n) \leq 2^{O(\sqrt{\log n})}$ is a number related to Ruzsa-Szemerédi graphs.

Proof: cov. hub sets of this graph have size $\frac{n}{2^{0(\sqrt{\log n})}}$

Each V_{i} is a regular $2 \ell \times \cdots \times 2 \ell$ lattice of dim. $\ell \approx 2^{\sqrt{\log n}}$ (here $\ell=2$). Edges from $\mathrm{V}_{\mathrm{i}-1}$ to V_{i} connect nodes differing on ith coordinate.

Metric graph theory 2021

Ruzsa-Szemerédi

A graph is an RS-graph if it can be decomposed into n induced matchings.

Ruzsa-Szemerédi

Induced

A graph is an RS-graph if it can be decomposed into n induced matching.

Ruzsa-Szemerédi

A graph is an RS-graph if it can be decomposed into n induced matchings.

Ruzsa-Szemerédi

Induced

A graph is an RS-graph if it can be decomposed into n induced matching.

A graph is an RS-graph if it can be decomposed into n induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi '78]) Any RS-graph has at most $\frac{n^{2}}{20\left(10^{* n)}\right.}$ eclges.

Define RS(n) is the largest integer such that there exists an RS-graph with n nodes and $\frac{n^{2}}{R S(n)}$ edges.

[Ruzsa, Szemerédi '78] [Elkin '10] [Fox '11]

A graph is an RS-graph if it can be decomposed into n induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi '78]) Any RS-graph has at most $\frac{n^{2}}{20\left(\log ^{* n)}\right.}$ edges.

Define RS(n) is the largest integer such that there exists an RS-graph with n nodes and $\frac{n^{2}}{R S(n)}$ edges.

[Ruzsa, Szemerédi '78] [Elkin'10] [Fox'11]

A graph is an RS-graph if it can be decomposed into n induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi '78])
Any RS-graph has at most $\frac{n^{2}}{2^{0\left(\log ^{*} n\right)}}$ edges.
(Using dense subsets of $\{1, \ldots, n\}$ with no arithmetic triples [Behrand '46] after [Erdős and Turan '36].)

Define RS(n) is the largest integer such that there exists an RS-graph with n nodes and $\frac{n^{2}}{R S(n)}$ edges.

[Ruzsa, Szemerédi '78] [Elkin '10] [Fox'11]

A graph is an RS-graph if it can be decomposed into n induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi '78])
Any RS-graph has at most $\frac{n^{2}}{2^{0\left(\log ^{*} n\right)}}$ edges.
(Using dense subsets of $\{1, \ldots, n\}$ with no arithmetic triples [Behrand '46] after [Erdős and Turan '36].)

Define RS(n) is the largest integer such that there exists an RS-graph with n nodes and $\frac{n^{2}}{R S(n)}$ edges.

A graph is an RS-graph if it can be decomposed into n induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi '78])
Any RS-graph has at most $\frac{n^{2}}{2^{0\left(\log ^{*} n\right)}}$ edges.
(Using dense subsets of $\{1, \ldots, n\}$ with no arithmetic triples [Behrand '46] after [Erdős and Turan '36].)

Define RS(n) is the largest integer such that there exists an RS-graph with n nodes and $\frac{n^{2}}{R S(n)}$ edges.
[Ruzsa, $2^{\Omega\left(\log ^{*} n\right)} \leq \operatorname{RS}(n) \leq 2^{O(\sqrt{\log n})}$

A graph is an RS-graph if it can be decomposed into n induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi '78])
Any RS-graph has at most $\frac{n^{2}}{2^{0\left(\log ^{*} n\right)}}$ edges.
(Using dense subsets of $\{1, \ldots, n\}$ with no arithmetic triples [Behrand '46] after [Erdős and Turan '36].)

Define RS(n) is the largest integer such that there exists an RS-graph with n nodes and $\frac{n^{2}}{R S(n)}$ edges.

$$
2^{\Omega\left(\log ^{*} n\right)} \leq \operatorname{RS}(n) \leq 2^{O(\sqrt{\log n})}
$$

[Ruzsa, Szemerédi '78] [Elkin '10] [Fox '11]

$$
G_{y}^{D}=\left\{x_{0} z_{2 \ell} \left\lvert\, y=\frac{x+z}{2}\right. \text { and } d_{G}(x, z)=D\right\} \quad \exists D \text { s.t. }\left|\cup_{y} G_{y}^{D}\right| \geq \frac{n^{2}}{2^{0(\sqrt{\log n})}}
$$

Converse

Any cst. deg. graph G has hub sets of av. size $O\left(\frac{n}{\operatorname{RS}(n)^{1 / 7}}\right)$.

Idea: use a vertex cover of each $G_{y}^{D}(V C \leq 2 M M)$.

Connection with SumIndex problem (comm. complexity)

$\operatorname{SUMINDEX}(n)=\min _{\text {Encoder }} \max _{X}\left|M_{A}\right|+\left|M_{B}\right|$

$\boldsymbol{G}_{X}=\boldsymbol{G} \backslash\left\{\boldsymbol{y}_{\ell} \mid X_{y}=0\right\}$, send $x=2 \mathbf{a}, \mathbf{L}_{x_{0}}, \mathbf{z}=2 b, L_{\mathbf{z}_{2 \ell}}$, check $d\left(x_{0}, \mathbf{z}_{2 \ell}\right)$.

Part II : what about practical graphs?

Yes! practical graphs tend to have small covering hub sets. [Akiba et al. '13] [Delling et al. 14]

What kind of property they have enables that?

Small highway dimension. [Abraham, Fiat, Goldberg, Werneck

More generally, small skeleton dimension. [Kosowski, V. '17]

Yes! practical graphs tend to have small covering hub sets. [Akiba et al. '13] [Delling et al. 14]

What kind of property they have enables that?

Small dimension.

More generally, small skeleton dimension. [Kosowski, V. '17]

Yes! practical graphs tend to have small covering hub sets. [Akiba et al. '13] [Delling et al. 14]

What kind of property they have enables that?

Small highway dimension. [Abraham, Fiat, Goldberg, Werneck '10-13]

More generally, small skeleton dimension. [Kosowski, V. '17]

Yes! practical graphs tend to have small covering hub sets. [Akiba et al. '13] [Delling et al. 14]

What kind of property they have enables that?

Small highway dimension. [Abraham, Fiat, Goldberg, Werneck '10-13]

More generally, small skeleton dimension. [Kosowski, V. '17]

Skeleton dimension

The skeleton dimension k of G is the maximum "width" of a "pruned" shortest path tree.

Barcelona shortest path tree

Barcelona tree skeleton : prune last third

Barcelona tree skeleton : prune last third

Barcelona tree skeleton : prune last third

Barcelona tree skeleton: prune last third

Barcelona tree skeleton : prune last third

Barcelona tree skeleton : prune last third

Barcelona tree skeleton : prune last third

Barcelona tree skeleton: prune last third

Barcelona tree skeleton : prune last third

Barcelona tree skeleton : prune last third

Barcelona tree skeleton : prune last third

Tree skeleton

Tree skeleton

Tree skeleton

Tree skeleton

Tree skeleton

Tree skeleton

Tree skeleton

Tree skeleton

Theorem (Kosowski, V. 2017)
Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log \mathrm{D})$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Hub set selection : random sampling

The probability to select a node x is $\propto \frac{1}{d(u, x)}$.

Hub set selection : random sampling

The probability to select a node x is $\propto \frac{1}{d(u, x)}$.

Hub set selection : random sampling

The probability to select a node x is $\propto \frac{1}{d(u, x)}$.

Hub set selection : random sampling

The probability to select a node x is $\propto \frac{1}{\mathrm{~d}(\mathrm{u}, \mathrm{x})}$.

Road networks: two tree skeletons

What ...maps do?

What ...maps do?

What ...maps do?

Highway vs skeleton in Brooklyn

Packing of 172 paths

Skeleton width 48

Skeleton dimension of grids

Skeleton dimension of grids

$k=\Theta(\log n)$

Skeleton dimension of grids

$k=\Theta(\log n)$

Open : random grid

Related to first-passage percolation [Licea, Newman, Piza '96] [Aldous '14].

Part III : what about 3 hops?

3-hopset of a path

3-hopset of a path

3-hopset of a path

3-hopset of a path

3-hopset of a path

3-hopset of a path

3-hopset of a path

3-hopset distance oracle

Store $x, d_{G}(u, x)$ for $x \in N_{13}(u)$ (2 log log n per node).

Store midle links in a hashtable $\mathrm{H}_{2}(\mathrm{O}(\mathrm{n} \log \log n)$ size $)$.

Query for $\mathrm{d}_{G}(\mathrm{u}, \mathrm{v})$: best 3-hop path length is

($0\left((\log \log n)^{2}\right)$ time $)$.

3-hopset distance oracle

Store $x, d_{G}(u, x)$ for $x \in N_{13}(u)$ (2 log log n per node).

Store midle links in a hashtable $\mathrm{H}_{2}(\mathrm{O}(n \log \log n)$ size $)$.

Query for $\mathrm{d}_{G}(\mathrm{u}, \mathrm{v})$: best 3-hop path length is

($0\left((\log \log n)^{2}\right)$ time $)$.

3-hopset distance oracle

Store $x, d_{G}(u, x)$ for $x \in N_{13}(u)$ (2 log log n per node).

Store midle links in a hashtable $\mathrm{H}_{2}(\mathrm{O}(\mathrm{n} \log \log n)$ size $)$.

Query for $d_{G}(u, v)$: best 3-hop path length is

$$
\min _{x \in N_{13}(u), y \in N_{13}(v), x y \in H_{2}} d_{G}(u, x)+d_{G}(x, y)+d_{G}(y, v)
$$

($0\left((\log \log n)^{2}\right)$ time $)$.

Theorem (Kosowski, Gupta, V. '19)
For a unique-shortest-path graph with skeleton dimension k and average link length $L \geq 1$, there exists a randomized construction of a 3 -hopset distance oracle of size $|H|=O(n k \log k(\log \log n+\log L))$, which performs distance queries in expected time $O\left(k^{2} \log ^{2} k\left(\log ^{2} \log n+\log ^{2} L\right)\right)$.

End of the story?

What is the skeleton dimension of a random grid?

Improve lower-bounds on sparse graphs for general distance oracles.

What graphs have covering hub sets of size O (1)?

End of the story?

What is the skeleton dimension of a random grid?

Improve lower-bounds on sparse graphs for general distance oracles.

What graphs have covering hub sets of size $O(1)$?

End of the story?

What is the skeleton dimension of a random grid?

Improve lower-bounds on sparse graphs for general distance oracles.

What graphs have covering hub sets of size O(1)?

Thanks.

