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Encoding distances in a graph

We are given a (weighted) (di-) graph G = (V,E) with n
nodes and m edges.

Make any useful pre-computation to answer efficiently
online distance queries : what is distance d(u1, v1)?,
d(u2, v2)?,d(u3, v3)?,...

⇐ ? ⇒ Metric graph theory 2021 1 / 2 3 / 40



Encoding distances in a graph

We are given a (weighted) (di-) graph G = (V,E) with n
nodes and m edges.

Make any useful pre-computation to answer efficiently
online distance queries : what is distance d(u1, v1)?,
d(u2, v2)?,d(u3, v3)?,...

⇐ ? ⇒ Metric graph theory 2021 2 / 2 3 / 40



Encoding a graph metric : distance oracles
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Encoding a graph metric : 2-hop labelings

A 2-hop labelings is a very simple kind of distance labeling.

The main idea is to associate a set Hu ⊆ V of “hubs” to each
node u and to store the distances d(u, v) for all v ∈ Hu.

Also known as hub labeling, or landmark labeling.
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Hub sets
Covering property :
A collection of hub sets Hu ⊆ V for all u ∈ V is said to cover
graph G if for all u, v, there exists w ∈ Hu ∩Hv with
d(u, v) = d(u,w) + d(w, v).

Distance labels : Lu = {(w,d(u,w)) : w ∈ Hu}
Distance query : Dist (Lu, Lv) = minw∈Hu∩Hv d(u,w) + d(w, v)

Introduced by [Gavoille et al. ‛04 ; Cohen et al. 2003],
applied to road networks [Abraham et al. 2010-2013],
and other practical networks [Akiba et al. 2013].
Approximability results : [Babenko et al. 2013, Angelidakis
et al. 2017].
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Hub sets

Covering property :
A collection of hub sets Hu ⊆ V for all u ∈ V is said to cover
graph G if for all u, v, there exists w ∈ Hu ∩Hv with
d(u, v) = d(u,w) + d(w, v) (equivalently, Hu ∩Hv ∩ I(u, v) ̸= ∅).

Equivalently, for all u, v, Hu ∩Hv ∩ I(u, v) ̸= ∅ where the
interval I(u, v) is the union of shortest paths from u to v.

Note that using Sergio Cabello framework :
V× V =

∪
w∈VH−1

w ×H−1
w where Hw = {u : w ∈ Hu}.
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Hub sets covering a path

This results in covering hub sets of size O(log n).

A similar construction works for trees and
bounded-treewidth graphs.
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This talk is about

What graphs do have small hubsets?

No hope for dense graphs :
• average hub-set size is at least m

2n as :
• for each edge uv ∈ E, we must have u ∈ Hv or v ∈ Hu.

Planar graphs have covering hub sets of size O(
√
n), with a

best known lower bound of Ω(n1/3) (unweighted). [Gavoille,
Peleg, Pérennes, Raz ‛04].
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Part I : Do sparse graphs have covering hub
sets with o(n) size?
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Can we have sublinear size for sparse graphs (m = O(n)) ?

Or even constant degree graphs?

Best known upper bound is O( n
log n). [Alstrup, Dahlgaard, Beck,

Knudsen, Porah ‛16] [Gawrychowski, Kosowski, Uznanski ‛16]

Best known lower bound was Ω(
√
n) [Gavoille, Peleg, Pérennes,

Raz ‛04].
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Theorem (Kosowski, Uznański, V. ‛19)
(1) There exists graphs of degree at most 3 where any
collection of covering hub sets has average size n

2O(
√

log n)
.

(2) Any graph has a collection of hub sets of O( n
RQ(n)1/7 ) size

where 2Ω(log∗ n) ≤ RS(n) ≤ 2O(
√

log n) is a number related to
Ruzsa-Szemerédi graphs.
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Proof : cov. hub sets of this graph have size n
2O(

√
log n)
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Each Vi is a regular 2ℓ× · · · × 2ℓ lattice of dim. ℓ ≈ 2
√

log n (here ℓ = 2).
Edges from Vi−1 to Vi connect nodes differing on ith coordinate.
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Ruzsa-Szemerédi

A graph is an RS-graph if it can be decomposed into n
induced matchings.
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A graph is an RS-graph if it can be decomposed into n
induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi ‛78])
Any RS-graph has at most n2

2O(log∗ n) edges.
(Using dense subsets of {1, . . . , n} with no arithmetic triples
[Behrand ‛46] after [Erdős and Turan ‛36].)

Define RS(n) is the largest integer such that there exists
an RS-graph with n nodes and n2

RS(n) edges.

2Ω(log∗ n) ≤ RS(n) ≤ 2O(
√

log n)

[Ruzsa, Szemerédi ‛78] [Elkin ‛10] [Fox ‛11]
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y =

{
x0z2ℓ | y = x+z

2 and dG(x, z) = D
}

∃D s.t. | ∪y GD
y | ≥ n2

2O(
√

log n)
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Converse

Any cst. deg. graph G has hub sets of av. size O( n
RS(n)1/7 ).

Idea : use a vertex cover of each GD
y (VC ≤ 2MM).
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Connection with SumIndex problem (comm.
complexity)

SUMINDEX(n) = minEncodermaxX |MA|+ |MB|
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GX = G \
{
yℓ | Xy = 0

}
, send x = 2a, Lx0 , z = 2b, Lz2ℓ , check d(x0, z2ℓ).
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Part II : what about practical graphs?
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Yes ! practical graphs tend to have small covering hub sets.
[Akiba et al. ‛13] [Delling et al. 14 ]

What kind of property they have enables that?

Small highway dimension. [Abraham, Fiat, Goldberg, Werneck
‛10-13]

More generally, small skeleton dimension. [Kosowski, V. ‛17]
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Skeleton dimension

The skeleton dimension k of G is the maximum “width” of a
“pruned” shortest path tree.
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Barcelona shortest path tree
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Barcelona tree skeleton : prune last third
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Barcelona tree skeleton : prune last third
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Barcelona tree skeleton : prune last third
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Tree skeleton
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Tree skeleton
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Theorem (Kosowski, V. 2017)
Given a graph G with skeleton dimension k and diameter D, a
simple random sampling technique allows to find in
polynomial time hub sets with size O(k logD) on average and
maximum size O(k log log k logD) with high probability.
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Hub set selection : random sampling

The probability to select a node x is ∝ 1
d(u,x) .
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Road networks : two tree skeletons
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What ...maps do?
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Highway vs skeleton in Brooklyn

Packing of 172 paths Skeleton width 48
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Skeleton dimension of grids

u

B(u,r)

k = Θ(log n)
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Open : random grid

k = 70 k = 49 (fpp [1, 4)) k = 49 (prob 2/3)

Related to first-passage percolation [Licea, Newman, Piza ‛96]
[Aldous ‛14].
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Part III : what about 3 hops?
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3-hopset of a path
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3-hopset distance oracle

Store x,dG(u,x) for x ∈ N13(u) (2 log log n per node).

Store midle links in a hashtable H2 (O(n log log n) size).

Query for dG(u, v) : best 3-hop path length is

min
x∈N13(u),y∈N13(v),xy∈H2

dG(u,x) + dG(x, y) + dG(y, v)

(0((log log n)2) time).
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Theorem (Kosowski, Gupta, V. ‛19)
For a unique-shortest-path graph with skeleton dimension k
and average link length L ≥ 1, there exists a randomized
construction of a 3-hopset distance oracle of size
|H| = O(nk log k(log log n+ log L)), which performs distance
queries in expected time O(k2 log2 k(log2 log n+ log2 L)).
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End of the story?

What is the skeleton dimension of a random grid?

Improve lower-bounds on sparse graphs for general
distance oracles.

What graphs have covering hub sets of size O(1)?
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Thanks.
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