Metric Graph Theory and Related Topics C. I. R. M.

Multiscale Substitution Tilings

Yaar Solomon

Department of Mathematics Ben-Gurion University of the Negev.

Based on a joint work with Yotam Smilansky (Rutgers) 6-10 December, 2021

A short introduction to my field

In aperiodic order we study properties infinite patterns, and of spaces of patterns, usually for their dynamical properties.

Penrose tiling - from Wikipedia

A multiscale tiling

The patterns are often non-periodic, but their "order" is manifested in other lattice-like properties, such as:

Finite local complexity (FLC):

the set of patches of a fixed size is finite.

Repetitivity:

Self similarity

- By repeated subdivisions, and rescaling, one tile larger and larger regions, with the same set of tiles.
- As a limit of these, one gets a tiling of the whole space.

- By repeated subdivisions, and rescaling, one tile larger and larger regions, with the same set of tiles.
- As a limit of these, one gets a tiling of the whole space.

- By repeated subdivisions, and rescaling, one tile larger and larger regions, with the same set of tiles.
- As a limit of these, one gets a tiling of the whole space.

Example : Penrose tiling
Substitution rule :

- By repeated subdivisions, and rescaling, one tile larger and larger regions, with the same set of tiles.
- As a limit of these, one gets a tiling of the whole space.

Example : Penrose tiling
Substitution rule :

 By repeated subdivisions, and rescaling, one tile larger and larger regions, with the same set of tiles.

 As a limit of these, one gets a tiling of the whole space.

Substitution rule :

 By repeated subdivisions, and rescaling, one tile larger and larger regions, with the same set of tiles.

 As a limit of these, one gets a tiling of the whole space.

Definitions - Multiscale substitution scheme

A multiscale substitution scheme $\sigma = (\tau_{\sigma}, \varrho_{\sigma})$ in \mathbb{R}^d consists of a list of prototiles $\tau_{\sigma} = (T_1, \ldots, T_n)$, and a substitution rule defining a partition $\varrho_{\sigma}(T_i)$ of each prototile T_i , so that every tile in $\varrho_{\sigma}(T_i)$ is a translation of a rescaled copy of a prototile in τ_{σ} , where multiple scales are allowed!.

Example 1: $\tau_{\sigma} = \{S\}$:

Definitions - Multiscale substitution scheme

A multiscale substitution scheme $\sigma = (\tau_{\sigma}, \varrho_{\sigma})$ in \mathbb{R}^d consists of a list of prototiles $\tau_{\sigma} = (T_1, \ldots, T_n)$, and a substitution rule defining a partition $\varrho_{\sigma}(T_i)$ of each prototile T_i , so that every tile in $\varrho_{\sigma}(T_i)$ is a translation of a rescaled copy of a prototile in τ_{σ} , where multiple scales are allowed!.

Example 1: $\tau_{\sigma} = \{S\}$:

Definitions - Multiscale substitution scheme

Example 2: $\tau_{\sigma} = \{S, R\}$: We assume that prototiles are of volume 1.

Those numbers are referred to as the *scales*.

Repeated subdivisions fails for multiple scales

Repeated subdivisions fails for multiple scales

Repeated subdivisions fails for multiple scales

	-	æ	-	#		H			-	4	-	-	÷	-	-	-	-	н		-	-	-		-	-	-	ш	ΗP	-	-	ΗP	-	-		ш	##	-	Ŧ	-		-	-
8 8	H	H.		Ħ				Ħ	1	H	4	H	1	Ħ						#	H		Ħ	- F	H.	Ħ		#	- #		Ħ.	- #		Ħ		#1		#	- ##		#	H
			н	t							H	-					н								Цu					H						-	H			-		æ
		Т				н	-	н	۳	-					Т			-	-							÷							-	-	-	8	Т			1	æ	
	-			-	-	-		н			_	-	-	-	+	-8				-	-	-	-	-				-	-	_	_					-	+	_	_	+	н.	
						н									L			-							-		-								-							-
	1				г	н		н		н		1			Г	-					1					н			1				_	н			Т				н	н
nn	4				⊢	-8	-	п		-8	_				н	-8	-	m	-	_	4			⊢	R.,	- 12		R-	4			-		-	-	R-	-			-	а.	-A
	L					R		п	P	-						R	н	н	н					L	-	т	н	8	L				-	н	-	н.	Т				æ	đЩ
	-	т		-	-	н		n		R	_	_	г	т	-	-		-		-	-	Т	T	_	8	H.		-	-					-		-	T	т	т	—	н.	- 8
1																	H	-																	-							
	-	۳	-	н	-			н	۳	-	۳	ч	۳	-	-	ш		-					-	щ		н	-		-	-		- 11	-	ш	-		щ	-	-	-		
8 8	_ 8	н.		н				н		н				æ		н		н		н.	- 8		ш	E	Η	н		н.	_HE		HH.	_ H		н		H		æ	_ 88		н.	- 8
			н	н		÷	H	н	-	-	Ŧ	φ	Ŧ	-		H	-	-	-	-	P	-	-	P	н		н	-	-	-	-	-	Ψ	-	н	-	н					-
		H		н				н							- 1														- 1	- 1				B		H		Æ	TH			н
nm.	-8	н.	-			-		н			-			-			_	_	-	-	-	_	-	-			_				_	_	-	н		##	-	н.			н.	-8
	r	٣	-	-	r		н		_				- H	_	_				⊢	-	4			⊢					_	_			ь	- 11	ш	r	T	-	-	-	-	-
* *	L	1		_	_			Ħ							- 1									L						- 1				H		н.	4	_	_	_	н.	- 6
	L					ы			-				- F	-	-				F	-	1			-				- 1	-	-			-	- 14	•	н.					ш	
	۰.				⊢	-8		н	_					_																				. 8	-	-	-			-	æ	-
88	L					в		я			Т	Т	Т	Т	Т						Г	Т								Т	Т	Т	Т	н		н.	1				я.	- 8
	1					н	-	н	-	_	+-	+	-	-	_	_	_	_	_		-	_	_	_		_	_		-	-	-	-	-	- 8	-	H	п.				н	-
	⊢	-	_	_	-	-	_	Ħ			L	н																		- 1				H	-	H-	+	-	-	-	Hr.	-Η
	L	н				H	_	н			•		-	-															- P	-	-	-	-	-14	_	8		- 1			н.	_
	6	ф						н					L.	_															- L	_			L		ш		db,	-	aba	daa		
		8		Ŧ		÷		н					Г																- Г				Г					æ	Ŧ			-
			F			ŧ	P	8	-				Ŀ	-	-	-	-	-	-	-	-	-		_	-	-	_	-	-	-			н	-8	-		H					ŧ
_	-	P	-	н		÷		н																						- 1				В	-	-	н	æ	-	-	-	4
A A	B	П.		Ŧ				я			т	т	т	-															- F	т	т	т	Т	Т		H.		Ŧ.	- EE			- 8
		÷	н		-				_	_	╇	+	+	_															- H	_	_	_	-	- 4	hT	*	4	-	-	цщ.		
	L	н					-	t																					- 1	- 1					-	8		- 1				
	+	-		-	-			н	-	-	-	-	+	-	-	-	-										_	-	-	-	-	-	+	- 11		-	+	-	_	+-	н.	
					L	н	÷						- L																- L				L		-							=
	1				Г	н		н					Г																- Г				Г	н			Т				н	-
nn	4				⊢	-8	-	п	_				- F	-															- H	-			-	- 8	-	R-	-			-	а.	-A
	L					R	н	н																					- 1	- 1				R		н.					æ	44
	-	т		-	-	н		Ħ			т	т	-	-																-	т	т	-	- 14		-	т	т	т	—	н.	- 8
H	ι.		_				н		_	_	-	+	_	_															- H	_	_	_	_	- 1	-	н.		_	_			H
	-	۳	-	н	-			н			Г	Т	Т																- E			Т	Т	н	-	-	-	-	-			
8 8		н.		н				в	-	-			-	-															- H	-	_	_	-	-8		н		н.	_ #			- 8
			н	н		н	H	н					L																				L	В			н					-
	н	H		н				н					- Г	Т							г									_			Г	н		H		Æ	TH			н
nm.	- 6	н.	_	п			_	п	_				- H	_															- H	_			F	-8	-	8	-	а.		_	ш.	-8
	r	T	-	-	r		н																						- 1	- 1				- 6	ш	m	T	-	-	-	12	-
						н		H	-	-	-	-	-	-															- P	-	-	-	-	- 14							н.	- 6
-	L					ы		н					_																_						•	н.					ш	
	۰.				⊢	-8	-	н			г	т	Т	Т					г	г	г	г	г							Т	Т	Т	Т	н	-	-	-			-	æ	-
88					_	н		в	-	-	-	-	-	-	-	_		_	-	-	-	-	-	-	-	_	_	-	-	-	_	-	-	-8		н.	_				н.	_ 8
	1				r	н	H	÷					1	1					1	1	1			L						_1				B	H	HT.	1				H	æ
	+	-	-	_	⊢	£		Ħ					- 11	-1					г	г	1							- 1	-	1			г	F		8-	+	-	-	+	æ	-P
n H	L	1			L	Ħ	-	Ħ	_				Ŀ	4	_				⊢	-	4			⊢					-	-			F	-8	•	Ħ.	1		1		н.	-#
	i.	ŵ	н		1	t i	1	1							- 1					1										- 1				L B	*	-	ΞĒ.	-	-	din		a
88		H٦	1	ŧĪ	Т	ť.	1	H.	-	-	Τ.	-	+	+	-	-		_	+	+	+	-		-				-	-	+	-	-	+	-8	1	ш		ш	- 68	1 1		- 8
the Albert								÷.				1																	_			1			•		Ħ		đ			Ē
	-	۳	-	٠	-		-	Ð	۳	4	۰	-	۳	4	μ.		-			-	-	-	-	-4	-	÷	н	-	-	2	÷	- 6	-		μ		-	-	-	-	-	-
A #1	H	R.		Ŧ		Ŧ		Ħ		A	H	H		Æ		Ħ		Ħ		Π.	H		H.	- F	H	Æ		Ħ.	- Æ		Ŧ.	Ħ		Ħ		Ħ		Ŧ.	- FF	4 6		H
	-	ф			-	Ŧ	н	н		H		ш	÷	φt	44	-	-	Ħ	-	-	-	-	-	μt	HH	-	ш	щb	70	-	μų,				ш	H.	4	-	-	щt	-	яĦ
	L	1			L	Ħ	-	Ħ	٣	-		1	1	1	1	H	-	Ħ	-		L	1	1	L	н"	#	-	Ħ.	1		1			Ħ	**	Ħ.	1		1		H"	-
	t	-		-	-	1		н	1		_	-	•	•	+	-				-	-	•	•	-	Η	×	1	-	-	-	-		•			-	+	-	-	+-	н.	
	1				-	н	ŧ	t	ť	÷					L	- 6	-	-	-		1			L	-	-	-		1				**	÷	=	Η.				L	Æ	ŧ
88	1				Г	В		Ħ	£7	В		1			С	8		н			1			Г [—]	н	Æ		8	1				17	н	_	н	п.			TT.	ы	- 8
	•				⊢	e		Ð	ь.	æ	_				H	-8		8		-	۰.			⊢	8.	Ð	-	-	•			-	h.,		┢	8-	4			-	đ.	æP
-	1				1	A	0	п	P	9		1			1	B		H								Ŧ	н	H	1				μa	H	μŦ	H	1				Æ	8
	-	т				T		Ħ	1	A			г	т	-	-		m		-	-	—	T	-	H.	r#		H						m		H	Ŧ	т	т	-	н	- 14
int.	ι.	1	_		ι.	1	П	Ħ	t.	t i	_	L.,	ι.	1			н	Ħ	H	١.,	١.,				Hп	=	ш	H.,		-	-	_	İΠ		ш	н.	4	_			.th	a ti
	-	÷	-		-	÷	-	1	•	-	-	-		-	-		-	-	-		- 1	-	-	-			-	-	- 11		-	-	-	-	-	-	-	-			-	-
							1	æ		A		•		- 12		нH				-	- 8		нA	- 6		-		HH.	Æ		нĤ	- A		нH		-			- 62			- 8
					_							_							_		_			_													_	_	_			_

The *substitution flow* $F_t(T_i)$ is defined on the prototiles as follows:

• At time t = 0, $F_0(T_i) = T_i$.

For t > 0, F_t(T_i) is the patch obtained by inflating T_i by e^t and then repeatedly subdivide tiles, via the substitution rule, until all tiles are of volume ≤ 1.

Yaar Solomon Multiscale Substitution Tilings

æ

- *Multiscale substitution tilings* are tilings of \mathbb{R}^d that are limits of (translations of) those patches, $F_t(T_i)$.
- Limits are taken with respect to a natural compact topology in which two tilings / patches are close if when looking at a large centered ball they are close in the Hausdorff metric.
- The *tiling space* X_σ is the space of all these limit objects. With the action of R^d by translation, (X_σ, R^d) becomes a nice, compact, dynamical system.

Limit objects - tilings of \mathbb{R}^d

Yaar Solomon

Multiscale Substitution Tilings

) 2 (~

Limit objects - tilings of \mathbb{R}^{d}

Yaar Solomon

Multiscale Substitution Tilings

Graph model for multiscale substitution schemes

Vertices:are the prototilesEdges:an outgoing edge for each tile in the subdivisionLengths:a tile of scale $\alpha \iff$ an edge of length $log(1/\alpha)$

Note: If $t = \log(1/\alpha)$, inflating a tile of scale α by e^t gives a tile of scale 1!

Graph Related Results

		_
		1
		1

• Suppose that $s \in \mathbb{R}$ is such that $F_s(T_i)$ contains a copy of T_i in its interior, i.e. a length of a closed path in G_σ

• Then we can place the origin so that for every $k \in \mathbb{N}$: $F_{ks}(T_i)$ contains a copy of $F_{(k-1)s}(T_i)$.

• Then $S := \bigcup_{k=0}^{\infty} F_{ks}(T_i)$ is a tiling of \mathbb{R}^d , and $F_s(S) = S$.

• Suppose that $s \in \mathbb{R}$ is such that $F_s(T_i)$ contains a copy of T_i in its interior, i.e. a length of a closed path in G_σ

• Then we can place the origin so that for every $k \in \mathbb{N}$: $F_{ks}(T_i)$ contains a copy of $F_{(k-1)s}(T_i)$.

• Then $S := \bigcup_{k=0}^{\infty} F_{ks}(T_i)$ is a tiling of \mathbb{R}^d , and $F_s(S) = S$.

• Suppose that $s \in \mathbb{R}$ is such that $F_s(T_i)$ contains a copy of T_i in its interior, i.e. a length of a closed path in G_σ

• Then we can place the origin so that for every $k \in \mathbb{N}$: $F_{ks}(T_i)$ contains a copy of $F_{(k-1)s}(T_i)$.

• Then $S := \bigcup_{k=0}^{\infty} F_{ks}(T_i)$ is a tiling of \mathbb{R}^d , and $F_s(S) = S$.

	Ш	┢	
벼		╞╧	
P	Н	┱	

৩৫৫

Graph model for multiscale substitution schemes

Let $\sigma = (\tau_{\sigma}, \varrho_{\sigma})$ be a multiscale substitution scheme.

• σ is called *irreducible* if the associated graph G_{σ} is strongly connected.

σ is called *incommensurable* if the associated graph G_σ contains two closed paths of lengths a, b, where a ∉ Qb.

• Our project focuses on schemes that are irreducible and incommensurable.

The graph models the flow - Kakutani

Important Observation

{tiles in $F_t(T_i)$ } \longleftrightarrow {paths of lengths t from T_i in G_σ }

Theorem (Kiro-Smilansky \times 2 '20, Smilansky \geq ' 21)

Let σ be an irreducible incommensurable scheme in \mathbb{R}^d . Then

$$\#\{\text{tiles in } F_t(T_i)\} = C_\sigma e^{dt} + ERROR,$$

where C_{σ} is explicit and ERROR = $o(e^{dt})$, $t \rightarrow \infty$.

The constant C_{σ} is given explicitly in a recent paper of Smilansky in term of the following three matrices:

$$(S)_{ij} = \# \left\{ \begin{array}{l} \text{tiles of type} \\ j \text{ in } \varrho_{\sigma}(T_i) \end{array} \right\}, \quad (V)_{ij} = \sum_{\substack{\text{tiles of type} \\ j \text{ in } \varrho_{\sigma}(T_i)}} \operatorname{vol}(T),$$
$$(H)_{ij} = \sum_{\substack{\text{tiles of type} \\ j \text{ in } \varrho_{\sigma}(T_i)}} -\operatorname{vol}(T) \log(\operatorname{vol}(T))$$

Theorem (Smilansky, S. '21)

For every irreducible incommensurable scheme σ , $\exists k > 0$ s.t.

$$\underbrace{\left| \#\{\text{tiles in } F_t(T_i)\} - C_{\sigma} e^{dt} \right|}_{\text{ERROR}} \ge \Omega\left(\frac{e^{dt}}{t^k}\right).$$

Corollary (Smilansky, S. '21)

Every irreducible, incommensurable multiscale substitution tiling T is **not uniformly spread**.

That is, if Λ is a point set obtained from the tiling \mathcal{T} by placing a point in each tile, every bijection $\varphi : \Lambda \to \mathbb{Z}^d$ will have points that are mapped "arbitrarily far away" from where they are.

Theorem (Smilansky, S. '21)

For every irreducible incommensurable scheme σ , $\exists k > 0$ s.t.

$$\underbrace{\#\{\text{tiles in } F_t(T_i)\} - C_{\sigma} e^{dt}}_{\text{ERROR}} \ge \Omega\left(\frac{e^{dt}}{t^k}\right).$$

Corollary (Smilansky, S. '21)

Every irreducible, incommensurable multiscale substitution tiling T is **not uniformly spread**.

That is, if Λ is a point set obtained from the tiling \mathcal{T} by placing a point in each tile, every bijection $\varphi : \Lambda \to \mathbb{Z}^d$ will have points that are mapped "arbitrarily far away" from where they are.

 The irreducibility and incommensurability of G_σ can also be applied to study the dynamical system (X_σ, R^d).

Theorem (Smilansky, S. '21)

The dynamical system $(\mathbb{X}_{\sigma}, \mathbb{R}^d)$ is minimal.

• Geometric interpretation:

Corollary (Smilansky, S. '21)

- Every multiscale tiling is (almost) repetitive.
- Every two multiscale tilings in X_σ are (almost) locally indistinguishable.

 The irreducibility and incommensurability of G_σ can also be applied to study the dynamical system (X_σ, R^d).

Theorem (Smilansky, S. '21)

The dynamical system $(X_{\sigma}, \mathbb{R}^d)$ is minimal.

Geometric interpretation:

Corollary (Smilansky, S. '21)

- Every multiscale tiling is (almost) repetitive.
- 2 Every two multiscale tilings in X_σ are (almost) locally indistinguishable.