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-----

1
X
examples: .
CAT(0) cube complexes ~ CAT(0) Coxeter complexes
(Gromov '87) (Haglund, Paulin '98) §>

AMPs are those COMs whose faces are cubes P
rank of M = max rank among faces <>
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convex subgraphs and sign vectors

if GG partial cube, then G’ C G conv?x <= (' restriction of GG

shortest paths between intersection gf halfspaces
vertices of G’ stay in G X (G’) containing G’
associate sign vector X (G') to convex subgraph G’

actually: Boolean lattice of sign
vectors for the same convex G’

(+4++)

(++0-+)(++ 04+)(++ 0)

o

(++00+) (++70 ) (++-00 )
G’ C @ antipodal: Vv € G/ Jv € G’ : \/
w € G' iff there is shortest (v, )-path through w (+4000 )
Thm([K, Marc '19]:
G tope graph of COM M = (E, L), then  Cor: G tope graph of AMP &

X € L& X = X(G') for antipodal G' C GG all antipodal subgraphs cubes
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a :convex S — convex S’ defined by subset of < d halfspaces
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much easier if AMP,
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eory

a:C—]C B:a(lC)—C

Ccompressor reconstructor

a(S)C Sand S < Bafs)  |a(S) <k

Thm[Chalopin, Chepoi, Moran, Warmuth '18]:
34 AMP without corner peeling
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corner peelmgs y|e|d proper unlabeled compression

a:lC—lC B:a(lC)—=C
compressor reconstructor
a(S) € S and S < B(a(S)) a(S)| <k

~ generalize corner peelings to COMs

Thm([K, Marc '20]: corner peelings for:
o rank 2 COMs
= rank 2 AMPs [Chalopin et al '18]
o hypercellular graphs
= bip. cellular graphs [Bandelt, Chepoi '96]
o realizable COMs
= realizable AMPs [Tracy Hall '04]
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corner peelmgs y|eId proper unlabeled compression

a:lC—lC B:a(lC)—=C
compressor reconstructor
a(S) € S and S < B(a(S)) a(S)| <k

~ generalize corner peelings to COMs

Thm([K, Marc '20]: corner peelings for:
o rank 2 COMs
= rank 2 AMPs [Chalopin et al '18]
o hypercellular graphs
= bip. cellular graphs [Bandelt, Chepoi '96]
o realizable COMs
= realizable AMPs [Tracy Hall '04]

do corner peelings of COMs vyield unlabeled compression schemes of COMs?
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