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(FS)+(SE) and:
(Z) 0 ∈ L

◦ Covector axioms: M = (E,L) AOM:
(FS)+(SE) and:
(A) something lengthy

◦ Covector axioms: M = (E,L) COM:
(FS) L ◦ −L ⊆ L
(SE) ∀X,Y ∈ L and e ∈ S(X,Y )∃Z ∈ L :

Ze = 0 and Zf = Xf ◦ Yf for f /∈ S(X,Y ).

a common generalization

◦ Covector axioms: M = (E,L) AMP:
(FS)+(SE) and:
(I) L ◦ {±1}E = L



COMs as Complexes of Oriented Matroids

1̂



COMs as Complexes of Oriented Matroids

1̂

0̂



COMs as Complexes of Oriented Matroids

CW left regular bands (Margolis, Saliola, Steinberg ’18):
left regular band : idempotent semigroup with X ◦ Y ◦X = X ◦ Y

 poset structure: X ≤ Y if X ◦ Y = Y
CW left regular band: principal filters are CW-posets

1̂

other examples: complex oriented matroids, interval greedoids

0̂



COMs as Complexes of Oriented Matroids

CW left regular bands (Margolis, Saliola, Steinberg ’18):
left regular band : idempotent semigroup with X ◦ Y ◦X = X ◦ Y

 poset structure: X ≤ Y if X ◦ Y = Y
CW left regular band: principal filters are CW-posets

1̂

other examples: complex oriented matroids, interval greedoids

0̂

(SE) =⇒ galleries



COMs as Complexes of Oriented Matroids

CW left regular bands (Margolis, Saliola, Steinberg ’18):
left regular band : idempotent semigroup with X ◦ Y ◦X = X ◦ Y

 poset structure: X ≤ Y if X ◦ Y = Y
CW left regular band: principal filters are CW-posets

1̂

other examples: complex oriented matroids, interval greedoids

0̂

(SE) =⇒ galleries

X,Y ∈ L, X0 = Y 0
Y

X



COMs as Complexes of Oriented Matroids

CW left regular bands (Margolis, Saliola, Steinberg ’18):
left regular band : idempotent semigroup with X ◦ Y ◦X = X ◦ Y

 poset structure: X ≤ Y if X ◦ Y = Y
CW left regular band: principal filters are CW-posets

1̂

other examples: complex oriented matroids, interval greedoids

0̂

(SE) =⇒ galleries

X,Y ∈ L, X0 = Y 0
Y

X

X,X1, . . . , Xk, Y

X1

X2



COMs as Complexes of Oriented Matroids

1̂

CAT(0) cube complexes
(Gromov ’87)

CAT(0) Coxeter complexes
(Haglund, Paulin ’98)

examples:
0̂

(SE) =⇒ galleries

X,Y ∈ L, X0 = Y 0
Y

X

X,X1, . . . , Xk, Y

X1

X2



COMs as Complexes of Oriented Matroids

1̂

CAT(0) cube complexes
(Gromov ’87)

CAT(0) Coxeter complexes
(Haglund, Paulin ’98)

examples:
0̂

AMPs are those COMs whose faces are cubes

(SE) =⇒ galleries

X,Y ∈ L, X0 = Y 0
Y

X

X,X1, . . . , Xk, Y

X1

X2



COMs as Complexes of Oriented Matroids

1̂

CAT(0) cube complexes
(Gromov ’87)

CAT(0) Coxeter complexes
(Haglund, Paulin ’98)

examples:
0̂

AMPs are those COMs whose faces are cubes

rank of M = max rank among faces

(SE) =⇒ galleries

X,Y ∈ L, X0 = Y 0
Y

X

X,X1, . . . , Xk, Y

X1

X2



◦ Covector axioms: (E,L) oriented matroid:
(FS)+(SE) and:
(Z) 0 ∈ L

◦ Covector axioms: (E,L) affine oriented matroid:
(FS)+(SE) and:
(A) something lengthy

◦ Covector axioms: (E,L) COM iff
(FS) L ◦ −L ⊆ L
(SE) ∀X,Y ∈ L and e ∈ S(X,Y )∃Z ∈ L :

Ze = 0 and Zf = Xf ◦ Yf for f /∈ S(X,Y ).

tope graphs

Covector axioms: (E,L) ample set:
(SE) and:
(I) L ◦ {±1}E = L



◦ Covector axioms: (E,L) oriented matroid:
(FS)+(SE) and:
(Z) 0 ∈ L

◦ Covector axioms: (E,L) affine oriented matroid:
(FS)+(SE) and:
(A) something lengthy

◦ Covector axioms: (E,L) COM iff
(FS) L ◦ −L ⊆ L
(SE) ∀X,Y ∈ L and e ∈ S(X,Y )∃Z ∈ L :

Ze = 0 and Zf = Xf ◦ Yf for f /∈ S(X,Y ).

tope graphs

Covector axioms: (E,L) ample set:
(SE) and:
(I) L ◦ {±1}E = L

top
e g

rap
hs

are
par

tial
cub

es a
nd

det
erm

ine
L



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

⊆ Q6

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

⊆ Q6

isometric ⇔ shortest paths use each color at most once

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

⊆ Q6

isometric ⇔ shortest paths use each color at most once

Θ-class

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

⊆ Q6

isometric ⇔ shortest paths use each color at most once

Θ-class

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G

pc-contraction of e pc-restrictions wrt e

e

 partial-cube-minors

e+ e−



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

⊆ Q6

isometric ⇔ shortest paths use each color at most once

Θ-class

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G

pc-contraction of e pc-restrictions wrt e

e

 partial-cube-minors

e+ e−



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

⊆ Q6

isometric ⇔ shortest paths use each color at most once

Θ-class

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G

pc-contraction of e pc-restrictions wrt e

e

 partial-cube-minors

e+ e−

graphs of COMs and AMPs
closed under pc-minors



G partial cube :⇔ G isometric subgraph of hypercube

tope graphs are partial cubes

⊆ Q6

isometric ⇔ shortest paths use each color at most once

Θ-class

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G

pc-contraction of e pc-restrictions wrt e

e

 partial-cube-minors

rank of G =
maxQr pc-minor

e+ e−

graphs of COMs and AMPs
closed under pc-minors



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

++– –+( )

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

++– –+( )

+ 0 – –+( )

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

++– –+( )

+ 0 – –+( )

0 0 – – 0( )

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

++– –+( )

+ 0 – –+( )

0 0 – – 0( )

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′

G′ ⊆ G antipodal: ∀v ∈ G′ ∃v ∈ G′ :
w ∈ G′ iff there is shortest (v, v)-path through w



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

++– –+( )

+ 0 – –+( )

0 0 – – 0( )

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′

G′ ⊆ G antipodal: ∀v ∈ G′ ∃v ∈ G′ :
w ∈ G′ iff there is shortest (v, v)-path through w
Thm[K, Marc ’19]:
G tope graph of COM M = (E,L), then
X ∈ L ⇔ X = X(G′) for antipodal G′ ⊆ G



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

++– –+( )

+ 0 – –+( )

0 0 – – 0( )

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′

G′ ⊆ G antipodal: ∀v ∈ G′ ∃v ∈ G′ :
w ∈ G′ iff there is shortest (v, v)-path through w
Thm[K, Marc ’19]:
G tope graph of COM M = (E,L), then
X ∈ L ⇔ X = X(G′) for antipodal G′ ⊆ G

Cor: G tope graph of AMP⇔
all antipodal subgraphs cubes



if G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate sign vector X(G′) to convex subgraph G′

++– –+( )

+ 0 – –+( )

0 0 – – 0( )

convex subgraphs and sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′

actually: Boolean lattice of sign
vectors for the same convex G′

++0 –+( ) ++– 0+( ) ++– –0( )

++0 0+( ) ++0 –0( ) ++– 00( )

++0 00( )

G′ ⊆ G antipodal: ∀v ∈ G′ ∃v ∈ G′ :
w ∈ G′ iff there is shortest (v, v)-path through w
Thm[K, Marc ’19]:
G tope graph of COM M = (E,L), then
X ∈ L ⇔ X = X(G′) for antipodal G′ ⊆ G

Cor: G tope graph of AMP⇔
all antipodal subgraphs cubes



labelled sample compression
concepts C ⊆ {±}U

set system



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

set system



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C

S′
S

S′′



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C

S′
S

S′′

α
α α



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C

S′
S

S′′

α
α α

β β



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k

Conj[Floyd, Warmuth ’95]:
concept class C of VC-dim d admits sample compression scheme of size O(d)



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k

Conj[Floyd, Warmuth ’95]:
concept class C of VC-dim d admits sample compression scheme of size O(d)

subgraph of cube

rank



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k

Conj[Floyd, Warmuth ’95]:
concept class C of VC-dim d admits sample compression scheme of size O(d)

subgraph of cube

rank

◦ realizable AOM (Ben-David, Litmann ’89)
◦ AMP (Moran, Warmuth ’16)

known of size d for C (tope graphs of):



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k

Conj[Floyd, Warmuth ’95]:
concept class C of VC-dim d admits sample compression scheme of size O(d)

subgraph of cube

rank

◦ realizable AOM (Ben-David, Litmann ’89)
◦ AMP (Moran, Warmuth ’16)

idea: try to complete C to AMP of same rank and then use MW

known of size d for C (tope graphs of):



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k

Conj[Floyd, Warmuth ’95]:
concept class C of VC-dim d admits sample compression scheme of size O(d)

subgraph of cube

rank

◦ realizable AOM (Ben-David, Litmann ’89)
◦ AMP (Moran, Warmuth ’16)

idea: try to complete C to AMP of same rank and then use MW

{±}U
im

known of size d for C (tope graphs of):



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k

Conj[Floyd, Warmuth ’95]:
concept class C of VC-dim d admits sample compression scheme of size O(d)

subgraph of cube

rank

◦ realizable AOM (Ben-David, Litmann ’89)
◦ AMP (Moran, Warmuth ’16)

idea: try to complete C to AMP of same rank and then use MW

{±}U
im

◦ rank 2 partial cubes (Chepoi, K, Philibert ’20)
◦ OMs and CUOMs (Chepoi, K, Philibert ’21)

known of size d for C (tope graphs of):



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k

Conj[Floyd, Warmuth ’95]:
concept class C of VC-dim d admits sample compression scheme of size O(d)

subgraph of cube

rank

◦ realizable AOM (Ben-David, Litmann ’89)
◦ AMP (Moran, Warmuth ’16)

idea: try to complete C to AMP of same rank and then use MW

{±}U
im

◦ rank 2 partial cubes (Chepoi, K, Philibert ’20)
◦ OMs and CUOMs (Chepoi, K, Philibert ’21)

known of size d for C (tope graphs of):

Conj[Chepoi, K, Philibert ’21]: COMs admit AMP completion of same rank



labelled sample compression
concepts C ⊆ {±}U

realizable samples
↓ C := {S ∈ {±, 0}U | ∃T ∈ C : S ≤ T}

proper labelled compression scheme of size k

α :↓ C →↓ C

set system

β : α(↓ C)→ C
compressor reconstructor

α(S) ≤ S ≤ β(α(S)) ∀S ∈↓ C
|α(S)| ≤ k X = {e ∈ U | Xe 6= 0}

S′
S

S′′

α
α α

β β

k

Conj[Floyd, Warmuth ’95]:
concept class C of VC-dim d admits sample compression scheme of size O(d)

subgraph of cube

rank

◦ realizable AOM (Ben-David, Litmann ’89)
◦ AMP (Moran, Warmuth ’16)

known of size d for C (tope graphs of):

Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S

G



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S

G



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S

S′

G

G′

contract Θ-classes from S
 vertex S′ of COM G′



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S

X ′

S′

G

G′

contract Θ-classes from S
 vertex S′ of COM G′

pick an OM-face X ′ containing S′



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S

X ′

S′

G

G′

contract Θ-classes from S
 vertex S′ of COM G′

pick an OM-face X ′ containing S′

find f : X ′ →
(

Θ-classes
d

)
, such that

R|f(R) = T|f(T ) ⇒ R = T ∀R, T ∈ X ′
 D := f(S′), α(S) := S′|D



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S

X ′

S′

X

G

G′

contract Θ-classes from S
 vertex S′ of COM G′

pick an OM-face X ′ containing S′

find f : X ′ →
(

Θ-classes
d

)
, such that

R|f(R) = T|f(T ) ⇒ R = T ∀R, T ∈ X ′
 D := f(S′), α(S) := S′|D

take minimal face X in G, crossed by D,
such that contracting all other yields cube

gallery



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S

X ′

S′

X

G

G′

contract Θ-classes from S
 vertex S′ of COM G′

pick an OM-face X ′ containing S′

find f : X ′ →
(

Θ-classes
d

)
, such that

R|f(R) = T|f(T ) ⇒ R = T ∀R, T ∈ X ′
 D := f(S′), α(S) := S′|D

take minimal face X in G, crossed by D,
such that contracting all other yields cube
 β(S′|D) := T ∈ X such that T|f(T ) = S′|D

gallery



Thm[Chepoi, K, Philibert ’21+]:
COMs of rank d admit proper labelled sample compression scheme of size d

tope graph G ⊆ {±}E

realizable samples ↓ C

concepts C

convex subgraphs
partial cube

proper labelled compression scheme of size d

α :convex S 7→ convex S′ defined by subset of ≤ d halfspaces

β : S′ → v ∈ S

X ′

S′

X

G

G′

contract Θ-classes from S
 vertex S′ of COM G′

pick an OM-face X ′ containing S′

find f : X ′ →
(

Θ-classes
d

)
, such that

R|f(R) = T|f(T ) ⇒ R = T ∀R, T ∈ X ′
 D := f(S′), α(S) := S′|D

take minimal face X in G, crossed by D,
such that contracting all other yields cube
 β(S′|D) := T ∈ X such that T|f(T ) = S′|D

gallery

much easier if AMP,
because X, X ′ cubes



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

corner peelings yield proper unlabeled compression



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

corner peelings yield proper unlabeled compression

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

corner peelings yield proper unlabeled compression

Thm[Chalopin, Chepoi, Moran, Warmuth ’18]:
∃ AMP without corner peeling

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

 generalize corner peelings to COMs

corner peelings yield proper unlabeled compression

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

 generalize corner peelings to COMs

corner peelings yield proper unlabeled compression

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

 generalize corner peelings to COMs

corner peelings yield proper unlabeled compression

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

 generalize corner peelings to COMs

corner peelings yield proper unlabeled compression

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

 generalize corner peelings to COMs

corner peelings yield proper unlabeled compression

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

 generalize corner peelings to COMs

corner peelings yield proper unlabeled compression

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

 generalize corner peelings to COMs

Thm[K, Marc ’20]: corner peelings for:
◦ rank 2 COMs
⇒ rank 2 AMPs [Chalopin et al ’18]

◦ hypercellular graphs
⇒ bip. cellular graphs [Bandelt, Chepoi ’96]

◦ realizable COMs
⇒ realizable AMPs [Tracy Hall ’04]

corner peelings yield proper unlabeled compression

α(S) ⊆ S and S ≤ β(α(S))

α :↓ C →↓ C β : α(↓ C)→ C
compressor reconstructor

|α(S)| ≤ k



corners and unlabeled sample compression

Conj[Kuzmin, Warmuth ’04]: Every LOP has a corner peeling.

computational learing theory

 generalize corner peelings to COMs
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◦ hypercellular graphs
⇒ bip. cellular graphs [Bandelt, Chepoi ’96]
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