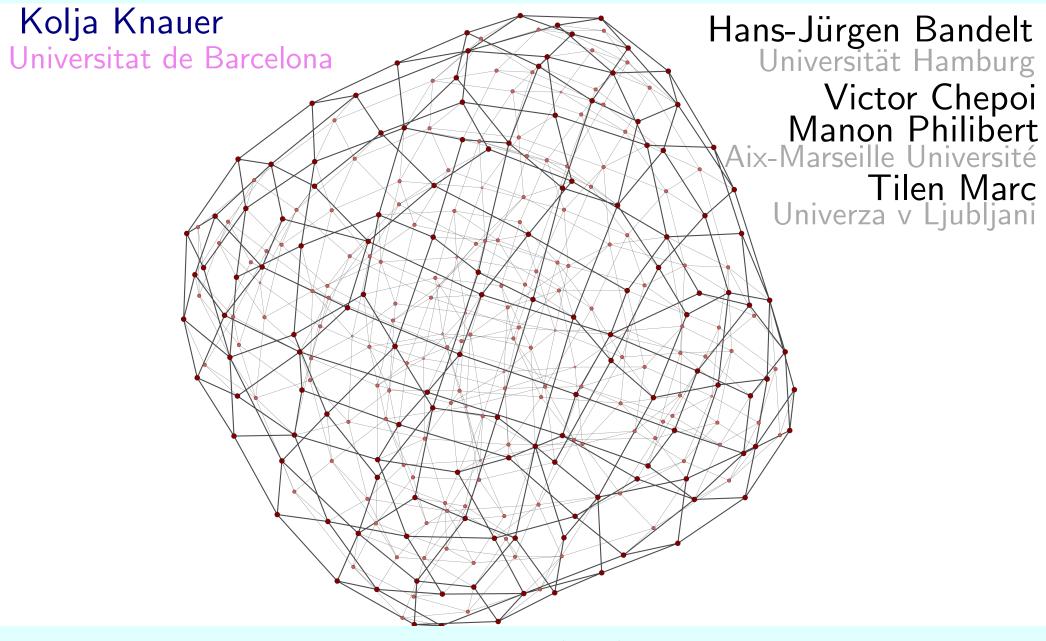
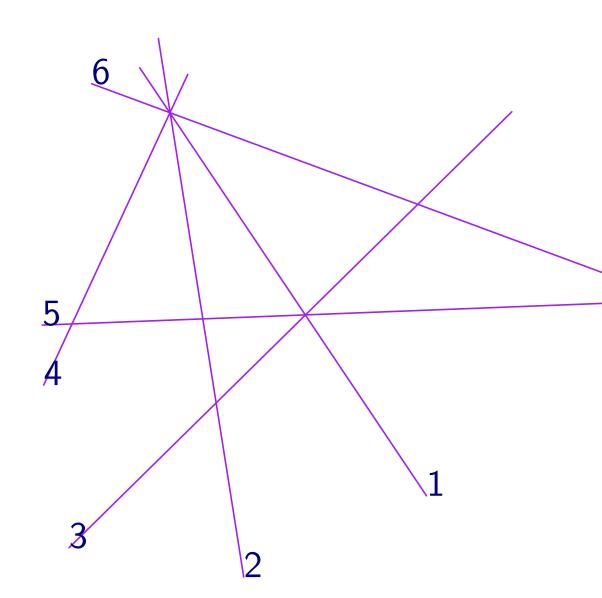
sAMPle COMpression

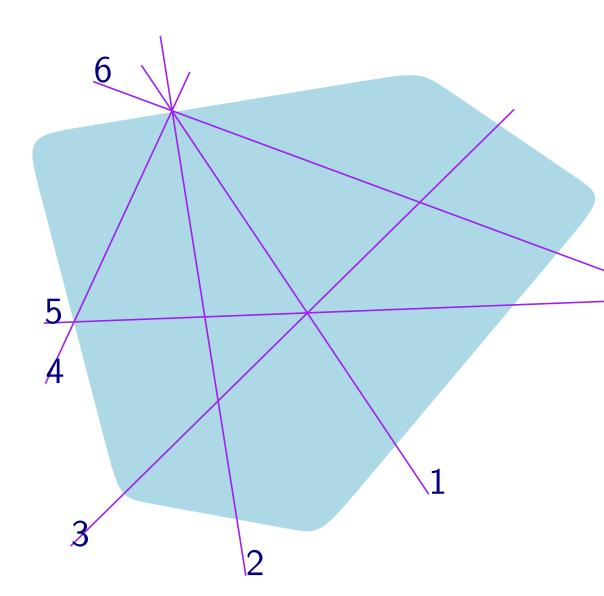


Marseille 10/12/2021

(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d

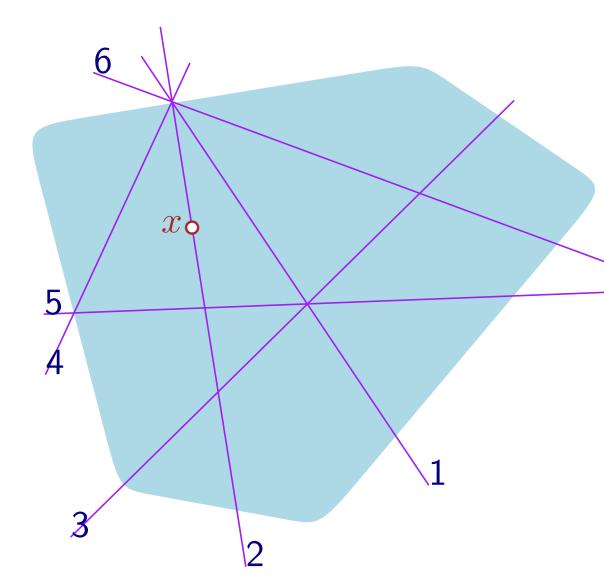


(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex K



(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex K

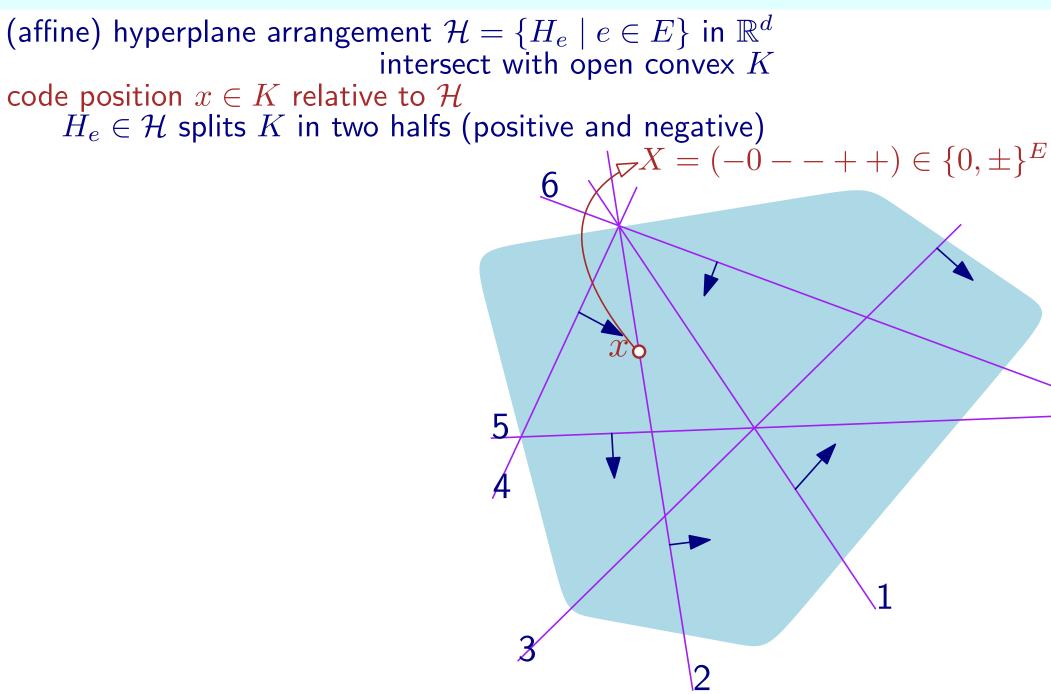
code position $x \in K$ relative to $\mathcal H$

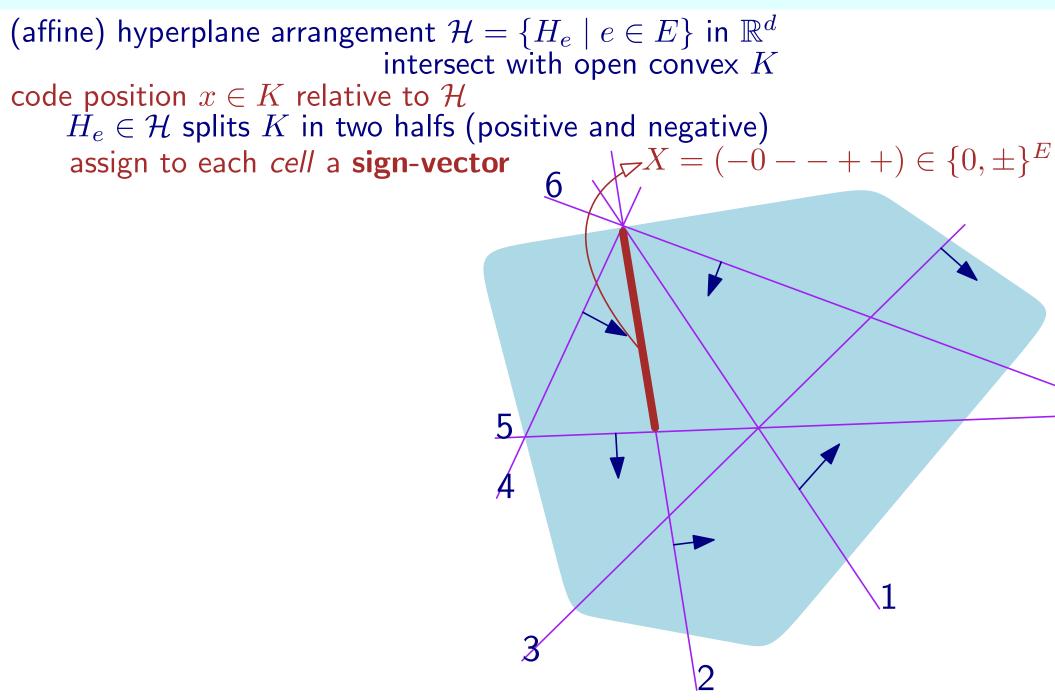


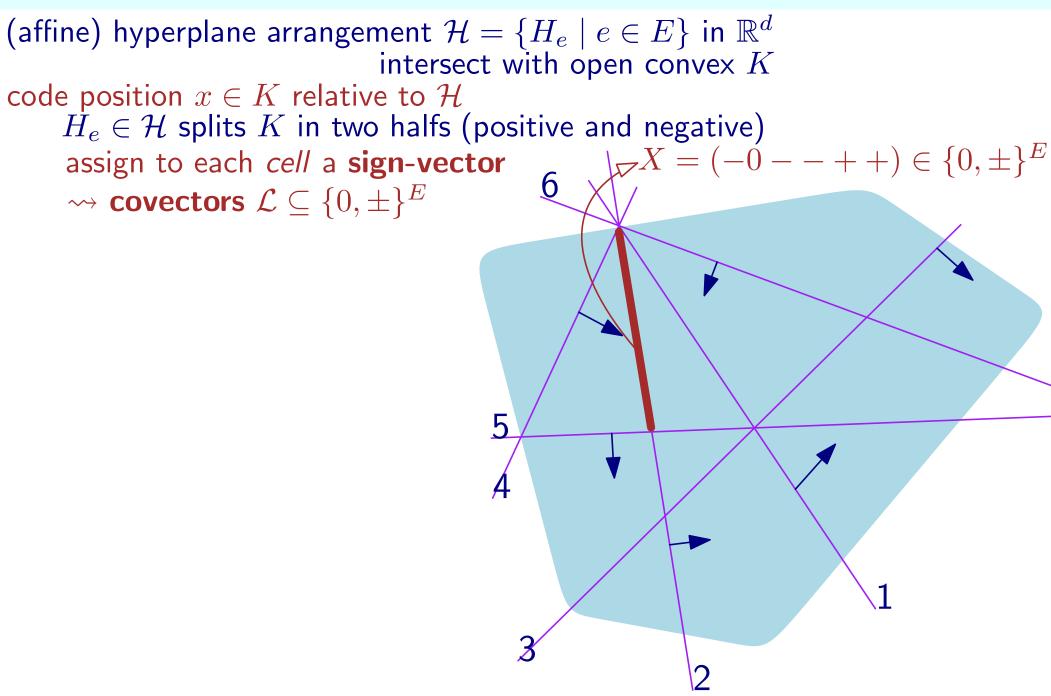
(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H}

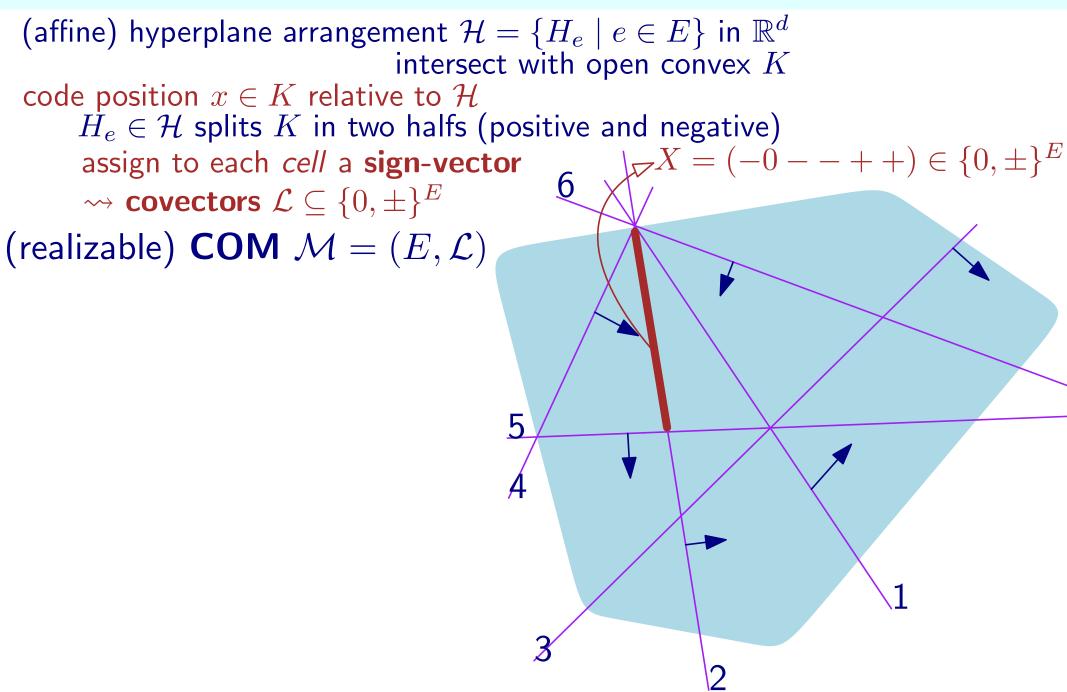
 $\dot{H}_e \in \mathcal{H}$ splits K in two halfs (positive and negative)

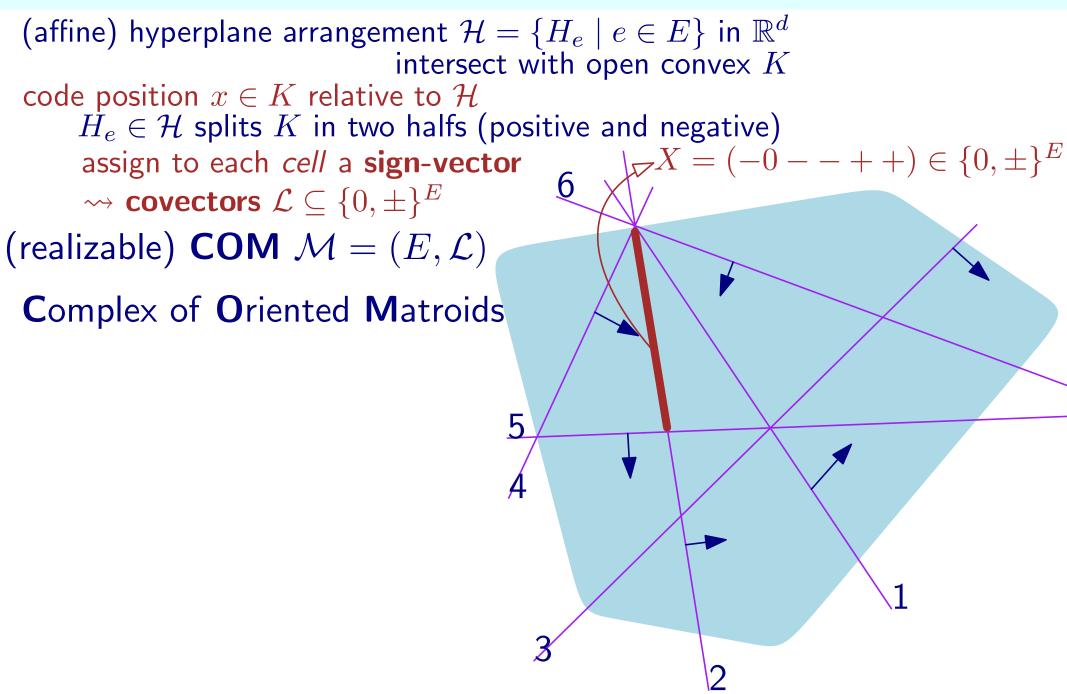


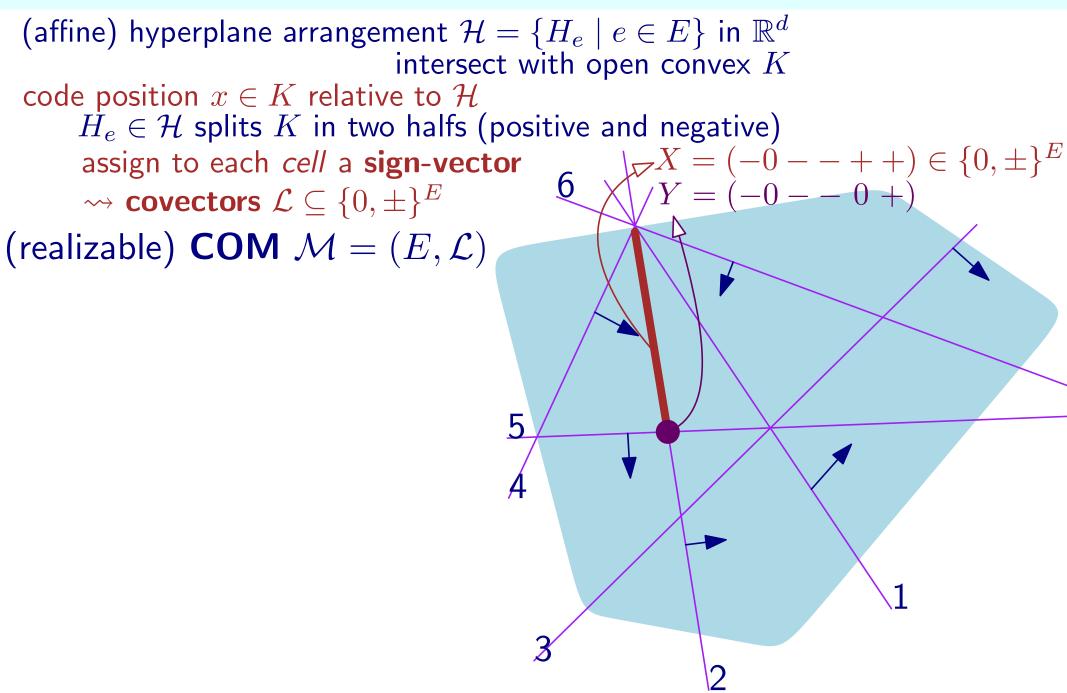


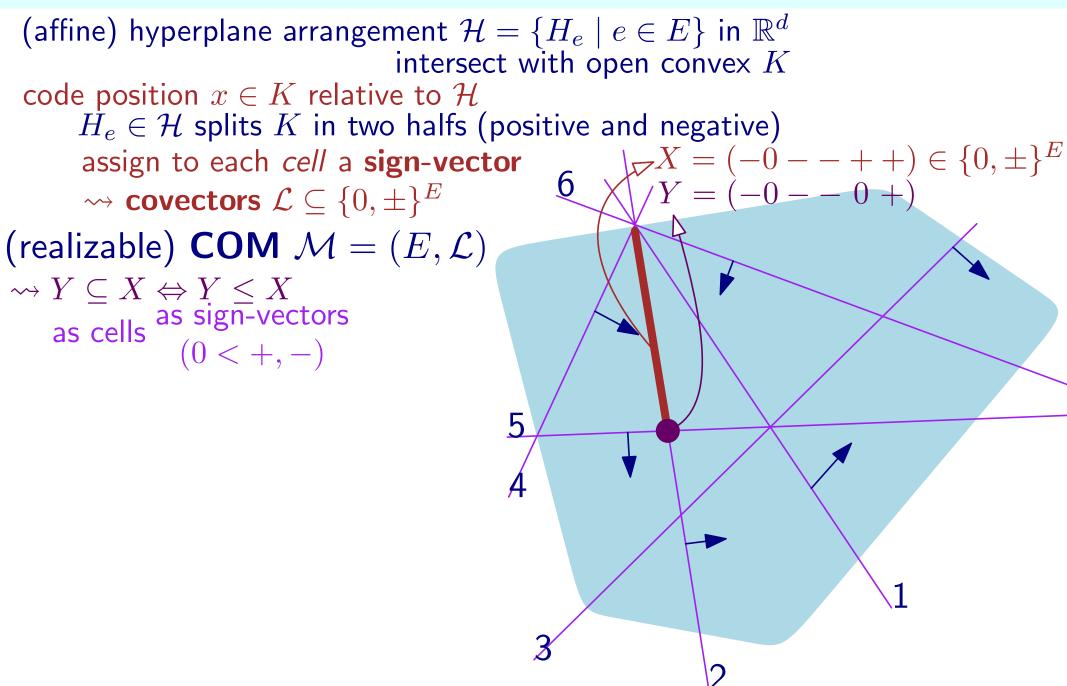


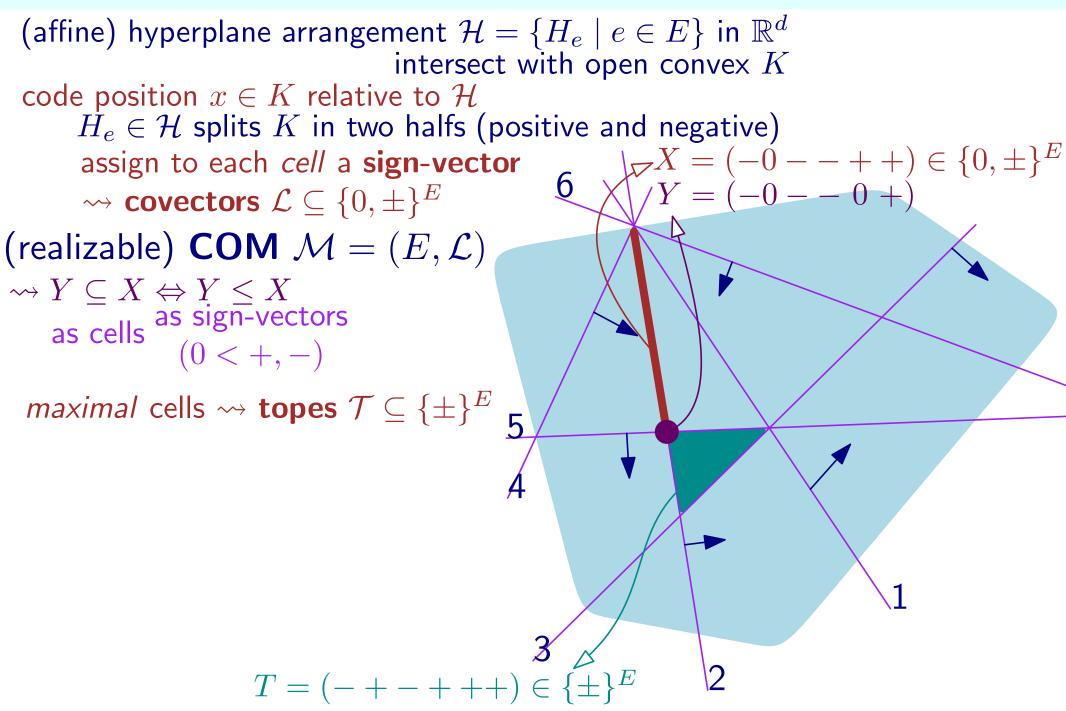


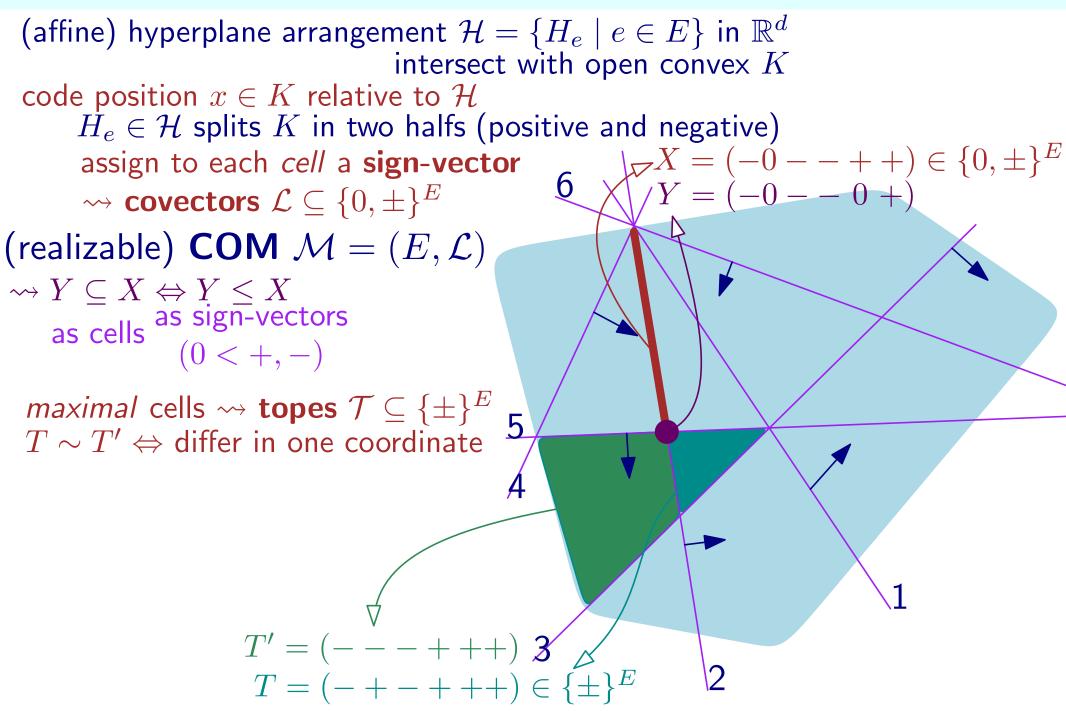












(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H} $H_e \in \mathcal{H}$ splits K in two halfs (positive and negative) assign to each *cell* a **sign-vector** 6 \rightsquigarrow covectors $\mathcal{L} \subseteq \{0,\pm\}^E$ (realizable) **COM** $\mathcal{M} = (E, \mathcal{L})$ $\stackrel{\sim}{\rightsquigarrow} Y \subseteq X \Leftrightarrow Y \leq X \\ \text{as cells} \quad \begin{array}{c} \Leftrightarrow Y \leq X \\ \text{as sign-vectors} \\ (0 < +, -) \end{array}$ maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq \{\pm\}^{E}$ $T \sim T' \Leftrightarrow \text{differ in one coordinate}$ \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_E$

(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H} $H_e \in \mathcal{H}$ splits K in two halfs assign to each *cell* a **sign-vector** 6 \rightsquigarrow covectors $\mathcal{L} \subseteq \{0,\pm\}^E$ (realizable) **COM** $\mathcal{M} = (E, \mathcal{L})$ $\stackrel{\sim}{\rightsquigarrow} Y \subseteq X \Leftrightarrow Y \leq X \\ \text{as cells} \quad \begin{array}{c} \Leftrightarrow Y \leq X \\ \text{as sign-vectors} \\ (0 < +, -) \end{array}$ maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq \{\pm\}^{E}$ $T \sim T' \Leftrightarrow \text{differ in one coordinate}$ \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_E$

(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H} $H_e \in \mathcal{H}$ splits K in two halfs assign to each *cell* a **sign-vector** \rightsquigarrow covectors $\mathcal{L} \subseteq \{0,\pm\}^E$ (realizable) **COM** $\mathcal{M} = (E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$ as cells $\frac{1}{(0 < +, -)}$ maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq \{\pm\}^{E}$ $T \sim T' \Leftrightarrow \text{differ in one coordinate}$ \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_E$

(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H} $H_e \in \mathcal{H}$ splits K in two halfs assign to each *cell* a **sign-vector** \rightsquigarrow covectors $\mathcal{L} \subseteq \{0,\pm\}^E$ (realizable) **COM** $\mathcal{M} = (E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$ as cells as sign-vectors (0 < +, -)maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq \{\pm\}^{E}$ $T \sim T' \Leftrightarrow \text{differ in one coordinate}$ \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_E$ combinatorial geometry metric graph theory

(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H} $H_e \in \mathcal{H}$ splits K in two halfs assign to each *cell* a **sign-vector** 6 \rightsquigarrow covectors $\mathcal{L} \subseteq \{0,\pm\}^E$ (realizable) **COM** $\mathcal{M} = (E, \mathcal{L})$ $\stackrel{\sim}{\rightsquigarrow} Y \subseteq X \Leftrightarrow Y \leq X \\ \text{as cells} \quad \begin{array}{c} \Leftrightarrow Y \leq X \\ \text{as sign-vectors} \\ (0 < +, -) \end{array}$ maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq \{\pm\}^{E}$ $T \sim T' \Leftrightarrow \text{differ in one coordinate}$ \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_E$ combinatorial geometry 3 metric graph theory

(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H} $H_e \in \mathcal{H}$ splits K in two halfs assign to each *cell* a **sign-vector** 6 \rightsquigarrow covectors $\mathcal{L} \subseteq \{0,\pm\}^E$ (realizable) **COM** $\mathcal{M} = (E, \mathcal{L})$ $\stackrel{\sim}{\rightsquigarrow} Y \subseteq X \Leftrightarrow Y \leq X \\ \text{as cells} \quad \begin{array}{c} \Leftrightarrow Y \leq X \\ \text{as sign-vectors} \\ (0 < +, -) \end{array}$ maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq \{\pm\}^{E}$ $T \sim T' \Leftrightarrow \text{differ in one coordinate}$ \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_E$ combinatorial geometry 3 metric graph theory

(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H} $H_e \in \mathcal{H}$ splits K in two halfs assign to each *cell* a **sign-vector** 6 \rightsquigarrow covectors $\mathcal{L} \subseteq \{0,\pm\}^E$ (realizable) **COM** $\mathcal{M} = (E, \mathcal{L})$ $\stackrel{\sim}{\rightsquigarrow} Y \subseteq X \Leftrightarrow Y \leq X \\ \text{as cells} \quad \begin{array}{c} \Leftrightarrow Y \leq X \\ \text{as sign-vectors} \\ (0 < +, -) \end{array}$ maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq \{\pm\}^{E}$ $T \sim T' \Leftrightarrow \text{differ in one coordinate}$ \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_E$ combinatorial geometry 3 metric graph theory

(affine) hyperplane arrangement $\mathcal{H} = \{H_e \mid e \in E\}$ in \mathbb{R}^d intersect with open convex Kcode position $x \in K$ relative to \mathcal{H} $H_e \in \mathcal{H}$ splits K in two halfs assign to each *cell* a **sign-vector** \rightsquigarrow covectors $\mathcal{L} \subseteq \{0,\pm\}^E$ (realizable) **COM** $\mathcal{M} = (E, \mathcal{L})$ $\stackrel{ \rightsquigarrow Y \subseteq X }{ \text{ as sign-vectors} } \stackrel{ \leftrightarrow Y \supseteq X }{ \text{ as subgraphs} } \\ \stackrel{ \leftarrow Y \supseteq X }{ (0 < +, -) }$ maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq \{\pm\}^E$ $T \sim T' \Leftrightarrow \text{differ in one coordinate}$ \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_E$ combinatorial geometry metric graph theory

special cases of realizability

affine arrangement in \mathbb{R}^d intersected with open convex \rightsquigarrow complex of oriented matroids (COM) (Bandelt, Chepoi, K '18)

coordinate hyperplanes in \mathbb{R}^d intersected with open convex → *ample set systems (AMP)* (Lawrence '83)

affine arrangement \mathbb{R}^d \rightsquigarrow affine oriented matroid (AOM) (Edmonds, Fukuda, Mandel '82)

central arrangement in \mathbb{R}^d → oriented matroid (OM) (Bland, Las Vergnas '78)

special cases of realizability

Image: Second sec

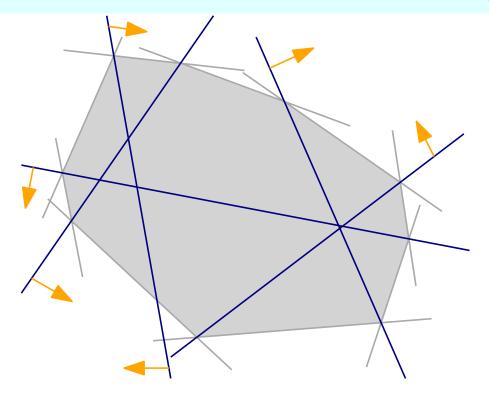
affine arrangement in \mathbb{R}^d intersected with open convex \rightsquigarrow complex of oriented matroids (COM) (Bandelt, Chepoi, K '18)

coordinate hyperplanes in \mathbb{R}^d intersected with open convex \rightsquigarrow *ample set systems (AMP)* (Lawrence '83)

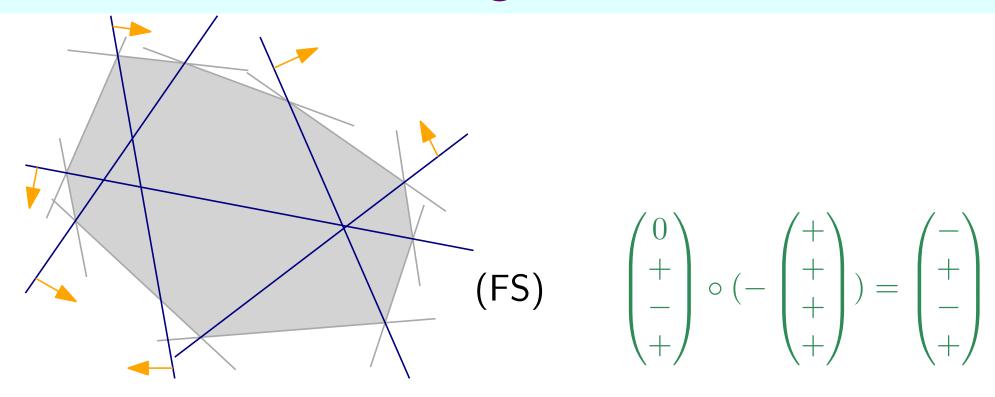
affine arrangement \mathbb{R}^d

→ affine oriented matroid (AOM) (Edmonds, Fukuda, Mandel '82)

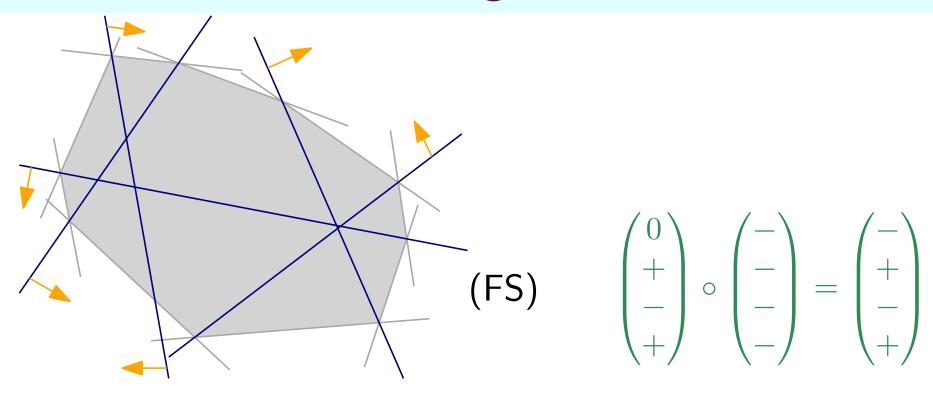
central arrangement in \mathbb{R}^d \rightsquigarrow oriented matroid (OM) (Bland, Las Vergnas '78)



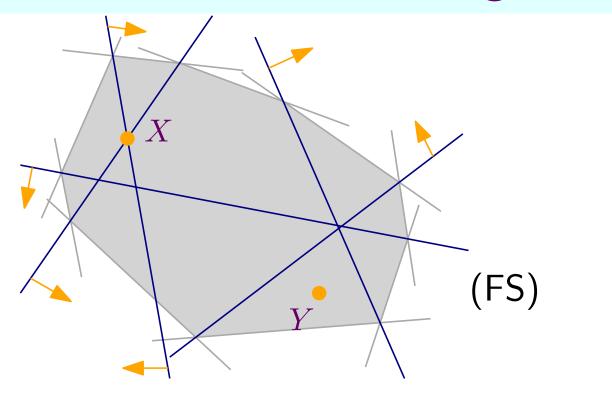
• Covector axioms:
$$\mathcal{M} = (E, \mathcal{L})$$
 COM
(FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:
 $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.

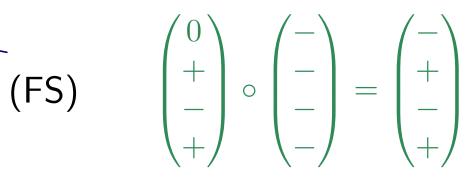


• Covector axioms:
$$\mathcal{M} = (E, \mathcal{L})$$
 COM
(FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:
 $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.

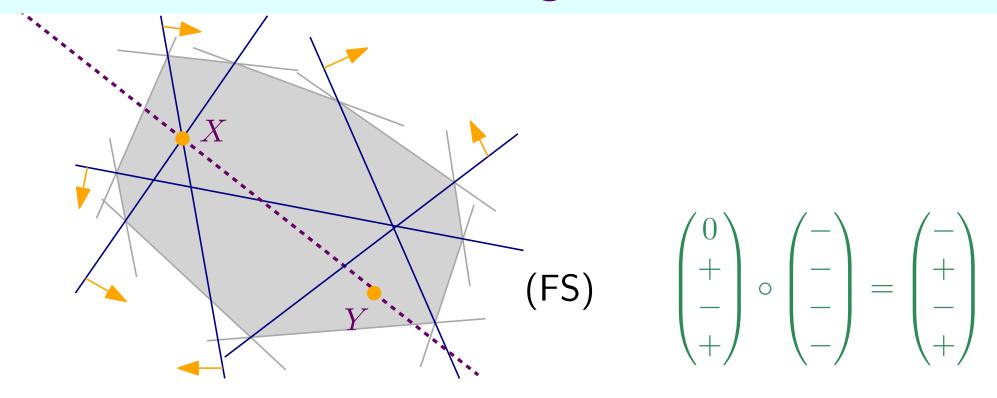


• Covector axioms: $\mathcal{M} = (E, \mathcal{L})$ **COM**: (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$ (SE) $\forall X, Y \in \mathcal{L} \text{ and } e \in S(X, Y) \exists Z \in \mathcal{L} :$ $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.

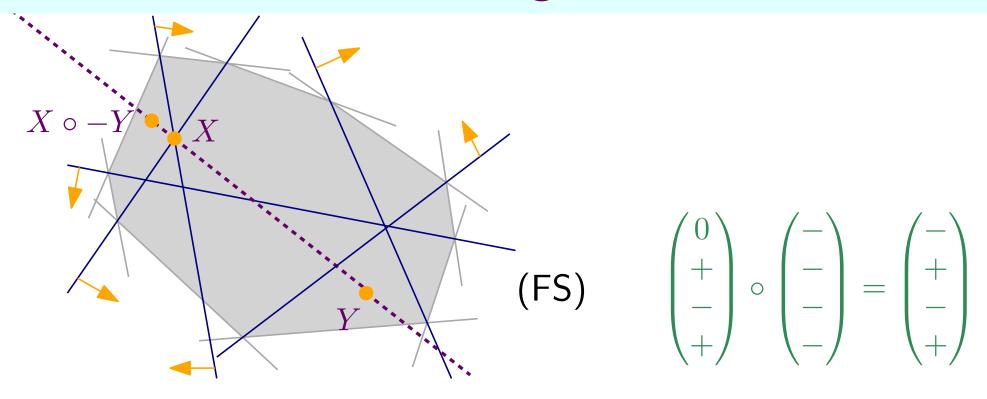




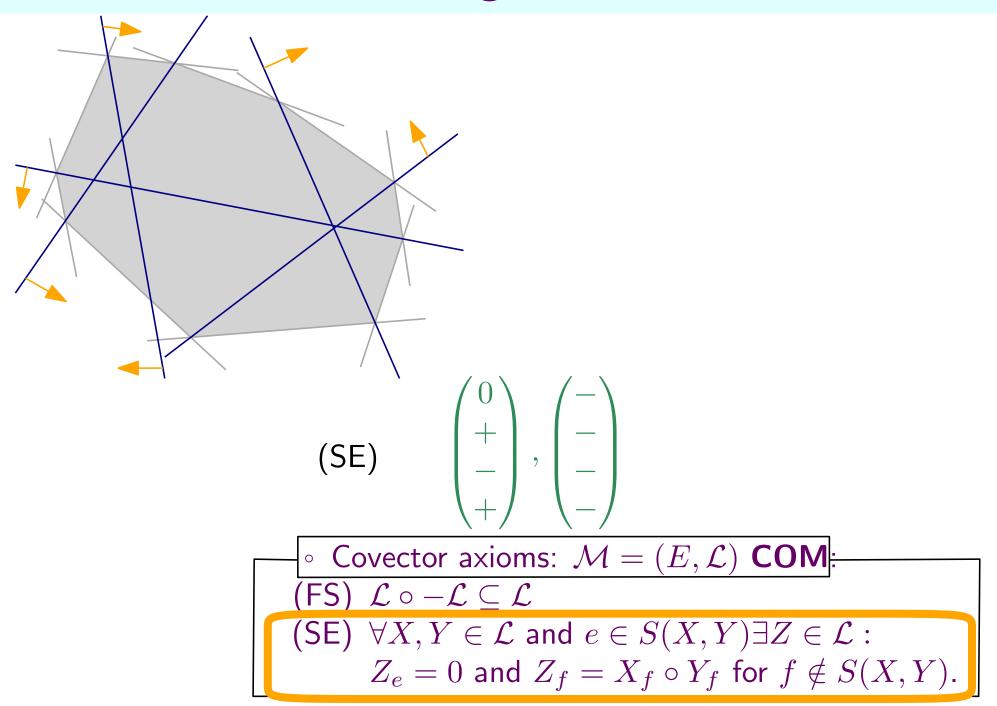
• Covector axioms:
$$\mathcal{M} = (E, \mathcal{L})$$
 COM:
(FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:
 $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.

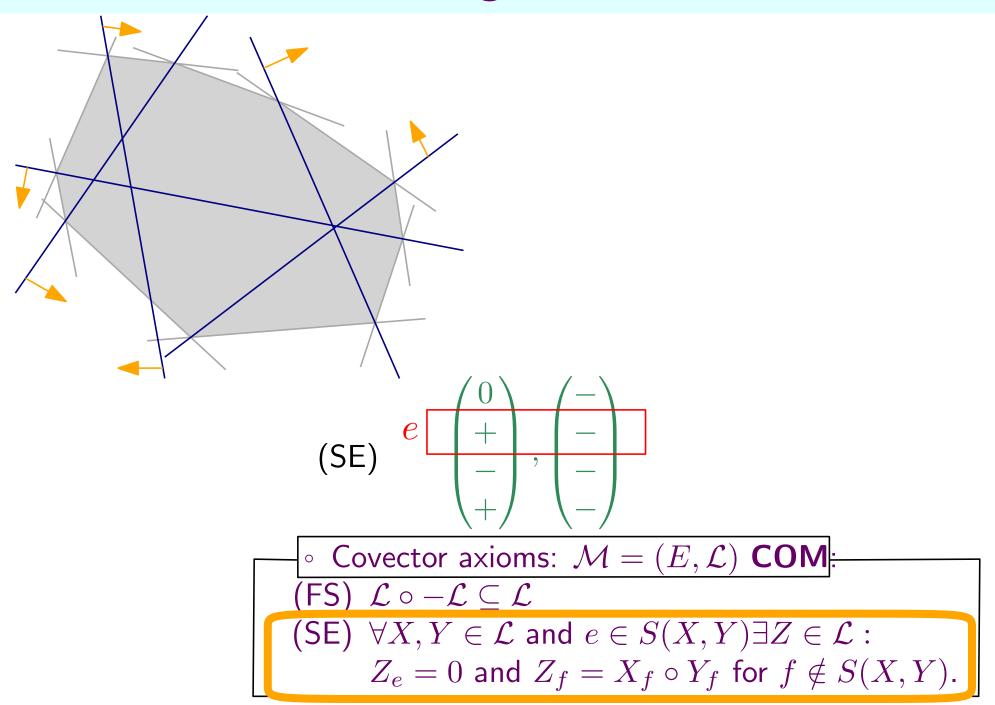


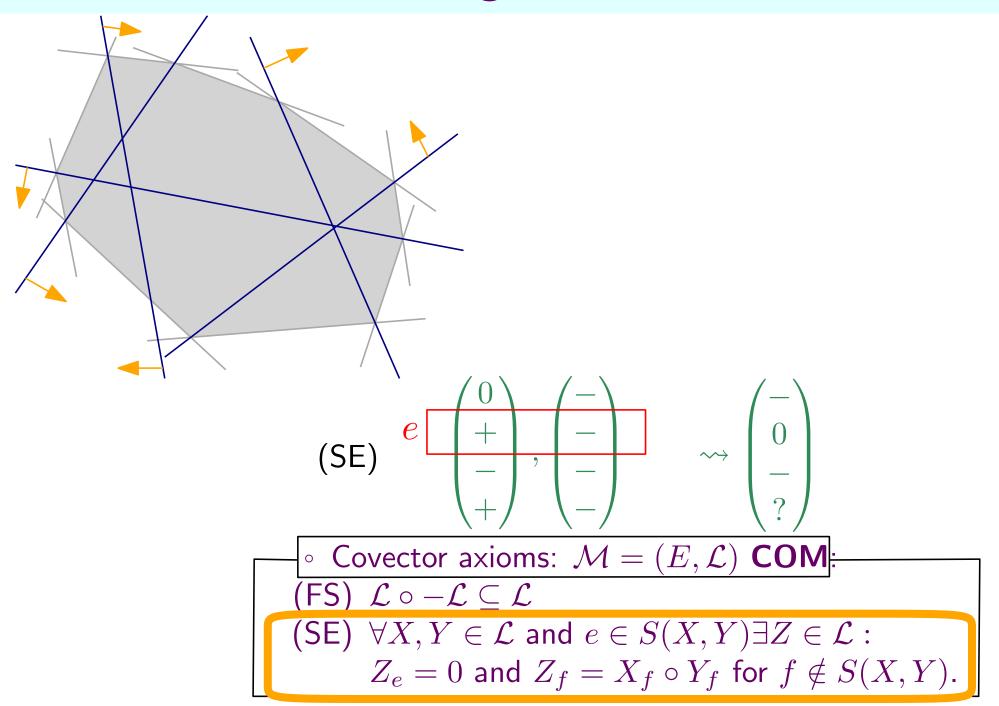
• Covector axioms:
$$\mathcal{M} = (E, \mathcal{L})$$
 COM
(FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:
 $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.

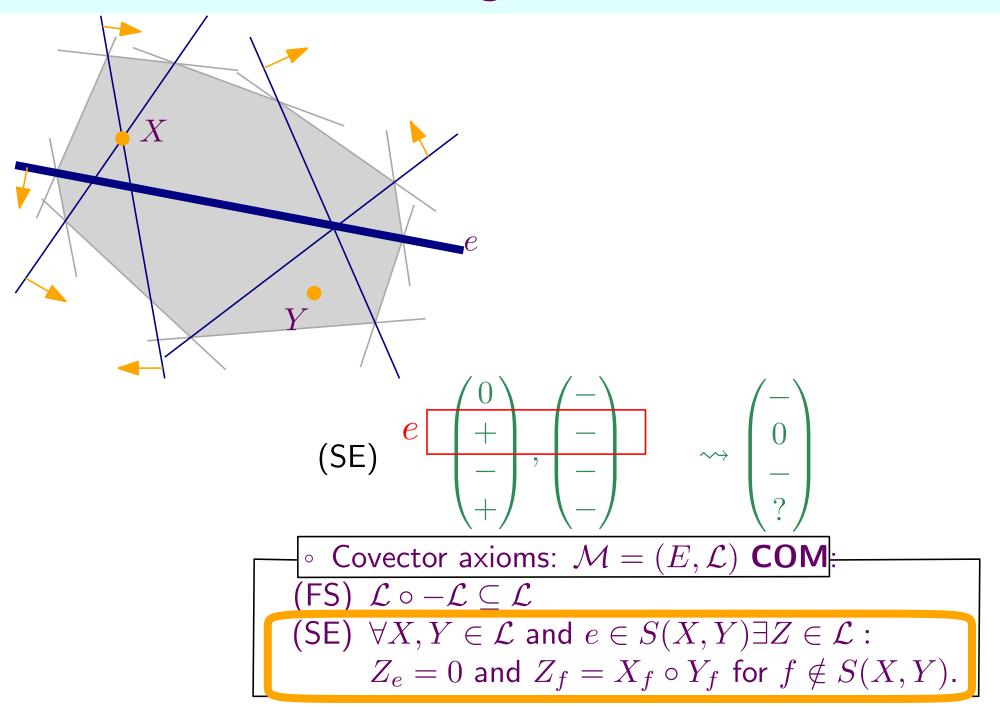


• Covector axioms:
$$\mathcal{M} = (E, \mathcal{L})$$
 COM
(FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:
 $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



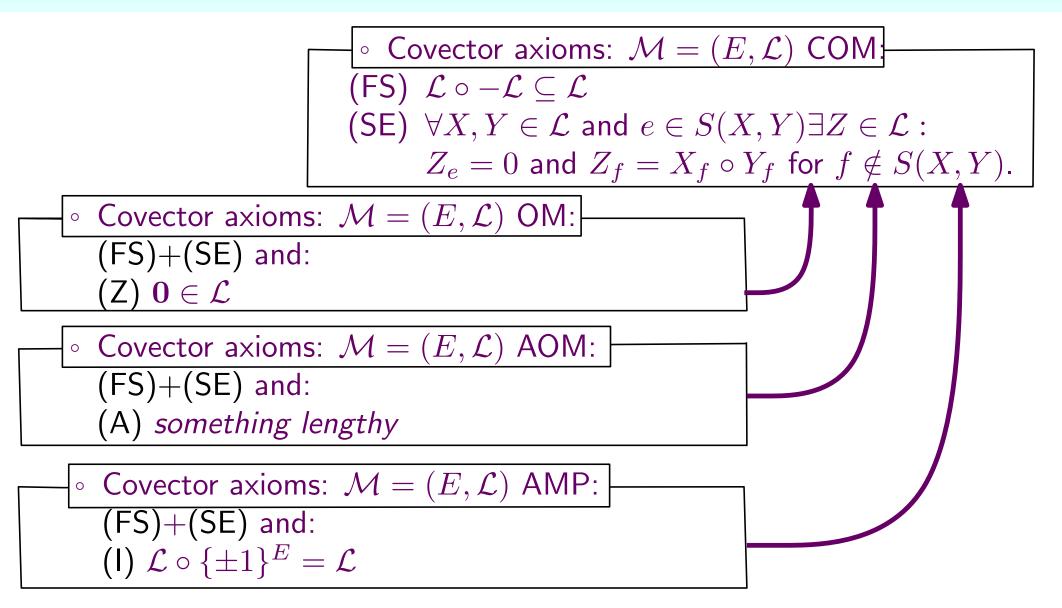


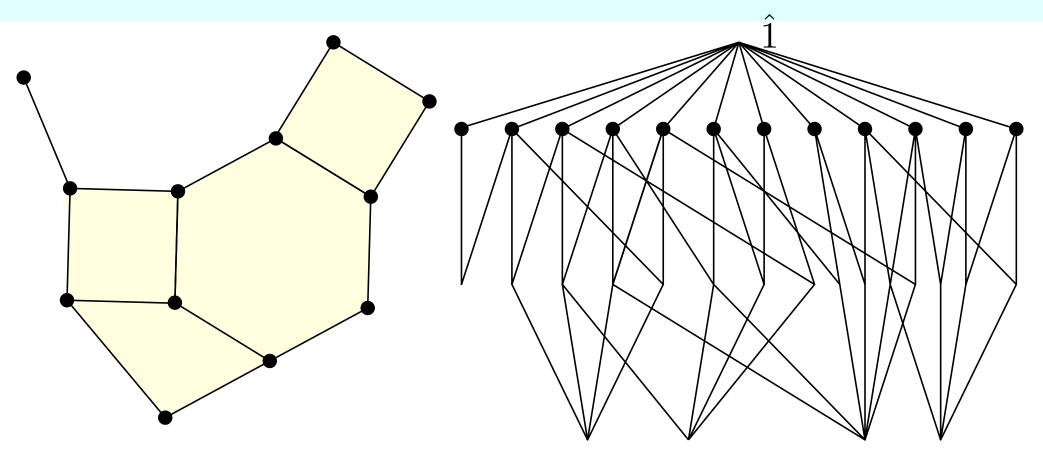


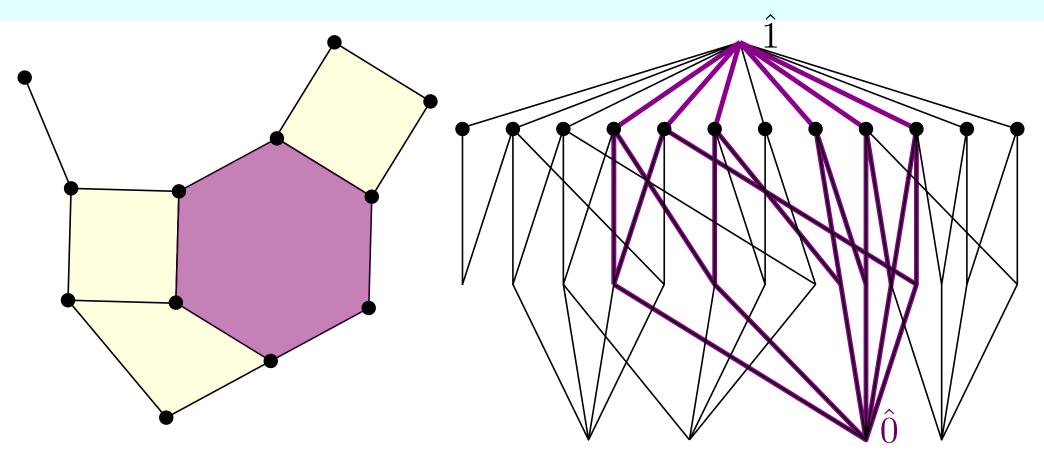


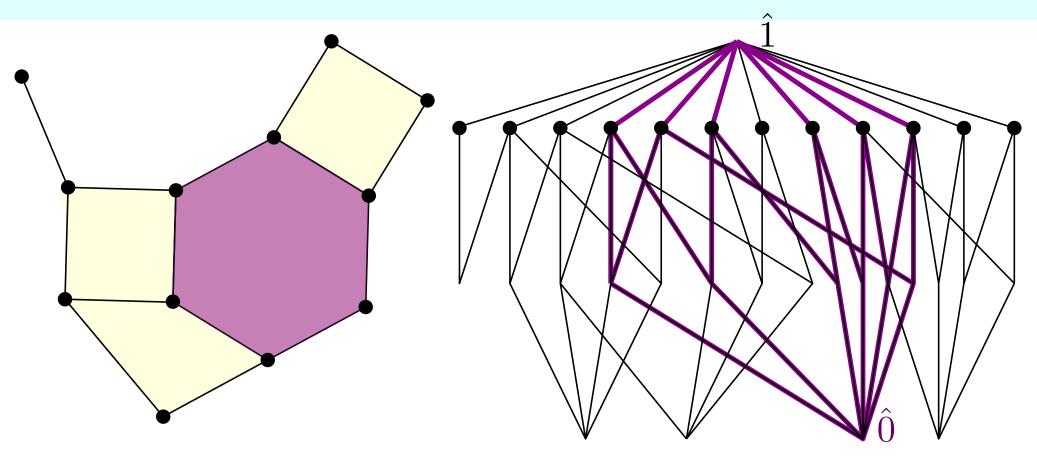


a common generalization

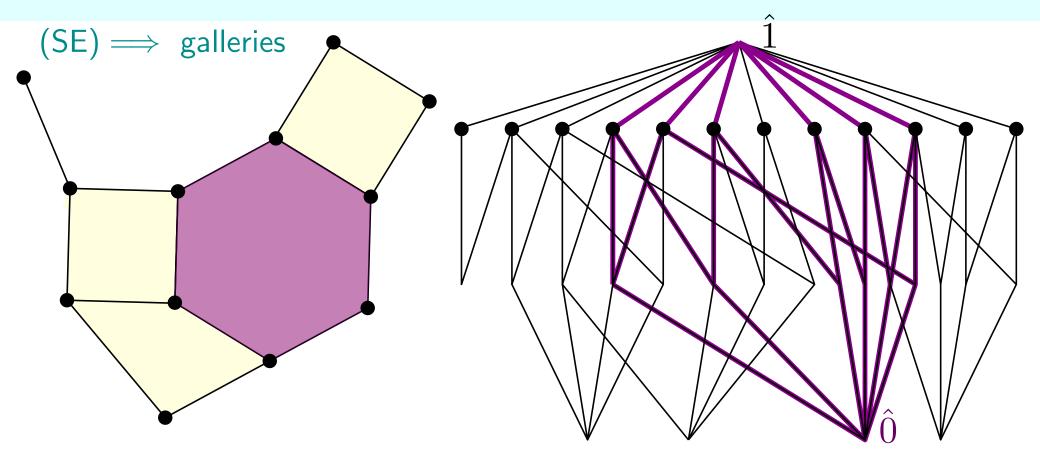




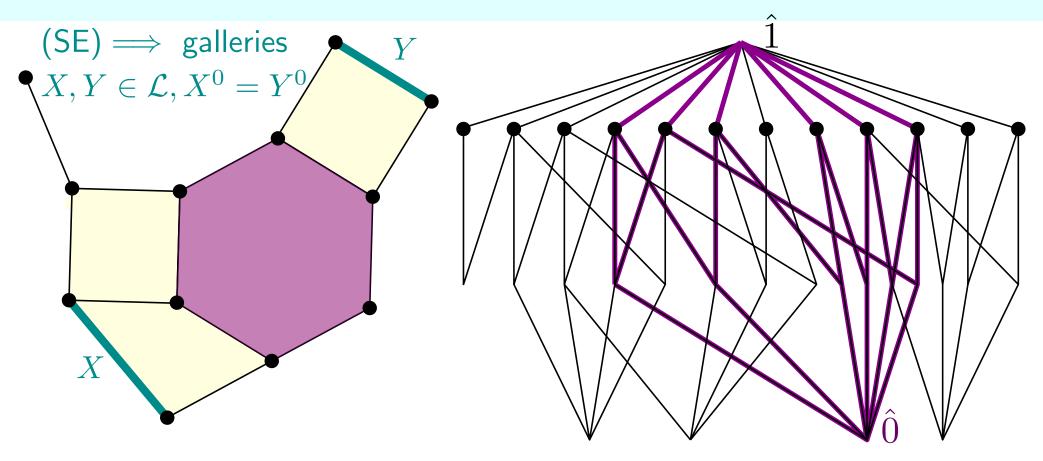




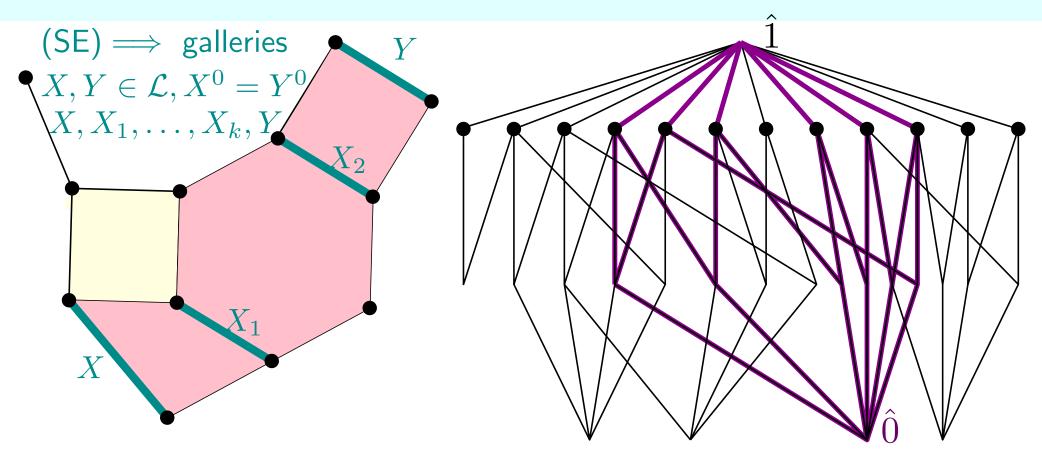
CW left regular bands (Margolis, Saliola, Steinberg '18):*left regular band*: idempotent semigroup with $X \circ Y \circ X = X \circ Y$ \rightsquigarrow poset structure: $X \leq Y$ if $X \circ Y = Y$ *CW* left regular band:principal filters are CW-posets



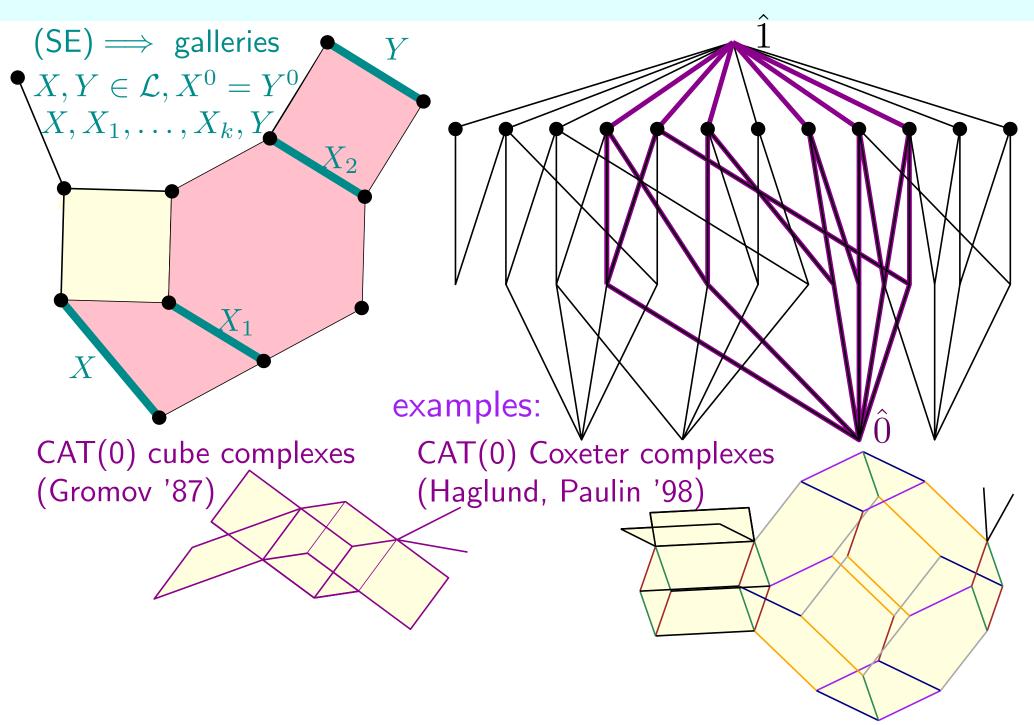
CW left regular bands (Margolis, Saliola, Steinberg '18):*left regular band*: idempotent semigroup with $X \circ Y \circ X = X \circ Y$ \rightsquigarrow poset structure: $X \leq Y$ if $X \circ Y = Y$ *CW* left regular band:principal filters are CW-posets

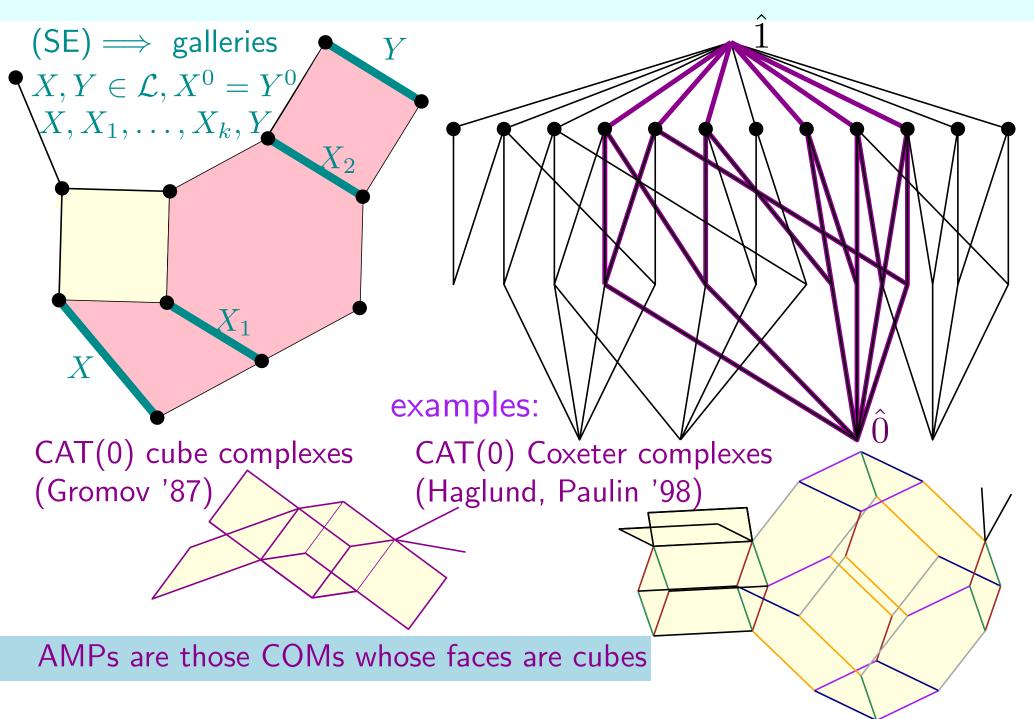


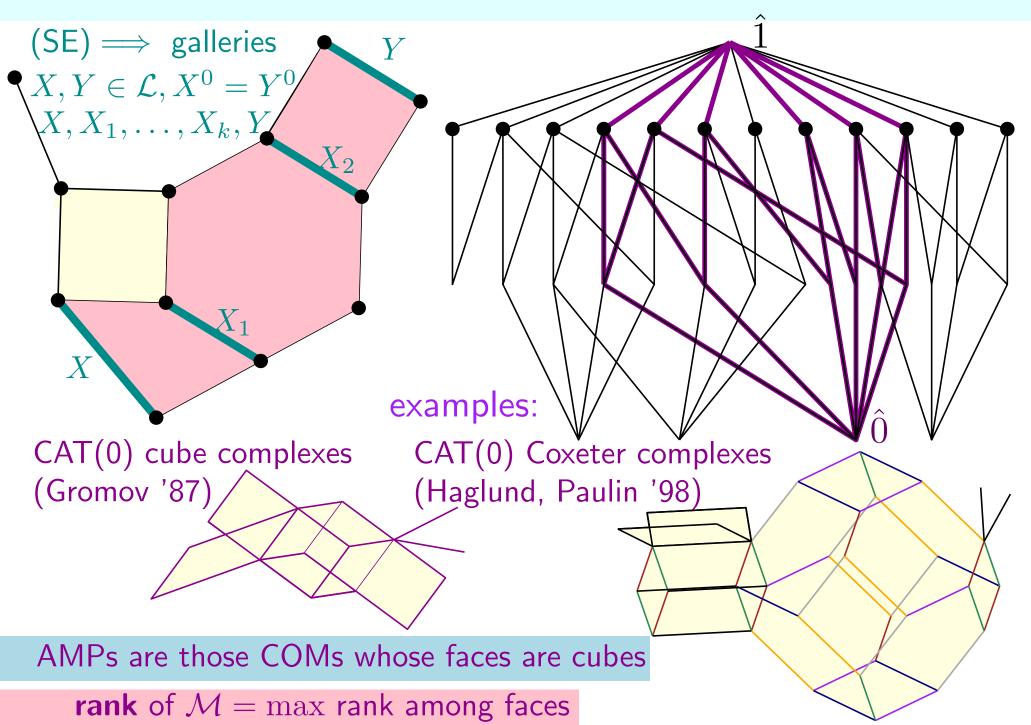
CW left regular bands (Margolis, Saliola, Steinberg '18):*left regular band*: idempotent semigroup with $X \circ Y \circ X = X \circ Y$ \rightsquigarrow poset structure: $X \leq Y$ if $X \circ Y = Y$ *CW* left regular band:principal filters are CW-posets



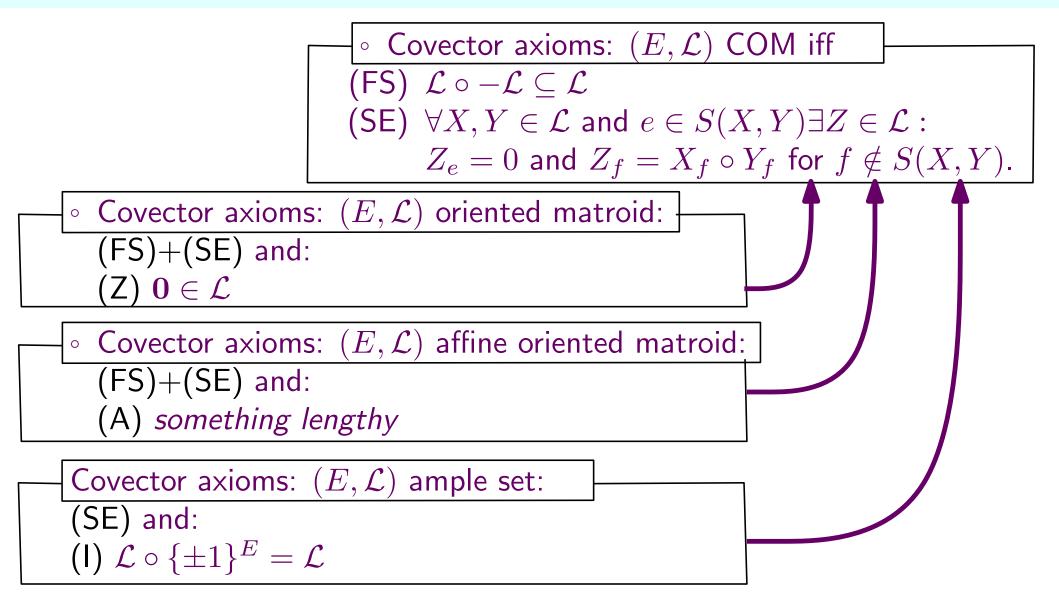
CW left regular bands (Margolis, Saliola, Steinberg '18):*left regular band*: idempotent semigroup with $X \circ Y \circ X = X \circ Y$ \rightsquigarrow poset structure: $X \leq Y$ if $X \circ Y = Y$ *CW* left regular band:principal filters are CW-posets



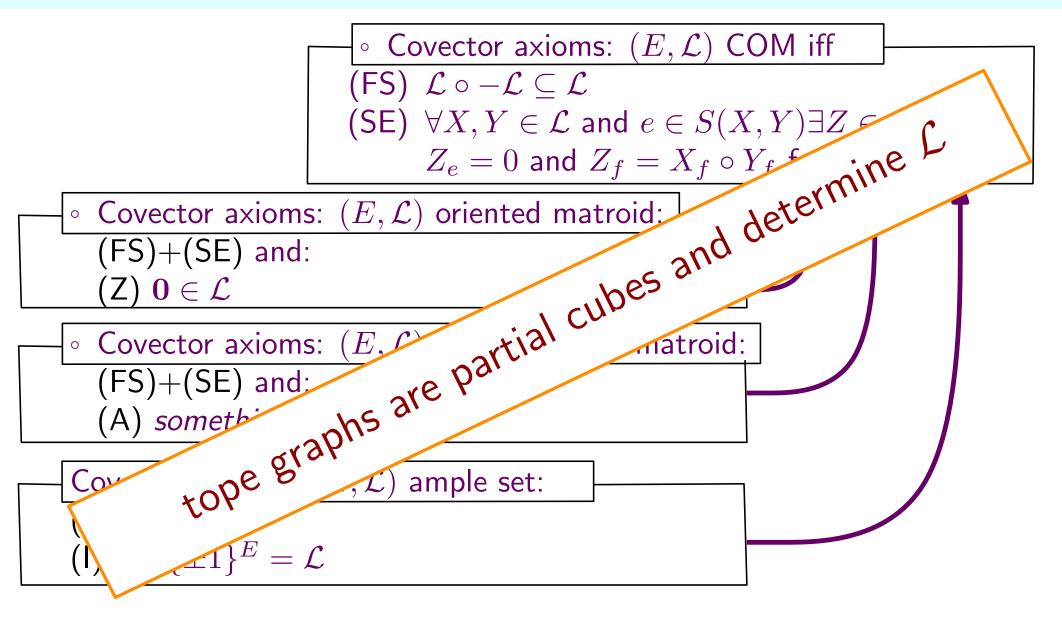


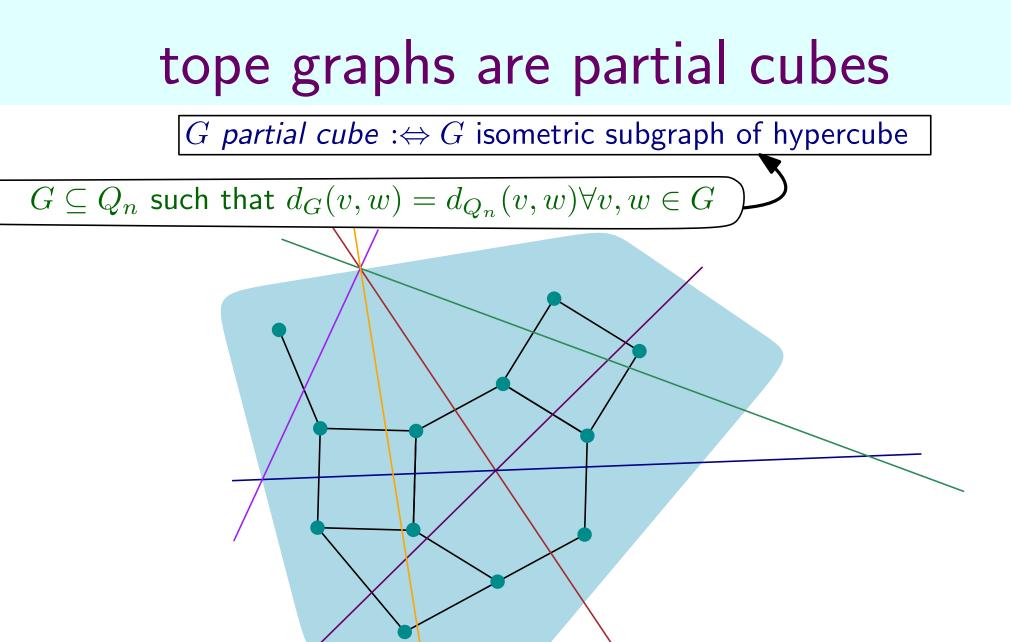


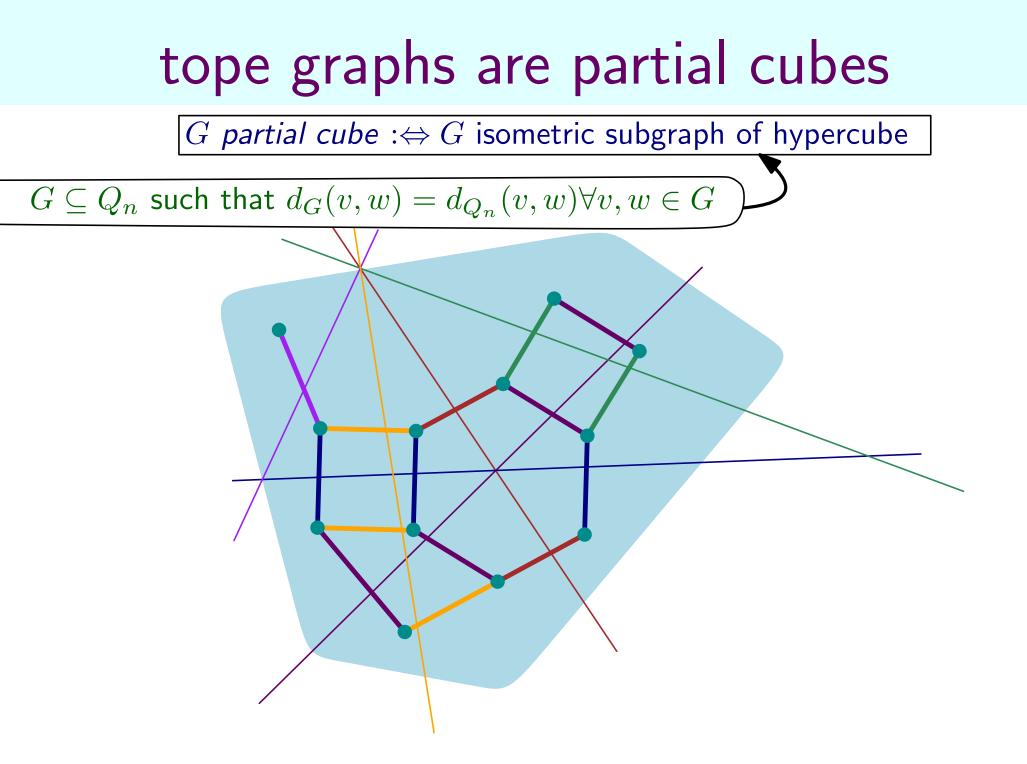
tope graphs



tope graphs



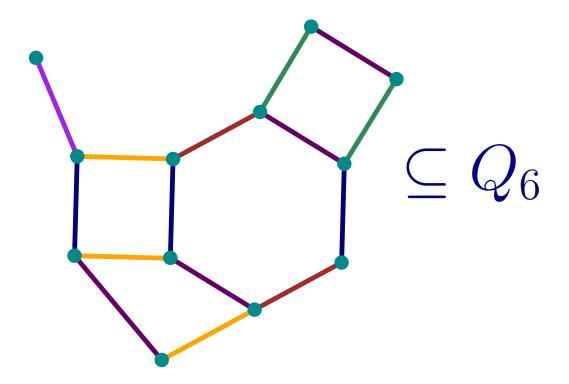




tope graphs are partial cubes

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

 $G \subseteq Q_n$ such that $d_G(v, w) = d_{Q_n}(v, w) \forall v, w \in G$

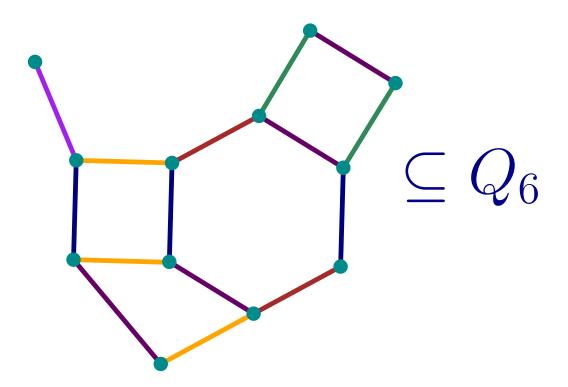


tope graphs are partial cubes

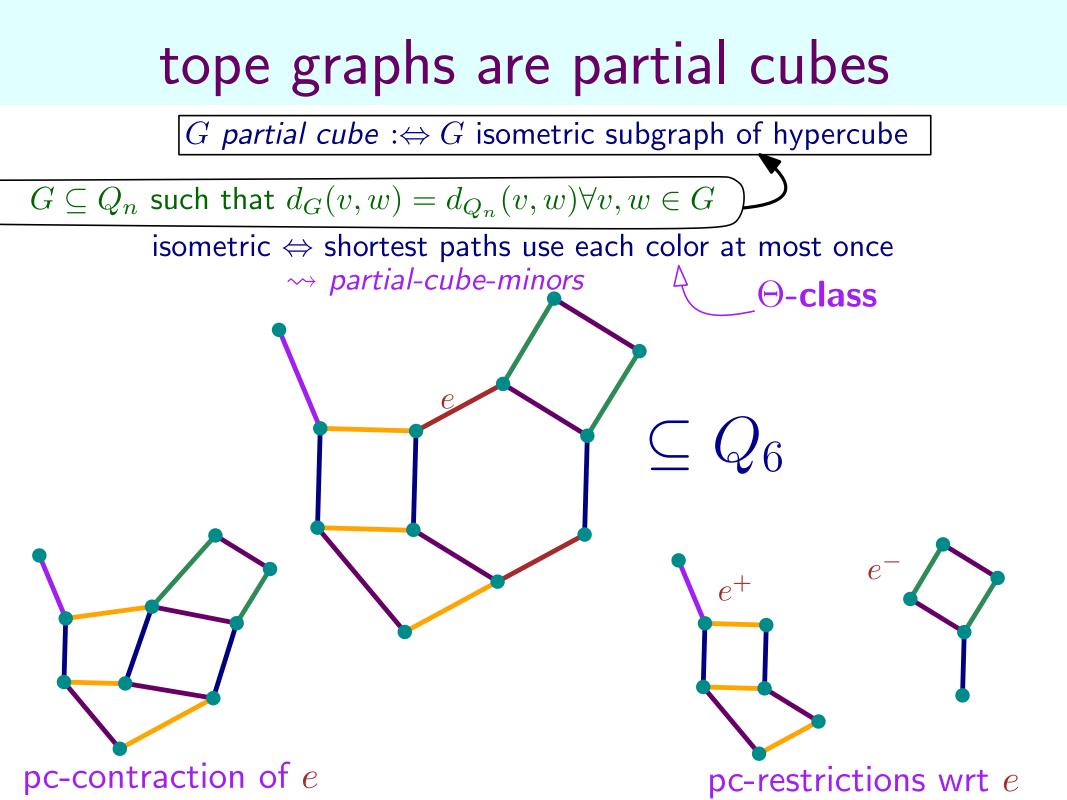
G partial cube : \Leftrightarrow G isometric subgraph of hypercube

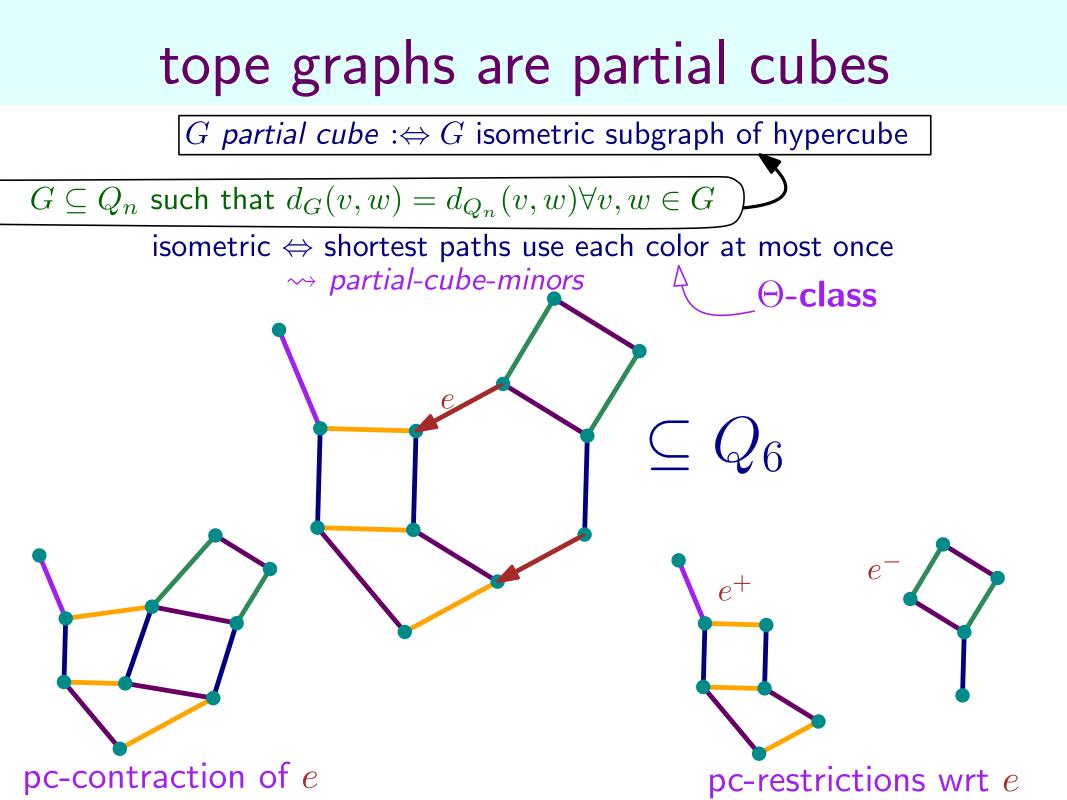
 $G \subseteq Q_n$ such that $d_G(v, w) = d_{Q_n}(v, w) \forall v, w \in G$

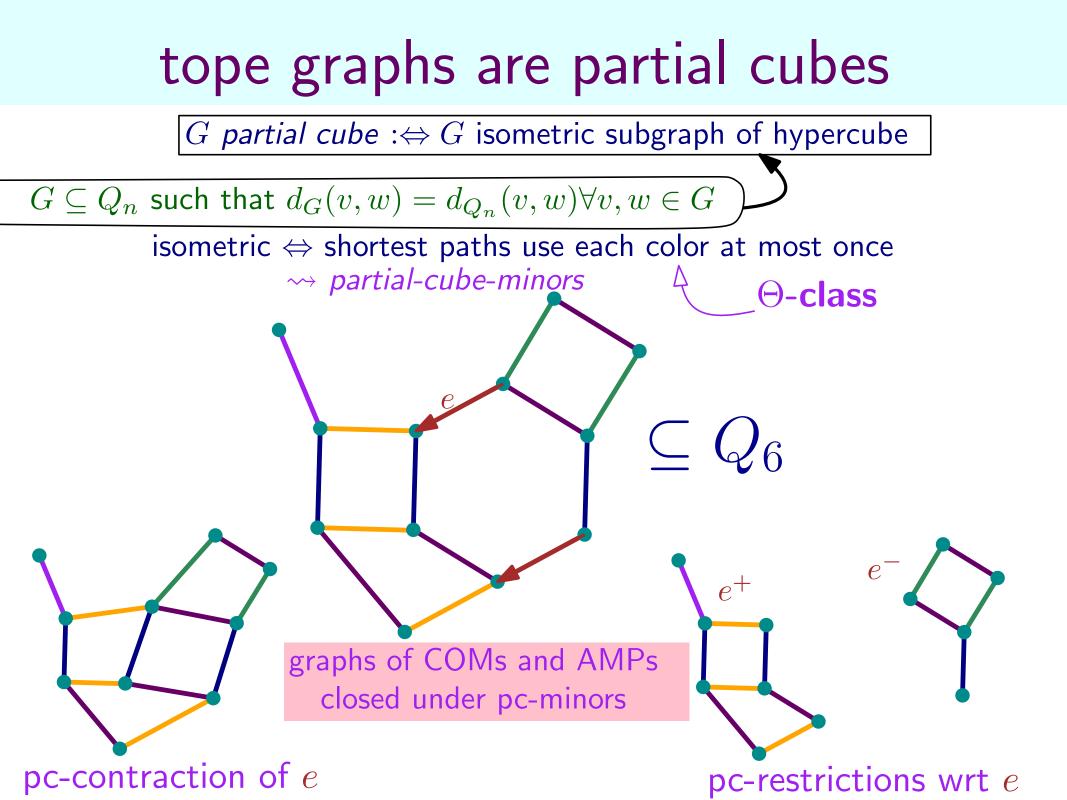
isometric \Leftrightarrow shortest paths use each color at most once

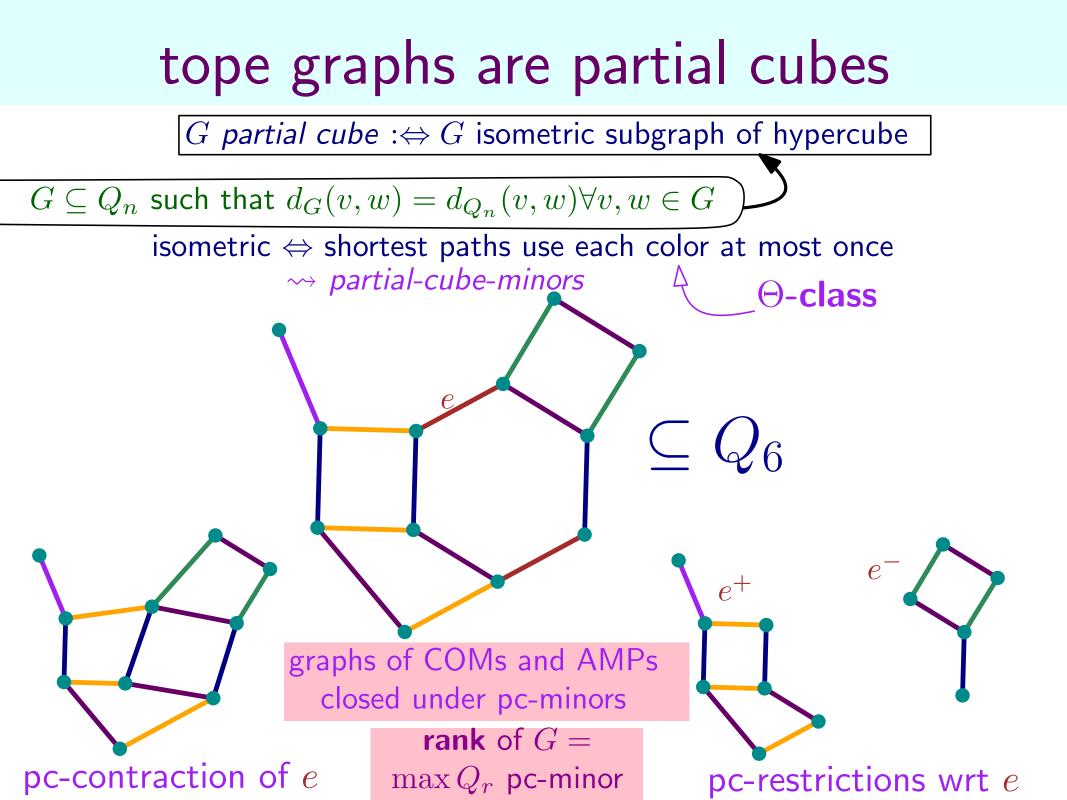


tope graphs are partial cubes G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube $\overline{G \subseteq Q_n}$ such that $d_G(v, w) = d_{Q_n}(v, w) \forall v, w \in G$ isometric \Leftrightarrow shortest paths use each color at most once Θ -class $\subset Q_6$









if G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G shortest paths between vertices of G' stay in G'

 $\begin{array}{ll} \text{if } G \text{ partial cube, then } G' \subset G \text{ convex } \iff G' \text{ restriction of } G \\ \text{ shortest paths between}^{\intercal} & \text{ intersection of halfspaces} \\ \text{ vertices of } G' \text{ stay in } G' & X(G') \text{ containing } G' \end{array}$

if G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G shortest paths between intersection of halfspaces vertices of G' stay in G' X(G') containing G' associate sign vector X(G') to convex subgraph G'

if G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G shortest paths between intersection of halfspaces vertices of G' stay in G' X(G') containing G' associate sign vector X(G') to convex subgraph G'

if G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G shortest paths between intersection of halfspaces vertices of G' stay in G' X(G') containing G' associate sign vector X(G') to convex subgraph G'

if G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G shortest paths between intersection of halfspaces vertices of G' stay in G' X(G') containing G' associate sign vector X(G') to convex subgraph G'

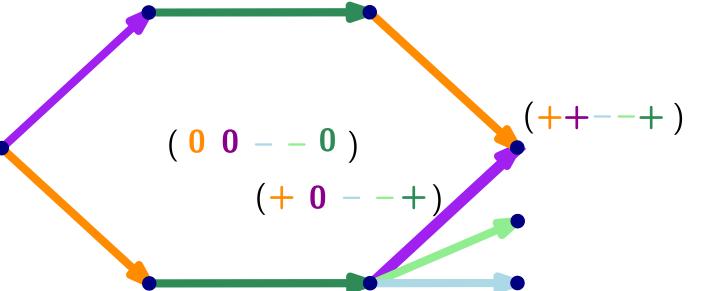
-+)

 $\begin{array}{ll} \text{if } G \text{ partial cube, then } G' \subset G \text{ convex } \iff G' \text{ restriction of } G \\ \text{ shortest paths between } & \text{intersection of halfspaces} \\ \text{ vertices of } G' \text{ stay in } G' & X(G') \text{ containing } G' \\ \text{ associate sign vector } X(G') \text{ to convex subgraph } G' \end{array}$

++--+)

(0 0 - - 0)

 $\begin{array}{ll} \text{if } G \text{ partial cube, then } G' \subset G \text{ convex } \iff G' \text{ restriction of } G \\ \text{ shortest paths between } & \text{ intersection of halfspaces} \\ \text{ vertices of } G' \text{ stay in } G' & X(G') \text{ containing } G' \\ \text{ associate sign vector } X(G') \text{ to convex subgraph } G' \end{array}$



 $G' \subseteq G$ antipodal: $\forall v \in G' \exists \overline{v} \in G' : w \in G'$ iff there is shortest (v, \overline{v}) -path through w

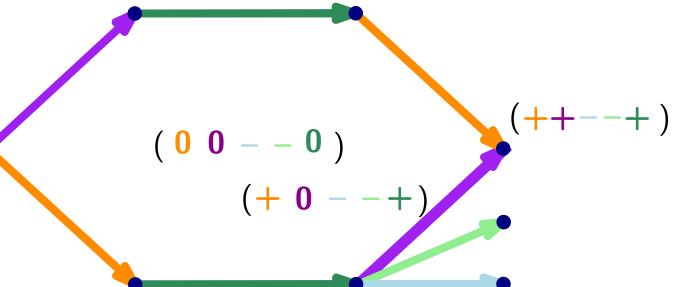
 $\begin{array}{ll} \text{if } G \text{ partial cube, then } G' \subset G \text{ convex } \iff G' \text{ restriction of } G \\ \text{ shortest paths between } & \text{ intersection of halfspaces} \\ \text{ vertices of } G' \text{ stay in } G' & X(G') \text{ containing } G' \\ \text{ associate sign vector } X(G') \text{ to convex subgraph } G' \end{array}$

$$(0 0 - - 0)$$

 $(+ 0 - -+)$

 $G' \subseteq G$ antipodal: $\forall v \in G' \exists \overline{v} \in G' : w \in G'$ iff there is shortest (v, \overline{v}) -path through wThm[K, Marc '19]: G tope graph of COM $\mathcal{M} = (E, \mathcal{L})$, then $X \in \mathcal{L} \Leftrightarrow X = X(G')$ for antipodal $G' \subseteq G$

 $\begin{array}{ll} \text{if } G \text{ partial cube, then } G' \subset G \text{ convex } \iff G' \text{ restriction of } G \\ \text{ shortest paths between}^{\dag} & \text{ intersection of halfspaces} \\ \text{ vertices of } G' \text{ stay in } G' & X(G') \text{ containing } G' \\ \text{ associate sign vector } X(G') \text{ to convex subgraph } G' \end{array}$



 $G' \subseteq G$ antipodal: $\forall v \in G' \exists \overline{v} \in G' :$ $w \in G'$ iff there is shortest (v, \overline{v}) -path through wThm[K, Marc '19]: G tope graph of COM $\mathcal{M} = (E, \mathcal{L})$, then $X \in \mathcal{L} \Leftrightarrow X = X(G')$ for antipodal $G' \subseteq G$ all antipodal subgraphs cubes

if G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G shortest paths between intersection of halfspaces vertices of G' stay in G' = X(G') containing G'associate sign vector X(G') to convex subgraph G'actually: Boolean lattice of sign vectors for the same convex G'++--+)(0 0 - - 0)(++0-+)(++-0+)(++-0)(++00+)(++0-0)(++-00) $G' \subseteq G$ antipodal: $\forall v \in G' \exists \overline{v} \in G'$: $w \in G'$ iff there is shortest (v, \overline{v}) -path through w (++000)Thm[K, Marc '19]: G tope graph of COM $\mathcal{M} = (E, \mathcal{L})$, then Cor: G tope graph of AMP \Leftrightarrow $X \in \mathcal{L} \Leftrightarrow X = X(G')$ for antipodal $G' \subseteq G$ all antipodal subgraphs cubes

labelled sample compression concepts $\mathcal{C} \subseteq \{\pm\}^U$ set system

labelled sample compression concepts $C \subseteq \{\pm\}^U$

set system

realizable samples $\downarrow \mathcal{C} := \{S \in \{\pm, 0\}^U \mid \exists T \in \mathcal{C} : S \leq T\}$

labelled sample compression concepts $C \subseteq \{\pm\}^U$

set system

realizable samples $\downarrow \mathcal{C} := \{ S \in \{\pm, 0\}^U \mid \exists T \in \mathcal{C} : S \leq T \}$

proper labelled compression scheme of size k

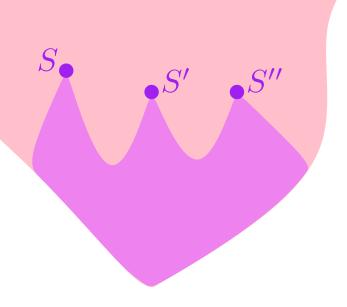
 $\begin{array}{ll} \alpha:\downarrow\mathcal{C}\to\downarrow\mathcal{C} & \beta:\alpha(\downarrow\mathcal{C})\to\mathcal{C} \\ \text{compressor} & \text{reconstructor} \\ \alpha(S)\leq S\leq\beta(\alpha(S)) & \forall S\in\downarrow\mathcal{C} \end{array}$

labelled sample compression concepts $\mathcal{C} \subseteq \{\pm\}^U$

set system

realizable samples $\downarrow \mathcal{C} := \{ S \in \{\pm, 0\}^U \mid \exists T \in \mathcal{C} : S \leq T \}$

proper labelled compression scheme of size k $\alpha :\downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C}$ *compressor* $\alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C}$

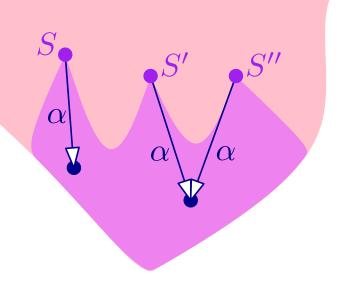


labelled sample compression concepts $\mathcal{C} \subseteq \{\pm\}^U$

set system

realizable samples $\downarrow \mathcal{C} := \{ S \in \{\pm, 0\}^U \mid \exists T \in \mathcal{C} : S \leq T \}$

proper labelled compression scheme of size k $\alpha :\downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C}$ *compressor* $\alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C}$



labelled sample compression

S'

0

 α

concepts $\mathcal{C} \subseteq \{\pm\}^U$ set system

realizable samples $\downarrow \mathcal{C} := \{ S \in \{\pm, 0\}^U \mid \exists T \in \mathcal{C} : S \leq T \}$

proper labelled compression scheme of size k $\alpha :\downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C}$ *compressor* $\alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C}$

labelled sample compression

S'

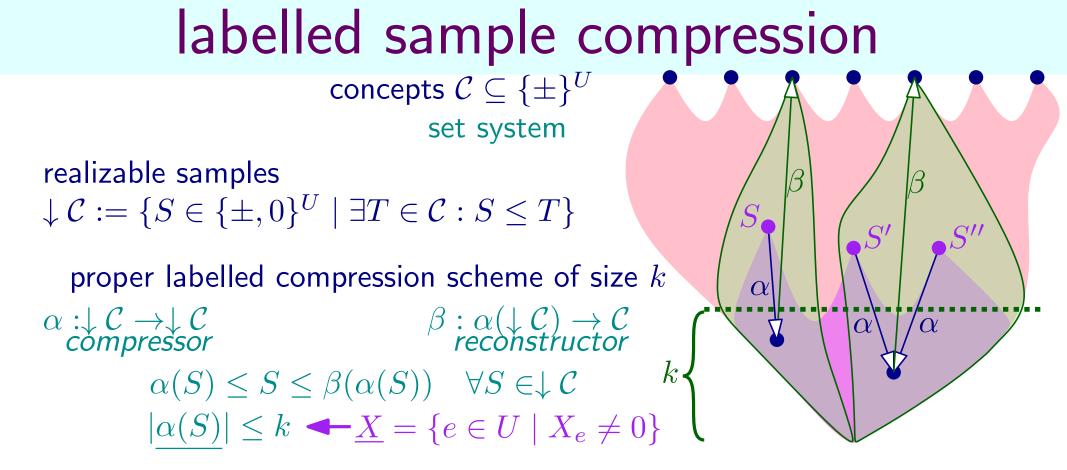
()

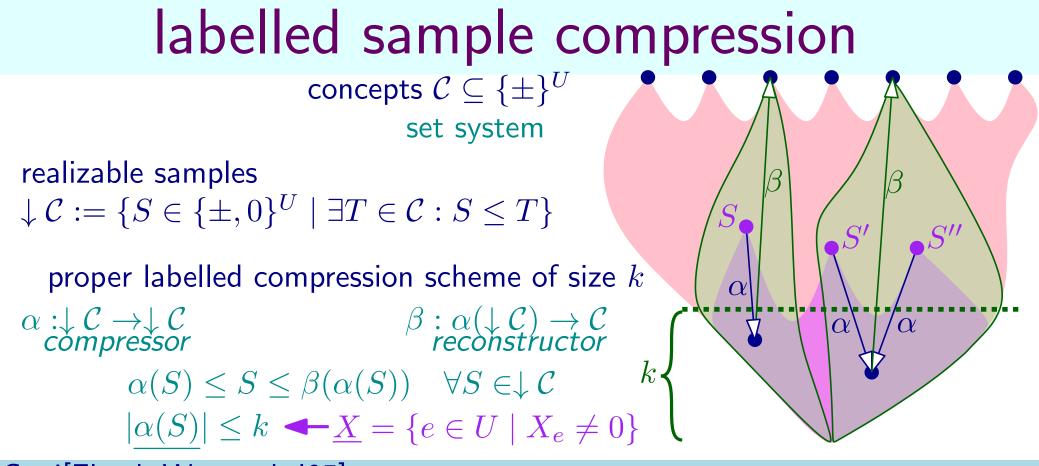
 α

concepts $\mathcal{C} \subseteq \{\pm\}^U$ set system

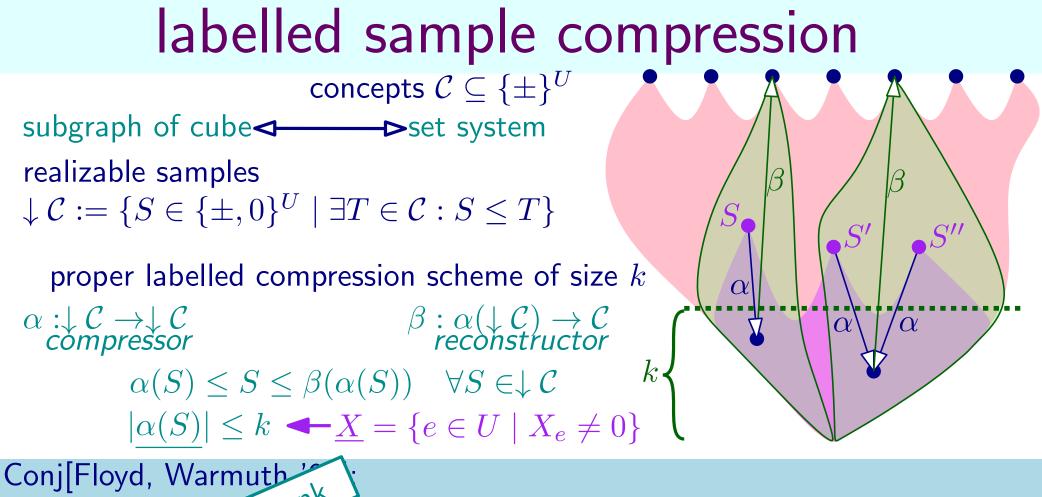
realizable samples $\downarrow \mathcal{C} := \{ S \in \{\pm, 0\}^U \mid \exists T \in \mathcal{C} : S \leq T \}$

proper labelled compression scheme of size k $\alpha :\downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C}$ compressor $\alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C}$ $|\alpha(S)| \leq k \checkmark \underline{X} = \{e \in U \mid X_e \neq 0\}$

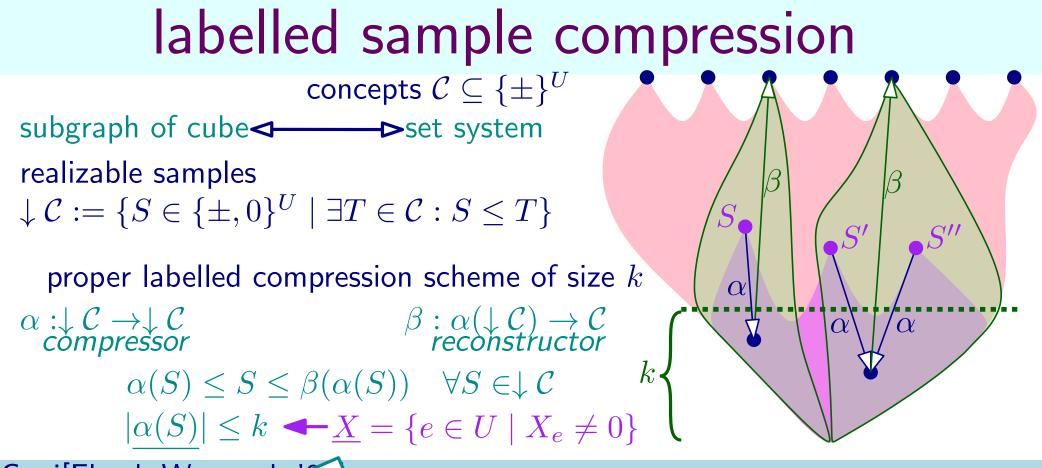




Conj[Floyd, Warmuth '95]: concept class C of VC-dim d admits sample compression scheme of size O(d)

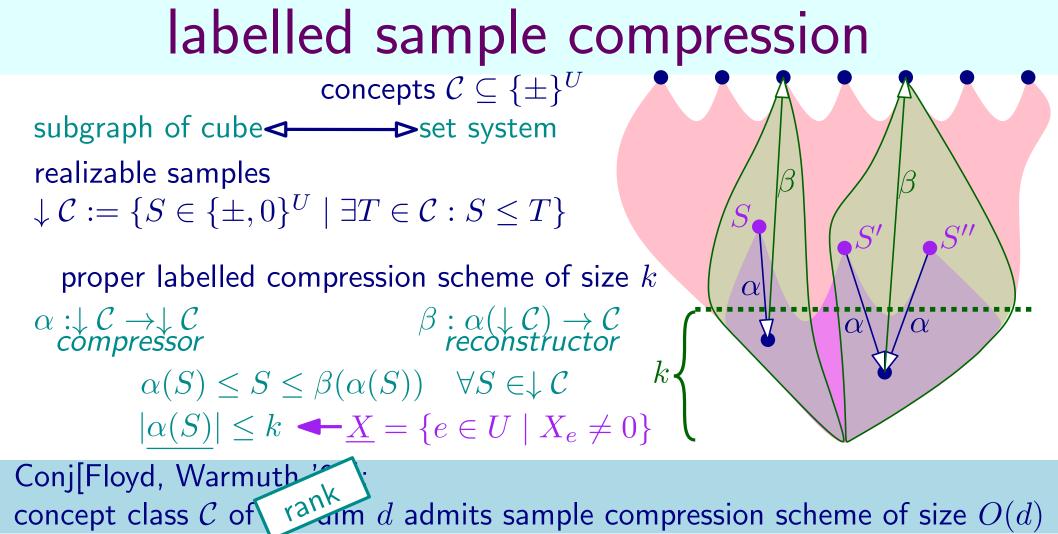


concept class C of rankin d admits sample compression scheme of size O(d)



Conj[Floyd, Warmuth ' concept class C of 'rank d admits sample compression scheme of size O(d)known of size d for C (tope graphs of): • realizable AOM (Ben-David, Litmann '89)

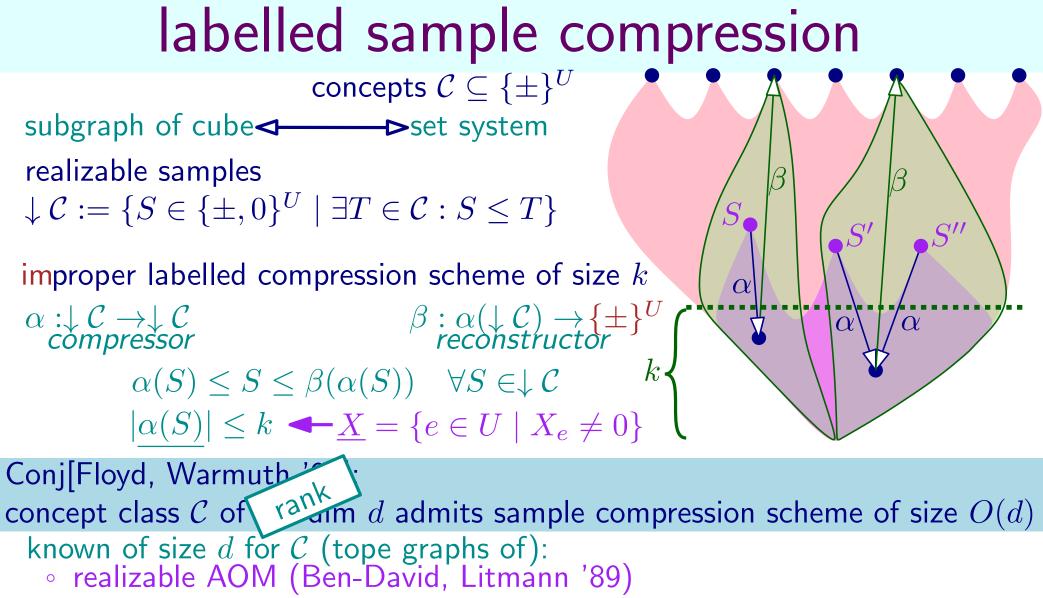
• AMP (Moran, Warmuth '16)



known of size d for C (tope graphs of):
realizable AOM (Ben-David, Litmann '89)

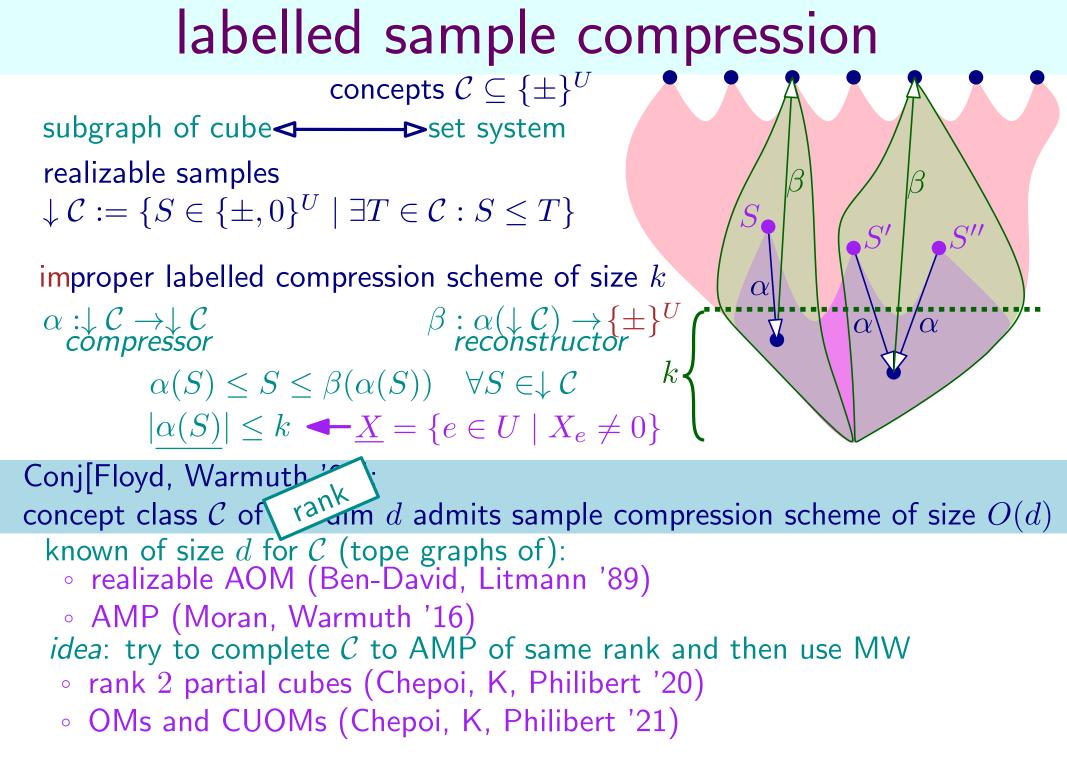
AMP (Moran, Warmuth '16)

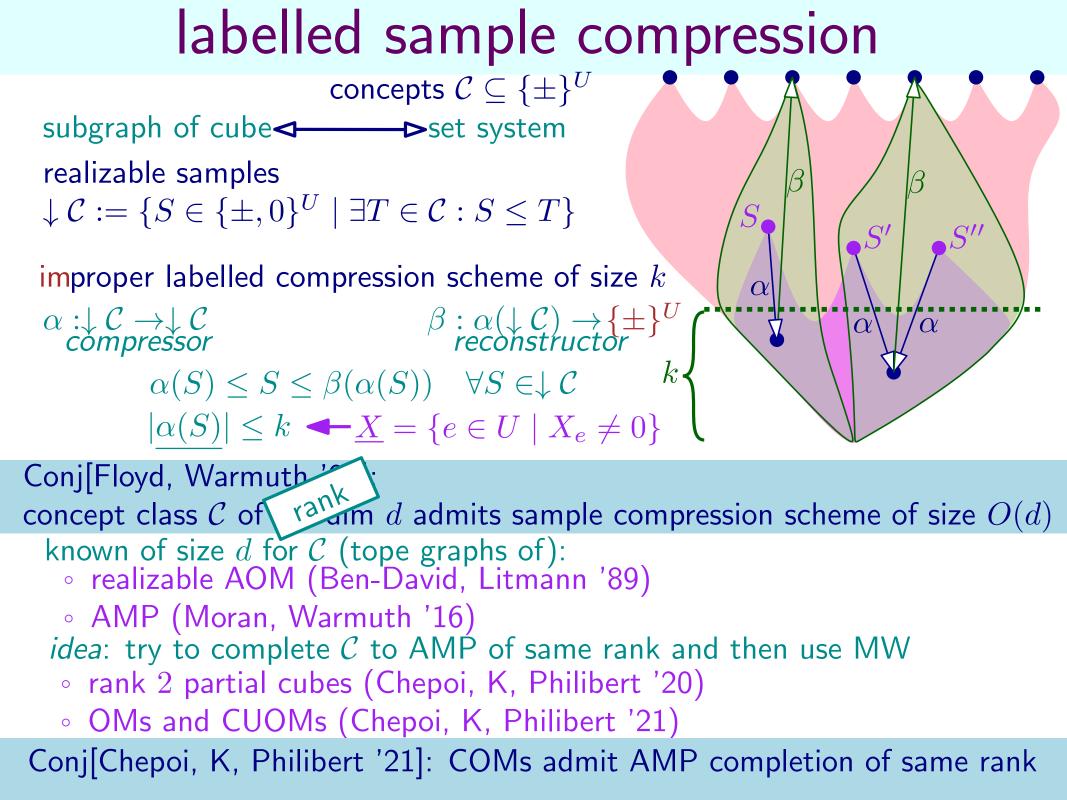
idea: try to complete C to AMP of same rank and then use MW

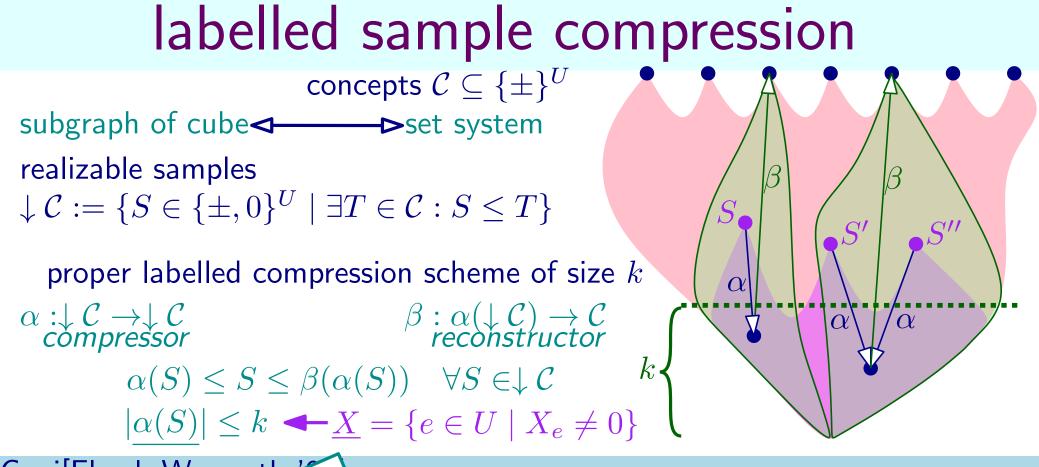


• AMP (Moran, Warmuth '16)

idea: try to complete C to AMP of same rank and then use MW



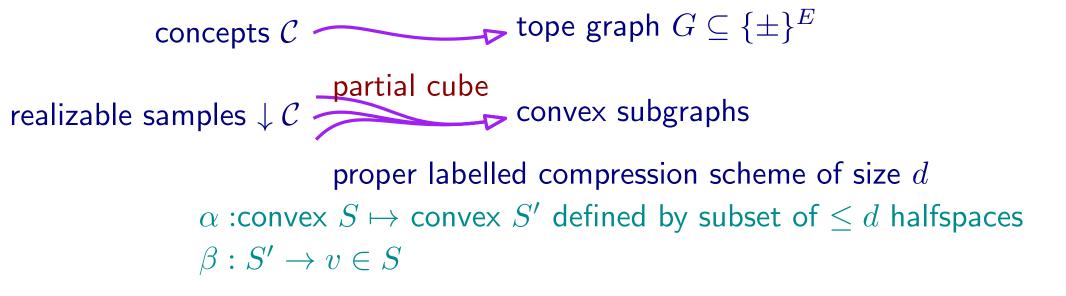


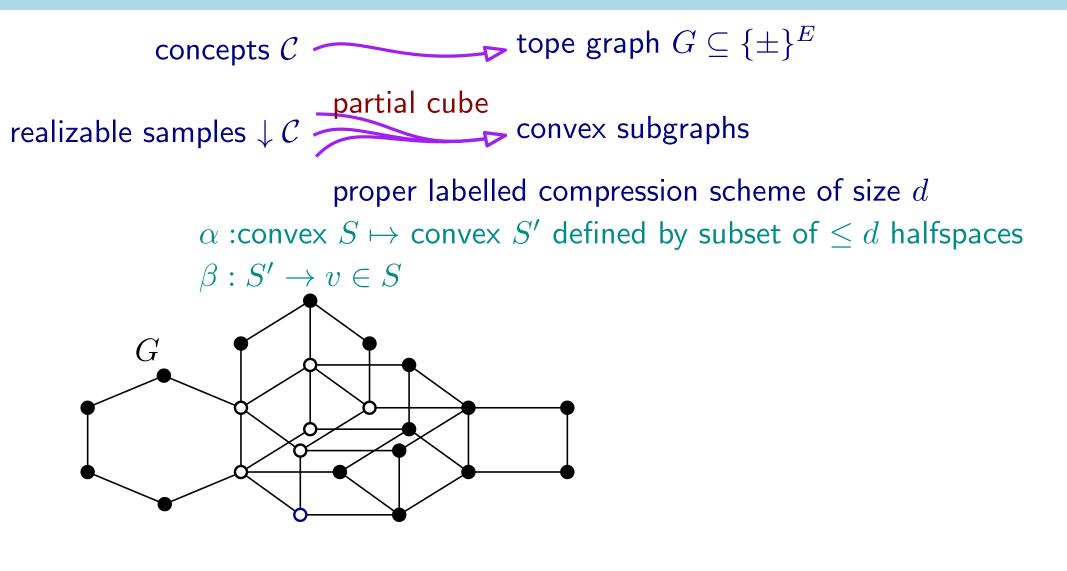


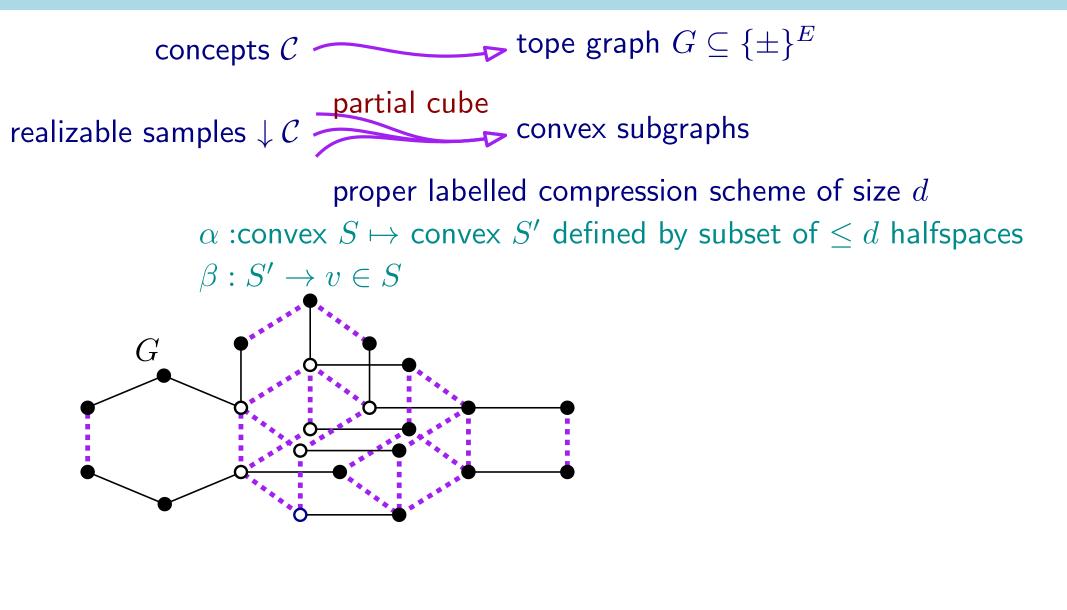
Conj[Floyd, Warmuth d admits sample compression scheme of size O(d)known of size d for C (tope graphs of): • realizable AOM (Ben-David, Litmann '89)

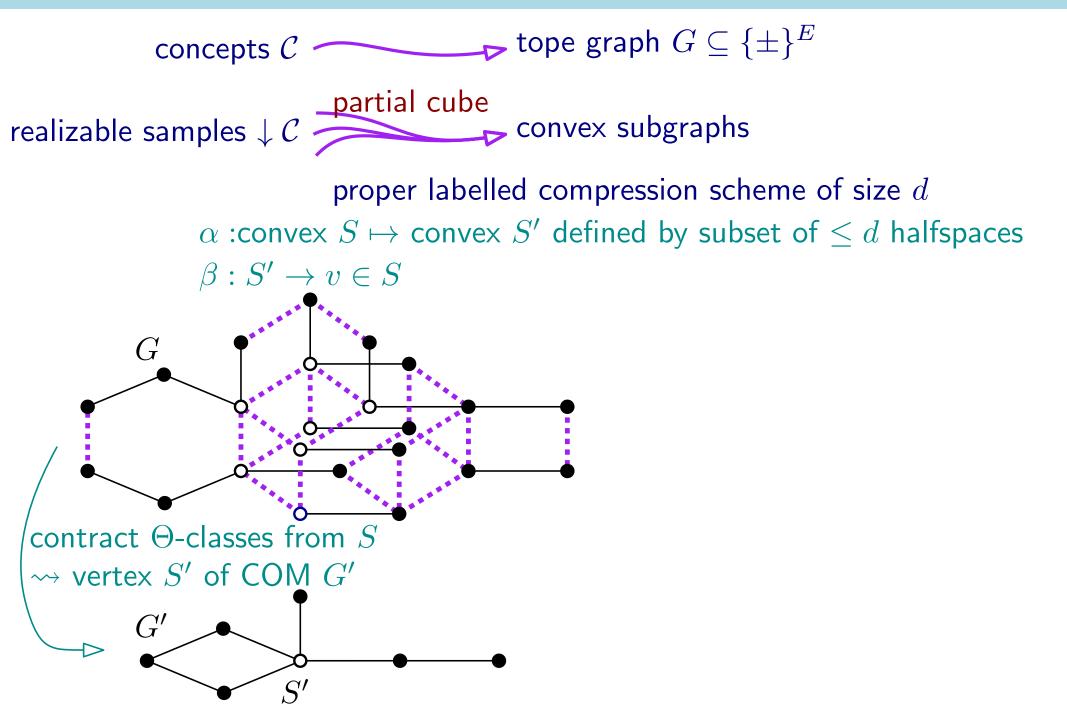
• AMP (Moran, Warmuth '16)

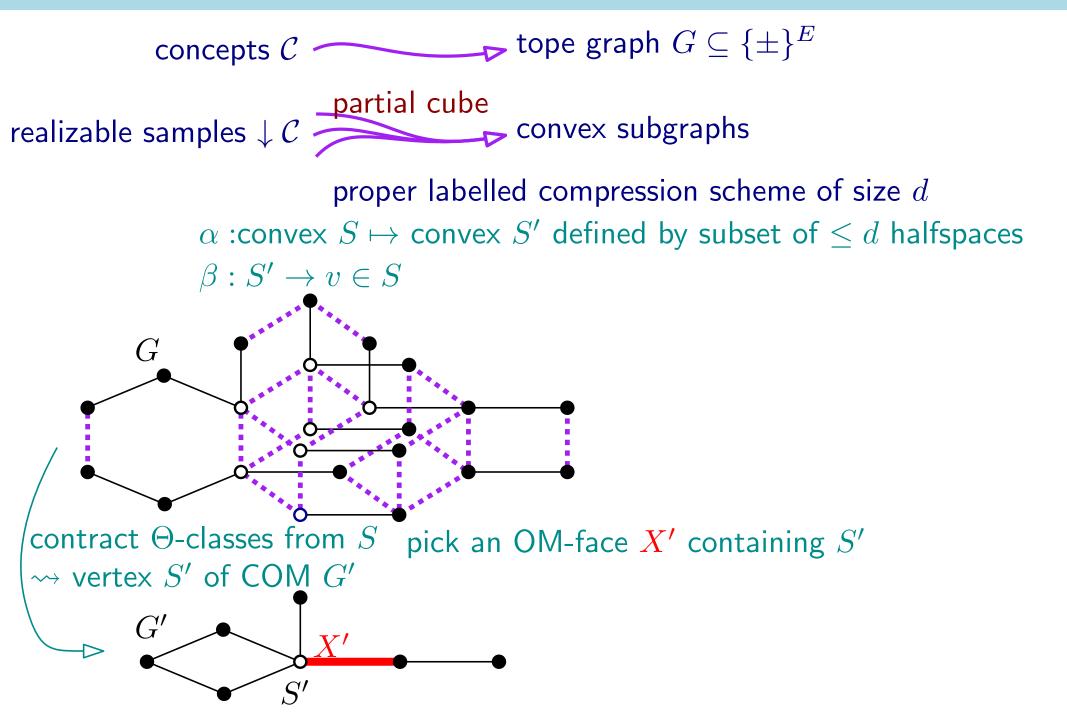
Thm[Chepoi, K, Philibert '21⁺]: COMs of rank d admit proper labelled sample compression scheme of size d

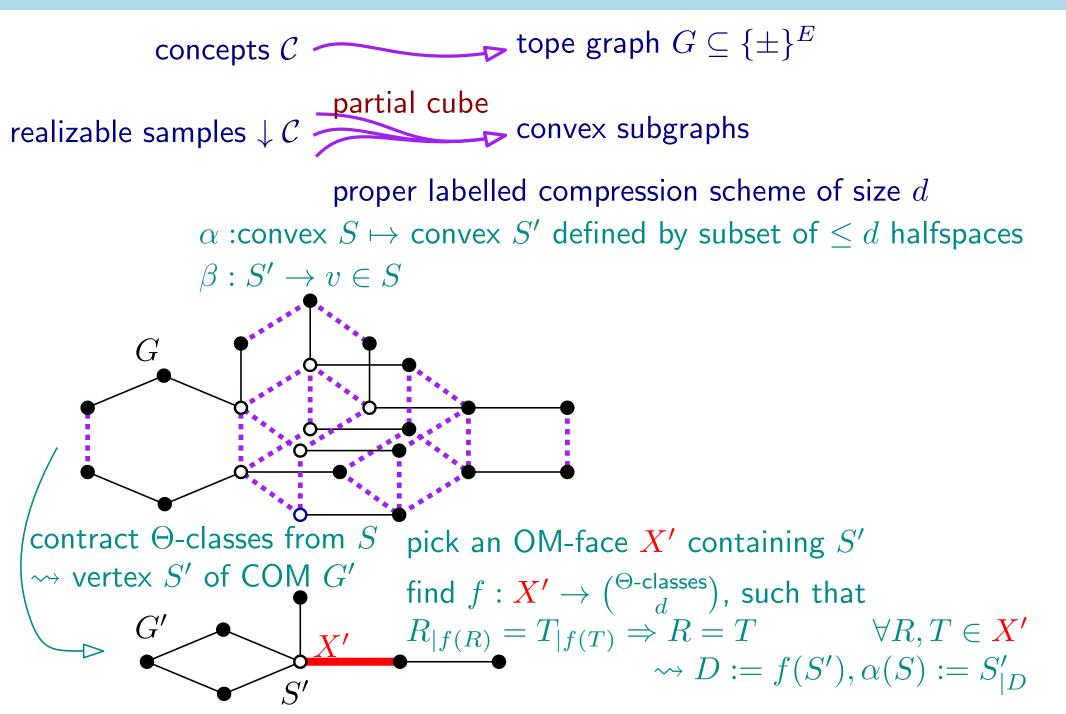


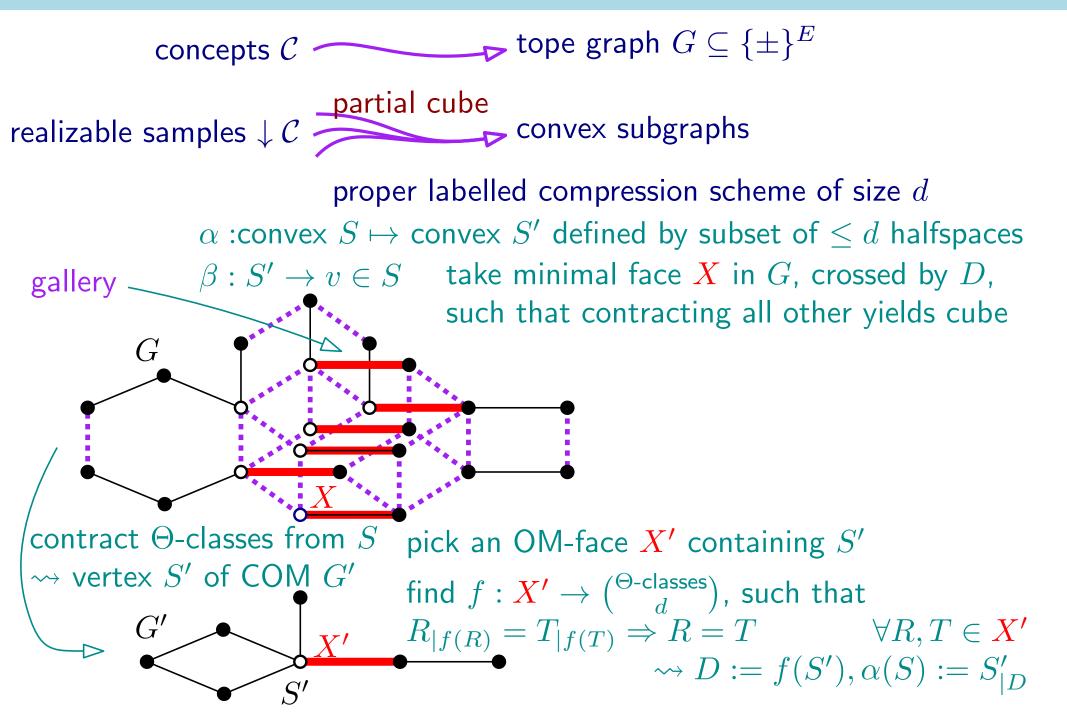


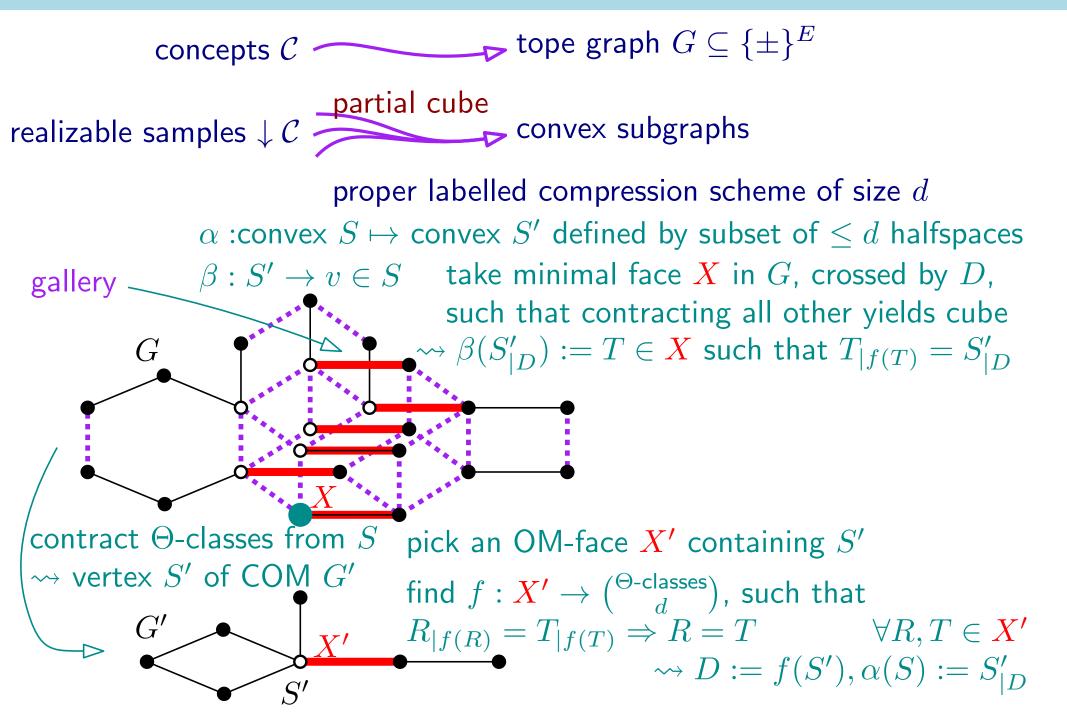


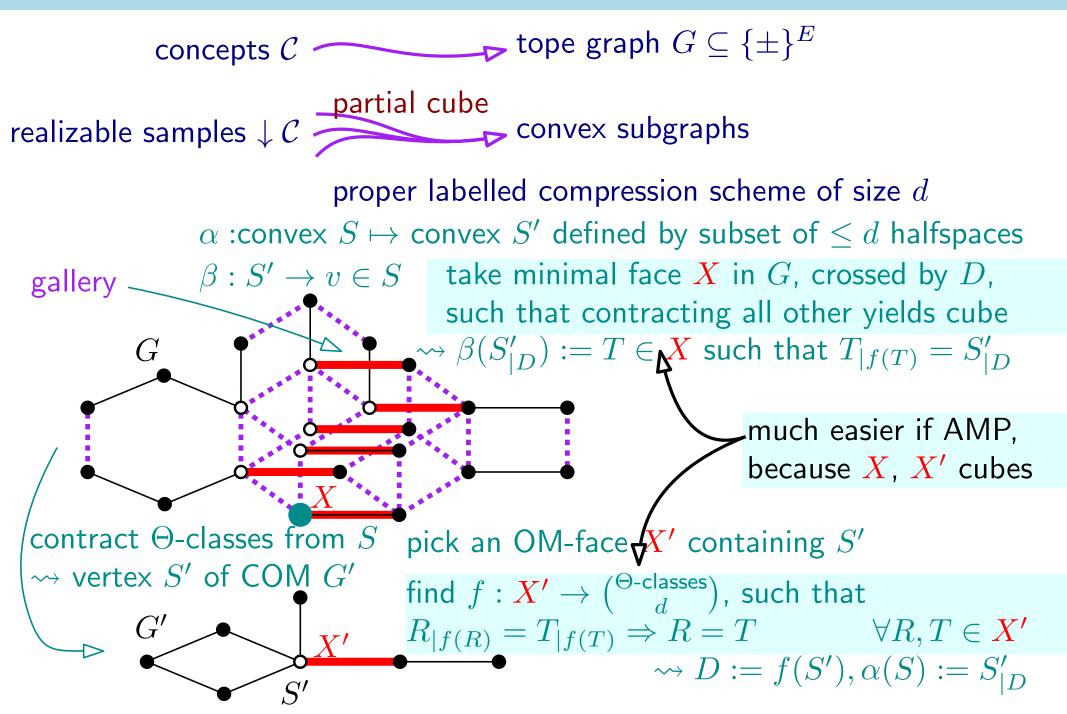










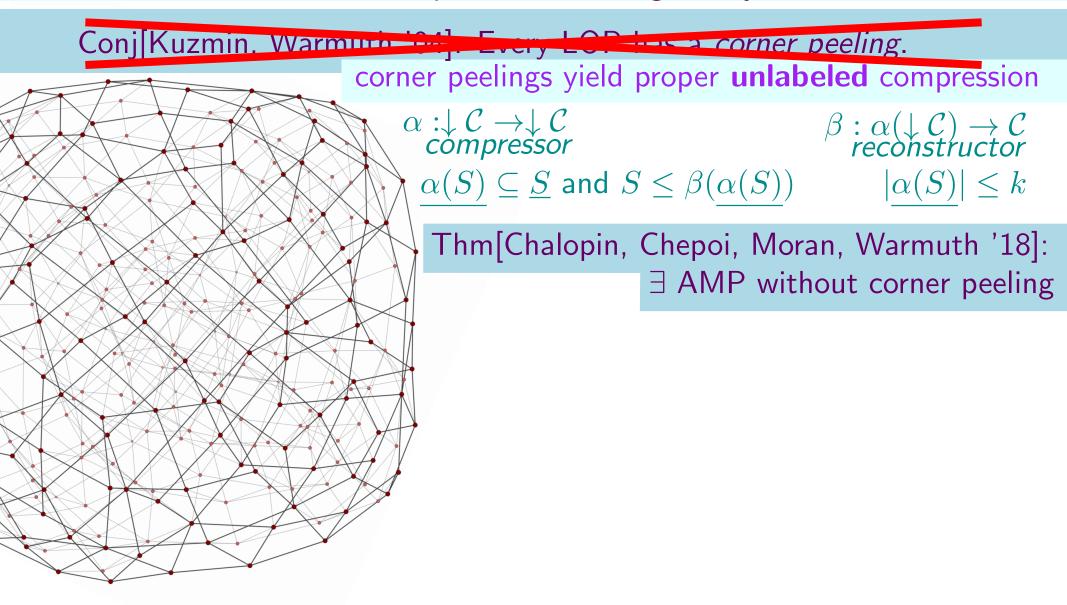


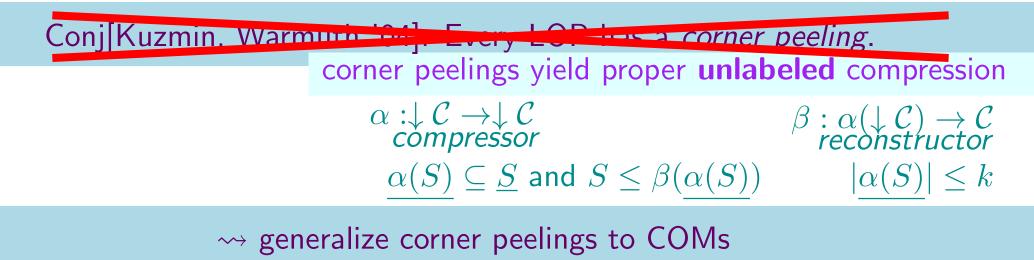
Conj[Kuzmin, Warmuth '04]: Every LOP has a *corner peeling*. corner peelings yield proper **unlabeled** compression

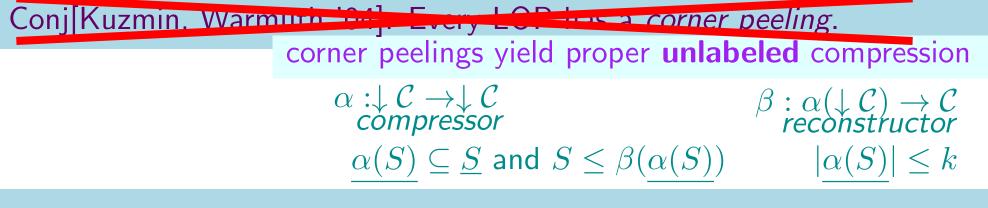
Conj[Kuzmin, Warmuth '04]: Every LOP has a *corner peeling*. corner peelings yield proper **unlabeled** compression

 $\begin{array}{ll} \alpha:\downarrow\mathcal{C}\to\downarrow\mathcal{C}\\ \textit{compressor}\\ \underline{\alpha(S)}\subseteq\underline{S} \text{ and } S\leq\beta(\underline{\alpha(S)}) \end{array} \begin{array}{ll} \beta:\alpha(\downarrow\mathcal{C})\to\mathcal{C}\\ \textit{reconstructor}\\ \underline{|\alpha(S)|}\leq k \end{array}$

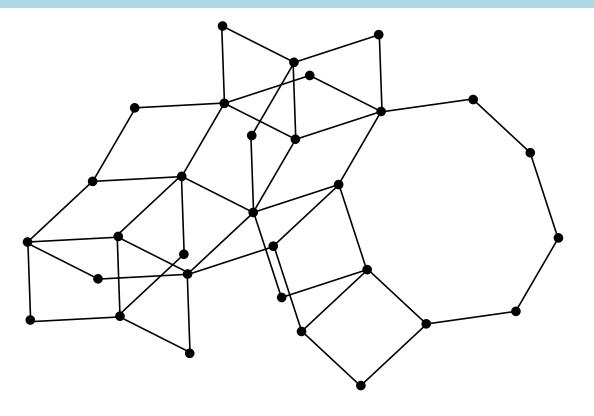
corners and unlabeled sample compression

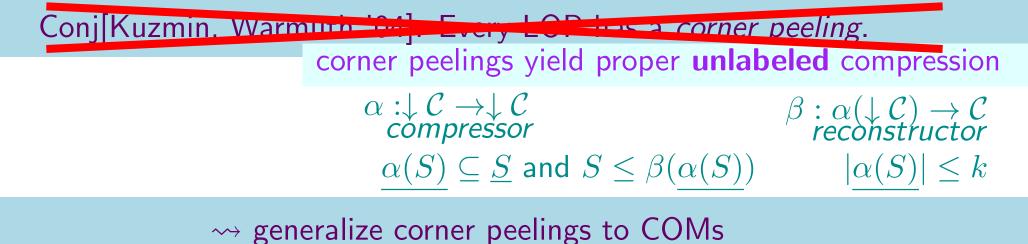


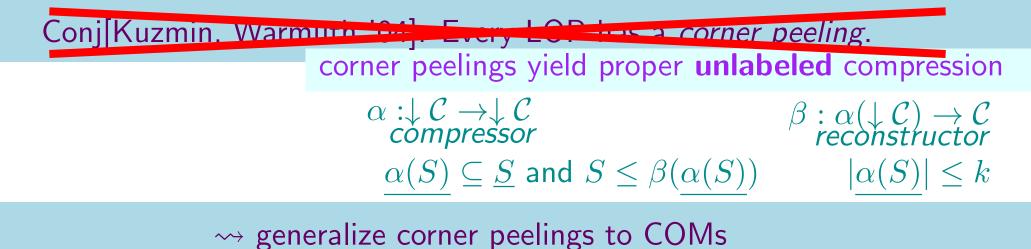


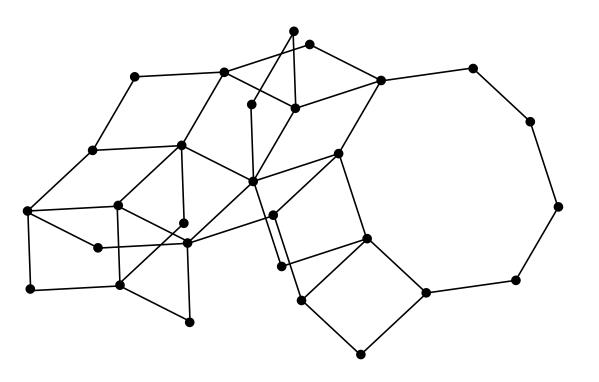


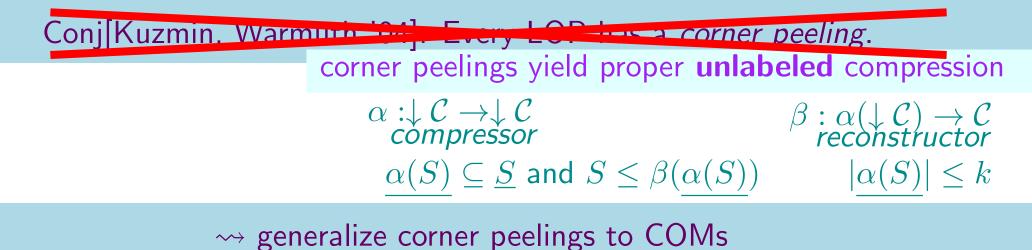
→ generalize corner peelings to COMs

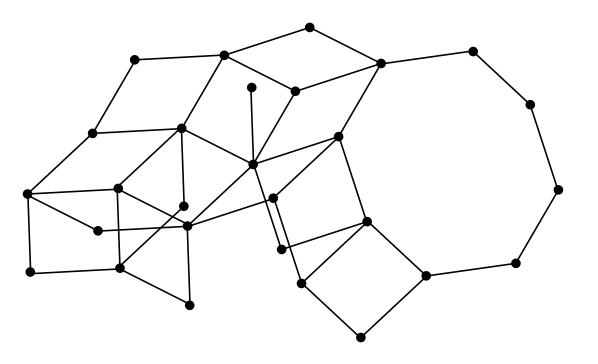


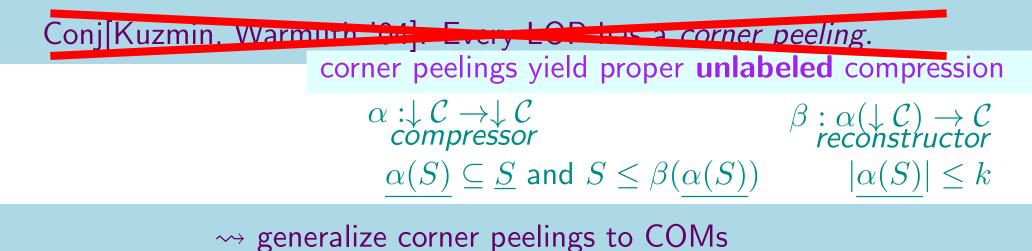


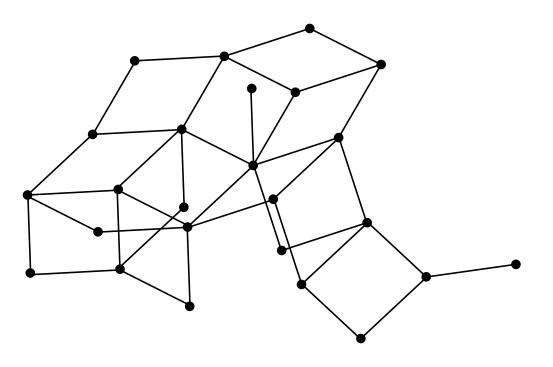












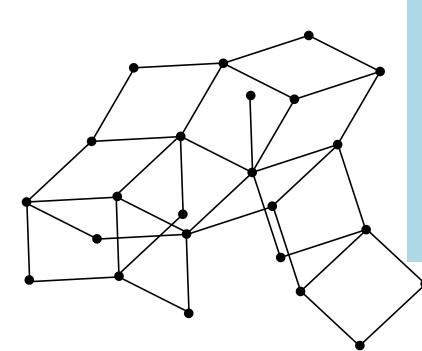
Conj Kuzmin, Warmuni 1941, Every LOD-1-15-a corner peeling.

corner peelings yield proper unlabeled compression

 $\begin{array}{c} \alpha : \downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C} \\ compressor \end{array}$

 $\underline{\alpha(S)} \subseteq \underline{S} \text{ and } S \leq \beta(\underline{\alpha(S)})$

 \rightsquigarrow generalize corner peelings to COMs



Thm[K, Marc '20]: corner peelings for:

- $\circ~{\rm rank}~2~{\rm COMs}$
 - \Rightarrow rank 2 AMPs [Chalopin et al '18]
- hypercellular graphs
 - \Rightarrow bip. cellular graphs [Bandelt, Chepoi '96]

 $\beta: \alpha(\downarrow \mathcal{C}) \to \mathcal{C}$

 $|\alpha(S)| \le k$

- realizable COMs
 - \Rightarrow realizable AMPs [Tracy Hall '04]

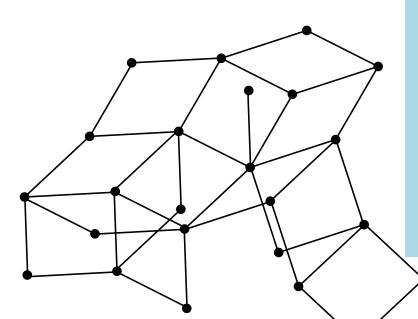
Conj Kuzmin, Warmuni 1941, Every LOD-1-15-a corner peeling.

corner peelings yield proper unlabeled compression

 $\alpha:\downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C}$ *compressor*

 $\underline{\alpha(S)} \subseteq \underline{S} \text{ and } S \leq \beta(\underline{\alpha(S)})$

 \rightsquigarrow generalize corner peelings to COMs



Thm[K, Marc '20]: corner peelings for:

- $\circ~{\rm rank}~2~{\rm COMs}$
 - \Rightarrow rank 2 AMPs [Chalopin et al '18]
- hypercellular graphs
 - \Rightarrow bip. cellular graphs [Bandelt, Chepoi '96]

 $\beta: \alpha(\downarrow \mathcal{C}) \to \mathcal{C}$

 $|\alpha(S)|$

 $\leq k$

- realizable COMs
 - \Rightarrow realizable AMPs [Tracy Hall '04]

do corner peelings of COMs yield unlabeled compression schemes of COMs?

last slide

proper labelled sample compression

- partial cubes
- OM-polyhedra (Bland '74)
- bouquets of oriented matroids (Deza, Fukuda '86)
- CW-left-regular bands (Margolis, Saliola, Steinberg '18)

improper labelled sample compression by completion ? ? ? ? set system \rightsquigarrow partial cube \rightsquigarrow COM \rightsquigarrow AMP

corners

corner peelings of COMs $\stackrel{?}{\Longrightarrow}$ unlabeled compression schemes

last slide

proper labelled sample compression

- partial cubes
- OM-polyhedra (Bland '74)
- bouquets of oriented matroids (Deza, Fukuda '86)
- CW-left-regular bands (Margolis, Saliola, Steinberg '18)

improper labelled sample compression by completion ? ? ? ? set system \rightsquigarrow partial cube \rightsquigarrow COM \rightsquigarrow AMP

