Strongly Shortcut Spaces

Nima Hoda

École Normale Supérieure

December 8, 2021

Motivation

Cycle distortion in combinatorial nonpositive curvature

A systolic complex

A quadric complex

Theorem (Chepoi)

A flag simplicial complex X is systolic iff its 1-skeleton X^1 is a bridged graph: i.e. every isometric cycle in X^1 has length 3.

Theorem (H.)

A flag square complex X is quadric iff every isometric cycle in X^1 has length 4.

Motivation

Circle distortion in Euclidean space

Observation

There is no distance-preserving map from a circle (with arc-length metric) into a Euclidean space. However, such a map exists to a sphere.

If $f: S^1 \to \mathbb{E}^n$ is a 1-Lipschitz map then for some pair of antipodal points $p, \bar{p} \in S^1$ we will have $d(f(p), f(\bar{p})) \leq \frac{2}{\pi} d(p, \bar{p})$.

On the other hand, every great circle in a sphere is embedded in a distance-perserving way.

• We view graphs as geodesic metric spaces with edges isometric to $[0,1] \subset \mathbb{R}$. For example, the cycle graph S_n

is isometric to a circle with arc-length metric of length n.

• A cycle in a graph Γ is a graph homomorphism $f: S_n \to \Gamma$ for some n.

Graphs and Cycles

Note that a cycle $f: S \to \Gamma$ is isometrically embedded iff $d(f(p), f(\bar{p})) \geq \frac{|S|}{2}$ for every antipodal pair of points $p, \bar{p} \in S$.

Definition

A cycle $f: S \to \Gamma$ is $\frac{1}{K}$ -almost isometric for some K > 1 if $d(f(p), f(\bar{p})) \geq \frac{1}{K} \cdot \frac{|S|}{2}$ for every antipodal pair of points $p, \bar{p} \in S$.

For any $\varepsilon > 0$, the inclusion of the red cycle is not $\frac{1}{2-\varepsilon}$ -almost isometric, though it is $\frac{1}{2}$ -almost isometric.

After subdivision of non-cycle edges, the inclusion of the red cycle is isometrically embedded, i.e., is $\frac{1}{K}$ -almost isometric for any K > 1.

Nima Hoda Strongly Shortcut Spaces

Strongly Shortcut Graphs

Definition

A graph Γ is *strongly shortcut* if, for some K > 1, there is a bound on the lengths of the $\frac{1}{K}$ -almost isometric cycles of Γ .

Definition

A group G is *strongly shortcut* if G acts on a strongly shortcut graph properly (i.e. with finite vertex stabilizers) and cocompactly (i.e. with finitely many vertex orbits and edge orbits).

Strongly Shortcut Graphs

Examples

- Hyperbolic graphs
- Median graphs (i.e. 1-skel. of CAT(0) cube complexes) of fin. dim.
- Bridged graphs (i.e. 1-skel. of systolic complexes)
- Hereditary modular graphs (i.e. 1-skel. of quadric complexes)
- Standard Cayley graphs of Coxeter groups
- Every Cayley graph of \mathbb{Z}^n (with Przytycki for $n \geq 3$)
- Helly graphs of finite max degree (with Haettel and Petyt)

Rough Geodesic Spaces

Let X and Y be metric spaces and let $f: Y \to X$ be a function.

Definition

R-roughly *K*-Lipschitz $d(f(y_1), f(y_2)) \leq Kd(y_1, y_2) + R$

(K, R)-quasi-isometric embedding R-roughly K-Lipschitz and $\frac{1}{K}d(y_1, y_2) - R \le d(f(y_1), f(y_2))$

roughly onto some metric neighborhood of f(Y) is equal to X

(K, R)-quasi-isometry (K, R)-quasi-isom. embedding and roughly onto *R*-rough isometric embedding (1, R)-quasi-isom. embedding

A-rough isometric embedding (1, A)-quasi-isom. emit

R-rough isometry (1, R)-quasi-isometry

R-rough geodesic R-rough isom. embedding and Y is a compact interval

Definition

Y is *R*-roughly geodesic if every pair of points of Y is joined by an *R*-rough geodesic.

Rough Geodesic Spaces

Example

A graph G is a geodesic space: i.e. a 0-roughly geodesic space. The vertex set of G with the subspace metric is 1-roughly geodesic.

Example

The Euclidean plane \mathbb{E}^2 is a geodesic metric space. If $A \subset \mathbb{E}^2$ is a subspace whose $\frac{R}{2}$ -neighborhood is equal to \mathbb{E}^2 then A is *R*-roughly geodesic. Moreover, A is roughly isometric to \mathbb{E}^2 .

Strongly Shortcut Spaces

Definition

An *R*-circle in a metric space X is an *R*-rough 1-Lipschitz function $f: S \to X$ where S is a circle (with arc-length metric). We denote the length of S by |S|. An *R*-circle f is $\frac{1}{K}$ -almost isometric for some K > 1 if $d(f(p), f(\bar{p})) \geq \frac{1}{K} \cdot \frac{|S|}{2}$ for every antipodal pair of points $p, \bar{p} \in S$.

Definition

An *R*-rough geodesic space X is *strongly shortcut* if, for some K > 1, there is a bound on the lengths of the $\frac{1}{K}$ -almost isometric *R*-circles of X.

Fact

While not obvious as stated, the definition is independent of the choice of rough geodesicity constant R for X.

Strongly Shortcut Spaces

Strongly Shortcut Spaces

Examples

- Strongly shortcut graphs
- Asymptotically CAT(0) spaces
 - CAT(0) spaces
 - Gromov-hyperbolic spaces
 - $SL(2,\mathbb{R})$ with the Sasaki metric (Kar)
- Coarsely injective spaces of unif. bounded geom. (w/ Haettel, Petyt)
- \mathbb{R}^n with a polyhedral norm (w/ Przytycki)
- Heisenberg groups of all dimensions (w/ Przytycki)

Nima Hoda

• In particular: all Thurston geometries except Sol.

Strongly Shortcut Spaces

Theorem (H.)

Let X be an R-rough geodesic space. The following conditions are equivalent:

- X is strongly shortcut.
- There exists an L > 1 such that there is a bound on the lengths of the (L,4R)-quasi-isometric embeddings of circles in X.
- There exists an L > 1 such that for every C ≥ 0 there is a bound on the lengths of the (L, C)-quasi-isometric embeddings of circles in X.
- For some L > 1 and some $n \in \mathbb{N}$, there is a bound on the $\lambda > 0$ for which there exists an L-bilipschitz embedding of λS_n^0 in X, where S_n^0 is the vertex set of the cycle graph S_n of length n and λS_n^0 is S_n^0 with the metric scaled by λ .
- No asymptotic cone of X contains an isometric copy of the circle of unit length.

Strongly Shortcut Groups

Theorem (H.)

The following conditions are equivalent for a group G:

- G is strongly shortcut.
- G acts metrically properly and coboundedly on a strongly shortcut rough geodesic space.
- **③** *G* has a finite generating set whose Cayley graph is strongly shortcut.

Metrically proper: for any metric ball *B*, only finitely many $g \in G$ satisfy $gB \cap B \neq \emptyset$. *Cobounded*: the translates of some metric ball cover *X*.

Then, by a theorem of Riley, strongly shortcut groups have simply connected asymptotic cones. This has the following implications:

- Polynomial Dehn function (Gromov)
- Linear isodiametric function (Papasoglu)
- Linear filling length function (Riley)

Strongly Shortcut Groups

Examples

- CAT(0) groups
- Hyperbolic groups
- Helly groups (with Haettel and Petyt)
- Systolic groups and quadric groups
- Finitely presented small cancellation groups (C(6) via Wise)
- Discrete Heisenberg groups (with Przytycki)
- Hierarchically hyperbolic groups (with Haettel and Petyt)
 - In particular, mapping class groups of surfaces

Strongly Shortcut Groups

Closure properties

Theorem (H.)

The class of strongly shortcut groups is closed under the following operations.

- Direct products.
- Graphs of groups with finite edge groups.
 - In particular: amalgams and HNN extensions over finite subgroups

Theorem (Genevois)

Graph products of strongly shortcut groups are strongly shortcut.

Theorem (H., Krishna MS)

If a group G is hyperbolic relative to strongly shortcut subgroups then G is strongly shortcut.

	Graphs		
	Spaces		
	Groups		
	Proof ideas		
Proof Ideas			

The most difficult part of the proof of the theorem on equivalent conditions of the strong shortcut property for rough geodesic spaces is the implication $(2) \Longrightarrow (1)$, which can be restated in contrapositive as follows.

Theorem

Suppose that X is not strongly shortcut: i.e. for every K > 1 there exist arbitrarily long $\frac{1}{K}$ -almost isometric R-circles. Then for any L > 1, there are (L, 4R)-quasi-isometric embeddings of arbitrarily long circles in X.

This is an immediate consequence of a Circle Tightening Lemma.

Circle Tightening Lemma

Theorem (H.)

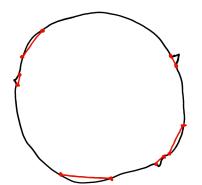
Let N > 1, let L > 1, let K > 1 be small enough, let $R \ge 0$, let M > 0 be large enough and let $C \ge 4R$.

Let $\alpha: S \to X$ be a $\frac{1}{K}$ -almost isometric *R*-circle of length |S| > M in an *R*-rough geodesic space *X*. Then there exists a countable collection $\{Q_i\}_i$ of pairwise disjoint close segments in *S* such that.

$$\mathbf{O} \quad \sum_i |Q_i| < \frac{|S|}{N}$$

- **②** For each *i* there is a function γ_i : $\bar{Q}_i → X$ from an interval $\bar{Q}_i ⊂ ℝ$ such that γ_i has the same endpoints as $α|_{Q_i}$ and $|\bar{Q}_i| < |Q_i|$.
- Replacing each $Q_i \to X$ in α with $\overline{Q}_i \to X$ results in an (L, C)-quasi-isometric embedding of an R-circle.

Moreover, if C > 0 then $\{Q_i\}_i$ is a finite collection.



Circle Tightening Lemma

Graphs	
Spaces	
Groups	
Proof ideas	

Fin