Event Structures, Median Graphs and CAT(0) Cube Complexes

Jérémie Chalopin

LIS, CNRS & Aix-Marseille Université

Metric Graph Theory 2021

07/12/2021

Joint work with Victor Chepoi

07/12/2021

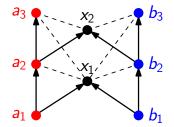
Event Structures, Median Graphs and CAT(0) Cube Complexes

(Prime) Event Structures

An event structure is a triple $\mathcal{E} = (E, \leq, \#)$ where

- E is a set of events
- \blacktriangleright \leq is a partial order on *E*
- # is a (binary) conflict relation on E
- ↓ e := { e' ∈ E : e' ≤ e } is finite for any e ∈ E

•
$$e \# e'$$
 and $e' \le e'' \implies e \# e''$

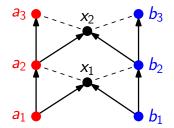


(Prime) Event Structures

An event structure is a triple $\mathcal{E} = (E, \leq, \#)$ where

- E is a set of events
- \blacktriangleright \leq is a partial order on *E*
- # is a (binary) conflict relation on E
- ↓ e := { e' ∈ E : e' ≤ e } is finite for any e ∈ E

•
$$e \# e'$$
 and $e' \le e'' \implies e \# e''$

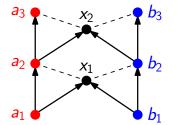


- e_1 and e_2 are in minimal conflict, $e_1 \#_{\mu} e_2$, if there is no event $e'_1 \le e_1$ such that $e'_1 \# e_2$ (and vice versa)
- ► e₁ and e₂ are concurrent, e₁ || e₂, if they are not comparable for ≤ and not in conflict

Configurations and Domains

A finite subset $c \subseteq E$ is a configuration if

- ▶ *c* is downward-closed: $e \in c$ and $e' \leq e \implies e' \in c$
- ▶ *c* is conflict-free: $e, e' \in c \implies (e, e') \notin \#$



- $\{a_1, a_2, b_1\}$ is a configuration
- $\{a_1, b_1, x_1\}$ is a configuration
- $\{a_1, a_2, b_2\}$ is not a configuration
- $\{a_1, a_2, b_1, x_1\}$ is not a configuration

Configurations and Domains

A finite subset $c \subseteq E$ is a configuration if

- ▶ *c* is downward-closed: $e \in c$ and $e' \leq e \implies e' \in c$
- ► *c* is conflict-free: $e, e' \in c \implies (e, e') \notin \#$

The domain $D(\mathcal{E})$ is a directed graph where

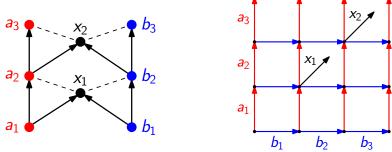
- the vertices of $D(\mathcal{E})$ are the configurations of \mathcal{E}
- $c \rightarrow c'$ if $c' = c \cup \{e\}$ for some event $e \notin c$



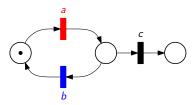
Event Structures, Median Graphs and CAT(0) Cube Complexes

Labeled Event Structures

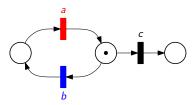
- A labeled event structure (*E*, λ) is an event structure *E* with a labeling λ : *E* → Σ (where Σ is a finite alphabet)
- ► λ is a nice labeling if $\lambda(e) \neq \lambda(e')$ when $e \parallel e'$ or $e \#_{\mu} e'$
- Equivalently, λ is a coloring of the edges of $D(\mathcal{E})$
 - Determinism: two edges with the same origin have distinct colors
 - Concurrency: two opposite edges of a square have the same color



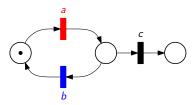
Event Structures, Median Graphs and CAT(0) Cube Complexes



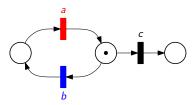
- A 1-safe Petri Net is $N = (S, \Sigma, F, m_0)$
 - S: places
 - Σ: transitions
 - $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
 - $m_0 \subseteq S$: initial marking



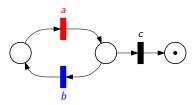
- A 1-safe Petri Net is $N = (S, \Sigma, F, m_0)$
 - S: places
 - Σ: transitions
 - $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
 - $m_0 \subseteq S$: initial marking



- A 1-safe Petri Net is $N = (S, \Sigma, F, m_0)$
 - S: places
 - Σ: transitions
 - $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
 - $m_0 \subseteq S$: initial marking

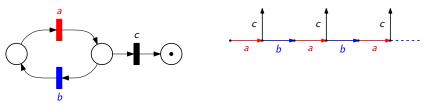


- A 1-safe Petri Net is $N = (S, \Sigma, F, m_0)$
 - S: places
 - Σ: transitions
 - $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
 - $m_0 \subseteq S$: initial marking



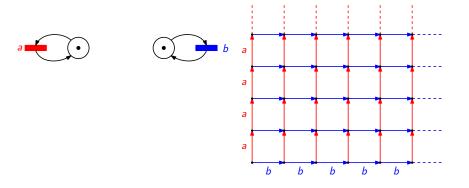
- A 1-safe Petri Net is $N = (S, \Sigma, F, m_0)$
 - S: places
 - Σ: transitions
 - $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
 - $m_0 \subseteq S$: initial marking

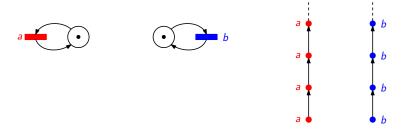
To any finite 1-safe Petri Net *N*, one can associate an event structure \mathcal{E}_N with a nice labeling λ_N

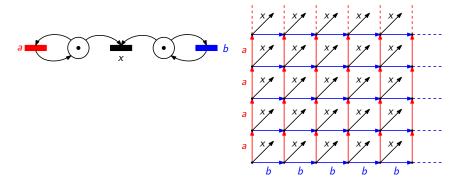


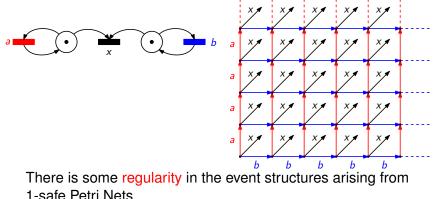
A 1-safe Petri Net is $N = (S, \Sigma, F, m_0)$

- S: places
- Σ: transitions
- $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
- $m_0 \subseteq S$: initial marking



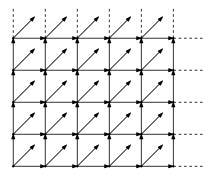






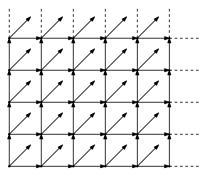
Regular Event Structures

- In D(E), the future of a configuration c is the subgraph induced by the configurations reachable from c in D(E)
- Two configurations c, c' are equivalent, cR_Ec', if they have isomorphic futures



Regular Event Structures

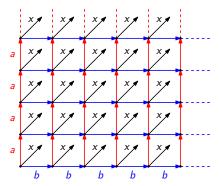
- In D(E), the future of a configuration c is the subgraph induced by the configurations reachable from c in D(E)
- Two configurations c, c' are equivalent, cR_Ec', if they have isomorphic futures
- ► A event structure *E* is regular if *D*(*E*) has a finite degree and *R_E* has a finite number of equivalence classes



Regular Labeled Event Structures

If (\mathcal{E}, λ) is a labeled event structure

- Two configurations c, c' are equivalent, cR_Ec', if they have isomorphic labeled futures
- (ε, λ) is regular if λ is a nice labeling and R_ε has a finite number of equivalence classes
- We say that λ is a regular nice labeling of \mathcal{E}



Any finite 1-safe Petri net gives a regular labeled event structure (and some extra properties)

Theorem

[Thiagarajan '96] + [Morin '05]

Any regular labeled event structure (\mathcal{E}, λ) is isomorphic to the event structure arising from a 1-safe Petri Net

Thiagarajan's regularity conjecture [Thiagarajan '96]

Any regular event structure ${\cal E}$ is isomorphic to the event structure arising from a 1-safe Petri Net

- True when \mathcal{E} is conflict-free [Nielsen, Thiagarajan '02]
- ► True when the domain of *E* is context-free

[Badouel, Darondeau, Raoult '99]

Any finite 1-safe Petri net gives a regular labeled event structure (and some extra properties)

Theorem

[Thiagarajan '96] + [Morin '05]

Any regular labeled event structure (\mathcal{E}, λ) is isomorphic to the event structure arising from a 1-safe Petri Net

Thiagarajan's regularity conjecture

[Thiagarajan '96]

Any regular event structure ${\cal E}$ is isomorphic to the event structure arising from a 1-safe Petri Net

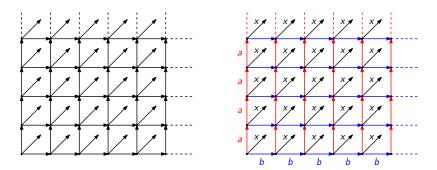
An equivalent condition

Any regular event structure \mathcal{E} admits a regular nice labeling

Our Results

Our Question

Given a regular event structure \mathcal{E} , can we always find a regular nice labeling of \mathcal{E} ?



Our Results

Our Question

Given a regular event structure \mathcal{E} , can we always find a regular nice labeling of \mathcal{E} ?

Theorem

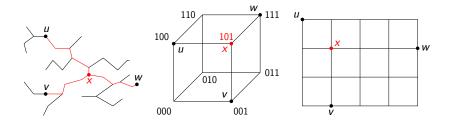
There exist regular event structures that do not have any regular nice labeling.

On the positive side, a correspondence between event structures that admit a regular nice labeling and the special cube complexes introduced by Haglund and Wise ('08)

Median graphs

Definition

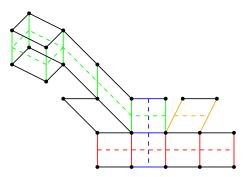
A graph G = (V, E) is median if for all $u, v, w \in V$, there exists a unique $x \in V$ lying on a (u, v)-shortest path, a (u, w)-shortest path, and a (v, w)-shortest path



Hyperplanes [Sageev]

In a median graph G, the Djoković-Winkler relation Θ is defined as follows:

- $e_1 \Theta_1 e_2$ if e_1 and e_2 are two two opposite edges of a square
- $\blacktriangleright \Theta = \Theta_1^*$
- an hyperplane of G is an equivalence class of Θ

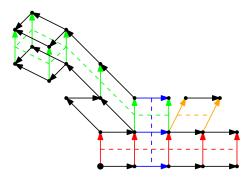


Median Graphs and Event Structures

Theorem

[Barthélémy and Constantin '93]

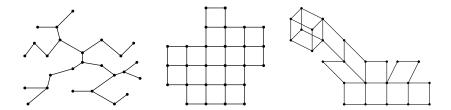
- $D(\mathcal{E})$ is a median graph (forgetting the orientation)
- Any pointed median graph is the domain of an event structure



CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

The 1-skeleton of X is the underlying graph (V(X), E(X))

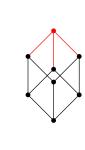


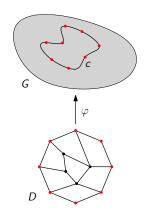
CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

A cube complex X is CAT(0) if

- X is nonpositively curved (NPC) [Gromov]
- X is simply connected





CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

A cube complex X is CAT(0) if

- X is nonpositively curved (NPC) [Gromov]
- X is simply connected

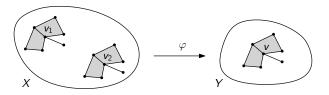
Theorem

[Chepoi '00]

Median graphs are exactly the 1-skeletons of CAT(0) cube complexes

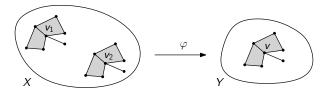
Covers of cube complexes

A cube complex X is a cover of the cube complex Y if there is a simplicial map $\varphi : V(X) \rightarrow V(Y)$ that is locally bijective



Covers of cube complexes

A cube complex X is a cover of the cube complex Y if there is a simplicial map $\varphi : V(X) \rightarrow V(Y)$ that is locally bijective



- Any complex X has a universal cover X such that if Y is a cover of X then X is a cover of Y
- X is simply connected if and only if $\tilde{X} = X$

Constructing Event Structures from NPC complexes

Recall that a cube complex is Non Positively Curved (NPC) if it satisfies Gromov's cube condition

- Starting from a finite NPC cube complex X, its universal cover X is a CAT(0) cube complex
- We have a finite number of equivalence classes of vertices in X up to isomorphism

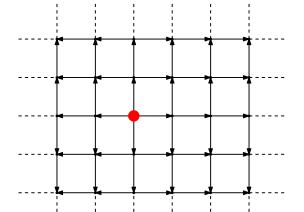
Problem

We need to have some orientations on the edges to get the domain of an event structure

Constructing Event Structures from NPC complexes

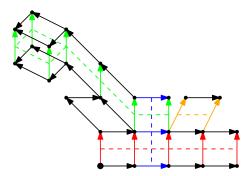
Problem

We need to have some orientations on the edges to get the domain of an event structure



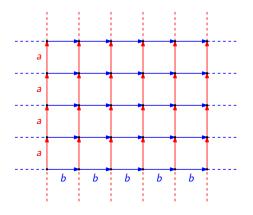
Directed NPC complexes

A directed NPC complex is a complex such that each edge is directed in such a way that two opposite edges of a square have the same direction



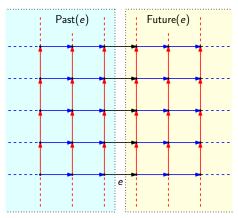
From Directed NPC complexes to Event Structures

- Starting from a finite directed NPC complex X, we construct its universal cover X
- We have a finite number of classes of futures
- But vertices can have an infinite past ...



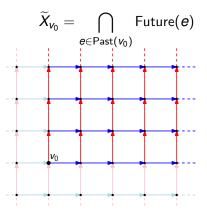
Cutting along Hyperplanes

- In X
 , edges belonging to the same hyperplane have the same orientation
- In a CAT(0) cube complex, hyperplanes are separators
 - For each hyperplane e, we define Past(e) and Future(e)



Cutting along Hyperplanes

- In X
 , edges belonging to the same hyperplane have the same orientation
- In a CAT(0) cube complex, hyperplanes are separators
- Pick $v_0 \in \widetilde{X}$, let $Past(v_0) = \{e \mid v_0 \in Future(e)\}$ and



Cutting along Hyperplanes

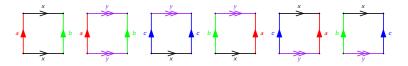
- In X, edges belonging to the same hyperplane have the same orientation
- ▶ In a CAT(0) cube complex, hyperplanes are separators
- Pick $v_0 \in \widetilde{X}$, let $Past(v_0) = \{e \mid v_0 \in Future(e)\}$ and

$$\widetilde{X}_{v_0} = \bigcap_{e \in \mathsf{Past}(v_0)} \mathsf{Future}(e)$$

- Starting from a finite directed NPC complex X, we have constructed a pointed CAT(0) cube complex X̃_{v0}, i.e., the domain of an event structure
- The number of classes of futures is bounded by |V(X)|
- \widetilde{X}_{ν_0} is the domain of a regular event structure

Wise's directed NPC complex X

A colored directed NPC complex with 1 vertex, 2 "horizontal" edges (x and y), 3 "vertical" edges (a, b, and c), 6 squares



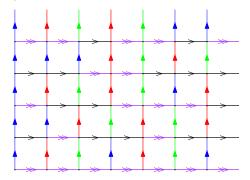
- it defines a square complex
- it is directed non positively curved

Warning!!

Colors have nothing to do with the labels of an event structure

An aperiodic tiling in the universal cover \widetilde{X} of X

In the universal cover \widetilde{X} of X, the quarter of plane defined by y^{ω} and c^{ω} is aperiodic



Proposition

[Wise '96]

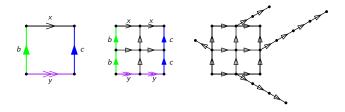
All horizontal words starting on the side of the quarter of plane are distinct

07/12/2021

Event Structures, Median Graphs and CAT(0) Cube Complexes

From \widetilde{X} to a colorless domain \widetilde{W}_{v}

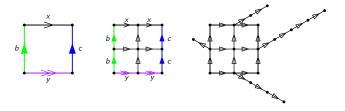
We encode the colors of the edges of X and we get a colorless directed cube complex W



Consider the universal cover \widetilde{W} of W and the domain \widetilde{W}_{ν}

From \widetilde{X} to a colorless domain \widetilde{W}_{v}

We encode the colors of the edges of X and we get a colorless directed cube complex W

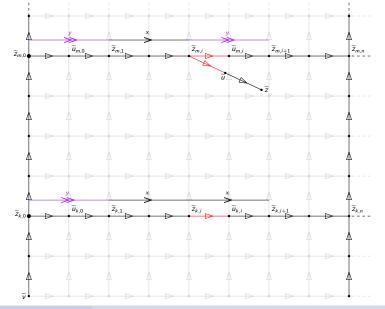


Consider the universal cover \widetilde{W} of W and the domain \widetilde{W}_{v}

Theorem

 W_v is the domain of a regular event structure that does not admit a regular nice labeling

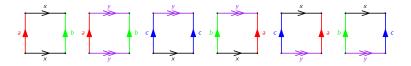
\widetilde{W}_{ν} has no regular nice labeling



Event Structures, Median Graphs and CAT(0) Cube Complexes

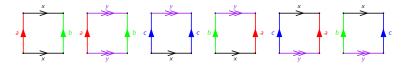
Counterexamples arise from aperiodic tilesets

Wise's complex is obtained from a 4-way deterministic tileset



Counterexamples arise from aperiodic tilesets

Wise's complex is obtained from a 4-way deterministic tileset



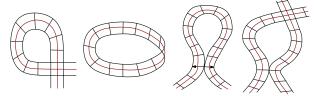
Any aperiodic 4-way deterministic tileset gives a counterexample to Thiagarajan's conjecture

Theorem

- There exists a 4-way deterministic aperiodic tileset [Kari, Papasoglu '99]
- Deciding if a 4-way deterministic tileset tiles the plane is undecidable [Lukkarila '09]

On the positive side: special cube complexes

A NPC complex is special if its hyperplanes behave nicely [Haglund, Wise '08]



- (a) no self-intersection
- (b) no 1-sided hyperplane
- (c) no direct self-osculation
- (d) no interosculation

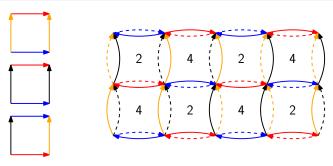
A finite NPC complex is virtually special if it has a finite cover that is special

1-safe Petri nets and special cube complexes

Theorem

An event structure \mathcal{E} admits a regular nice labeling

- ⇔ *E* is isomorphic to the event structure arising from a 1-safe Petri Net [Thiagarajan '96]
- $\Leftrightarrow \text{ there exists a finite directed (virtually) special cube complex X such that } D(\mathcal{E}) \simeq \widetilde{X}_v$



1-safe Petri nets and special cube complexes

Theorem

An event structure \mathcal{E} admits a regular nice labeling

- ⇔ *E* is isomorphic to the event structure arising from a 1-safe Petri Net [Thiagarajan '96]
- $\Leftrightarrow \text{ there exists a finite directed (virtually) special cube complex X such that <math>D(\mathcal{E}) \simeq \widetilde{X}_v$

Theorem

[Agol'13]

If the universal cover \widetilde{X} of a finite NPC complex X is hyperbolic, then X is virtually special

 \widetilde{X} is hyperbolic \Leftrightarrow isometric square grids in \widetilde{X} are bounded

- Counterexamples to Thiagarajan's regularity conjecture
- On the positive side, the regularity conjecture is true for particular ("antinomic") cases
 - conflict-free event structures [Nielsen, Thiagarajan '02]
 - context-free event domains

[Badouel, Darondeau, Raoult '99]

 domains obtained from finite NPC complexes with an hyperbolic universal cover

- Counterexamples to Thiagarajan's regularity conjecture
- On the positive side, the regularity conjecture is true for particular ("antinomic") cases
 - conflict-free event structures [Nielsen, Thiagarajan '02]
 - context-free event domains

[Badouel, Darondeau, Raoult '99]

 domains obtained from finite NPC complexes with an hyperbolic universal cover

Questions:

- Is Thiagarajan's regularity conjecture true for hyperbolic domains?
- Can we decide if a regular event structure admits a regular nice labeling?

- Nice connections between event structures and NPC complexes
 - CAT(0) cube complexes correspond to event structures
 - finite (virtually) special cube complexes correspond to regular event structures that admit a regular nice labeling
 - Question: Do finite NPC complexes correspond to regular event structures?
- Using these connections, we provided a counterexample to another conjecture of Thiagarajan ('14):
 - ► Given a labeled event structure *E* = (*E*, ≤, #) that admits a regular nice labeling, MSO(*E*) is decidable iff *E* is grid-free

- Nice connections between event structures and NPC complexes
 - CAT(0) cube complexes correspond to event structures
 - finite (virtually) special cube complexes correspond to regular event structures that admit a regular nice labeling
 - Question: Do finite NPC complexes correspond to regular event structures?
- Using these connections, we provided a counterexample to another conjecture of Thiagarajan ('14):
 - ► Given a labeled event structure *E* = (*E*, ≤, #) that admits a regular nice labeling, MSO(*E*) is decidable iff *E* is grid-free

Thank you!