All eccentricities on median graphs in subquadratic time

Pierre BERGÉ

Postdoc at LIP, ENS Lyon (previously at IRIF, Université de Paris)

Co-authors: <u>Guillaume Ducoffe</u> and <u>Michel Habib</u>

Summary

- I. Introduction to median graphs
 - 1. Definition and examples
 - 2. Θ -classes
 - 3. Diameter and eccentricities
- II. Eccentricities in subquadratic time
 - 1. Splitting large Θ -classes
 - 2. Simplex graphs
- III. Perspectives

Introduction to median graphs

Graph G = (V, E), undirected and unweighted

Interval
$$I(u, v) = \{x \in V : d(u, x) + d(x, v) = d(u, v)\}$$

= the set of vertices lying on a shortest (u, v) -path.

Definition: Median graph

Graph G is a median graph if, for any triplet of vertices u, v, w, set $I(u, v) \cap I(v, w) \cap I(w, u)$ is a singleton $\{m(u, v, w)\}$

I(w, u)

Triplet u, v, w has a median m(u, v, w)

I(w, u)

Triplet u, v, w has a median m(u, v, w)

Triplet *u*, *v*, *w* has two medians: **no induced** *K*_{2,3} in median graphs

I(w, u)

Triplet u, v, w has a median m(u, v, w)

Triplet *u*, *v*, *w* has two medians: **no induced** *K*_{2,3} in median graphs Triplet *u*, *v*, *w* has no median: median graphs are **triangle-free** (in fact, **bipartite**)

Examples: trees, hypercubes, grids, cogwheels, squaregraphs

We say edges uv and xy are in relation Θ_0 if there is an induced square uvyx in the median graph G

Definition: Θ-classes

Relation Θ is the transitive closure of Θ_0 . Equivalence classes of Θ are called Θ classes and are denoted by E_1, \ldots, E_q .

We say edges uv and xy are in relation Θ_0 if there is an induced square uvyx in the median graph G

Definition: Θ-classes

Relation Θ is the transitive closure of Θ_0 . Equivalence classes of Θ are called Θ classes and are denoted by E_1, \ldots, E_q .

We say edges uv and xy are in relation Θ_0 if there is an induced square uvyx in the median graph G

Definition: Θ-classes

Relation Θ is the transitive closure of Θ_0 . Equivalence classes of Θ are called Θ classes and are denoted by E_1, \ldots, E_q .

We say edges uv and xy are in relation Θ_0 if there is an induced square uvyx in the median graph G

Definition: Θ-classes

Relation Θ is the transitive closure of Θ_0 . Equivalence classes of Θ are called Θ classes and are denoted by E_1, \ldots, E_q .

Theorem: Bénéteau et al., 2020

 Θ -classes can be determined in linear time $O(|E|) = O(n \log n)$.

• Θ -classes are matching cutsets

• Θ -classes are matching cutsets

• Halfspaces and boundaries are convex

Definition: Orthogonal Θ -classes

Classes E_i and E_j are orthogonal if there is an induced square of G with two edges of E_i and two edges of E_j .

• All Θ -classes in an hypercube are pairwise orthogonal

2. Θ-classes

Definition: Pairwise Orthogonal Family (POF)

A set X of Θ -classes is a *POF* if for any $E_i, E_j \in X, E_i \perp E_j$

Definition: Pairwise Orthogonal Family (POF)

A set X of Θ -classes is a *POF* if for any $E_i, E_j \in X, E_i \perp E_j$

BFS from an arbitrary v_0 : for any vertex u, the Θ -classes of all edges incoming to u form a POF.

Definition: Pairwise Orthogonal Family (POF)

A set X of Θ -classes is a *POF* if for any $E_i, E_j \in X, E_i \perp E_j$

BFS from an arbitrary v_0 : for any vertex u, the Θ -classes of all edges incoming to u form a POF.

Definition: Pairwise Orthogonal Family (POF)

A set X of Θ -classes is a *POF* if for any $E_i, E_j \in X, E_i \perp E_j$

BFS from an arbitrary v_0 : for any vertex u, the Θ -classes of all edges incoming to u form a POF.

Definition: Dimension

The dimension d of a median graph is the dimension of the largest induced hypercube of $G: d \leq \log n$.

More generally, for any POF X, there is an hypercube of G whose edges belong to the Θ -classes in X, so $|X| \leq d$.

Theorem: B., Habib, 2021

All eccentricities of median graphs can be determined in time $O(2^{O(d\log d)}n)$, linear for constant dimension.

<u>Best exact algorithm for the general case</u>: Multiple BFS in $O(dn^2)$

<u>Objective</u>: Find an exact algorithm in $O(n^c \log^{O(1)} n)$, c < 2, without restriction on d

Theorem: B., Ducoffe, Habib, 2021

All eccentricities of median graphs can be determined in time $O(n^{5/3}(\log^3 n))$.

Theorem: B., Habib, 2021

All eccentricities of median graphs can be determined in time $O(2^{O(d\log d)}n)$, linear for constant dimension.

Theorem: B., Ducoffe, Habib, 2021

All eccentricities of median graphs can be determined in time $O(n^{5/3}(\log^3 n))$.

Eccentricities in subquadratic time

Intermediate result (assumption)

All eccentricities of median graphs can be determined in time $\tilde{O}(2^{2d}n)$.

Objective: design of a subquadratic-time algorithm

<u>Idea</u>: Recursive calls to the halfspaces of large Θ -classes

Deduce all eccentricities of G given all eccentricities of both H_i' and H_i''

In median graphs, convex = gated

A set *H* is <u>gated</u> if for any vertex $u \in V - H$, there exists a unique vertex $g_H(u) \in H$ such that, for any $w \in H$, a shortest (u, w)-path passes through $g_H(u)$.

$$\forall w \in H, d(u, w) = d(u, g_H(u)) + d(g_H(u), w)$$

In median graphs, convex = gated

A set *H* is <u>gated</u> if for any vertex $u \in V - H$, there exists a unique vertex $g_H(u) \in H$ such that, for any $w \in H$, a shortest (u, w)-path passes through $g_H(u)$.

$$\forall w \in H, d(u, w) = d(u, g_H(u)) + d(g_H(u), w)$$

Consequence:
$$\operatorname{ecc}_{G}(u) = \max\left\{\operatorname{ecc}_{H'_{i}}(u), d\left(u, g_{H''_{i}}(u)\right) + \operatorname{ecc}_{H''_{i}}(g_{H''_{i}}(u))\right\}$$

Let E_1, \ldots, E_p be the Θ -classes with cardinality $\geq D$ (to be determined)

Let E_1, \ldots, E_p be the Θ -classes with cardinality $\geq D$ (to be determined)

Depth
$$p \leq \frac{|E|}{D} \leq \frac{n \log n}{D}$$

Hypercube of dimension d $\Rightarrow \Theta$ -class of size 2^{d-1}

The leaves of the tree have dimension at most $1 + \log D$, their eccentricities are obtained in $\tilde{O}(2^{2(1+\log D)}n) =$ $\tilde{O}(D^2n)$

Let E_1, \ldots, E_p be the Θ -classes with cardinality $\geq D$ (to be determined)

Depth
$$p \leq \frac{|E|}{D} \leq \frac{n \log n}{D}$$

Hypercube of dimension d $\Rightarrow \Theta$ -class of size 2^{d-1}

The leaves of the tree have dimension at most $1 + \log D$, their eccentricities are obtained in $\tilde{O}(2^{2(1+\log D)}n) = \tilde{O}(D^2n)$

Given G, the simplex graph K(G) is defined as:

- V(G): set of induced cliques of G (even not maximal)
- E(G): C and C' adjacent if $C = C' \cup \{u\}$

<u>Characterization</u>: Simplex graphs are the median graphs s.t. all Θ -classes are incident to the same vertex v_0

• 1-to-1 corresp.: vertices of $G \Leftrightarrow \Theta$ -classes of K(G)

cliques of $G \Leftrightarrow$ vertices of $K(G) \Leftrightarrow$ hypercubes of K(G)

<u>Characterization</u>: Simplex graphs are the median graphs s.t. all Θ -classes are incident to the same vertex v_0

• 1-to-1 corresp.: vertices of $G \Leftrightarrow \Theta$ -classes of K(G)

cliques of $G \Leftrightarrow$ vertices of $K(G) \Leftrightarrow$ hypercubes of K(G)

$$u = \{E_1, E_2\}$$

$$f(u) = \{E_1, E_2\}$$

f(u): set of Θ -classes of K(G) incoming into u with the v_0 -orientation \Leftrightarrow set of vertices of G contained into the clique represented by u

$$ecc(u) = |f(u)| + \max_{f(v) \cap f(u) = \emptyset} |f(v)|$$

Theorem

All eccentricities of simplex graphs K(G) can be determined in $\tilde{O}(n)$.

 $E_2 E_3 E_4$, $E_1 E_2$, $E_3 E_4$, \ldots

<u>Idea</u>: - sort all vertices of K(G) in function of |f(u)|

- for each Θ -class E_i of $f(u_{\max})$, split the set and preserves the order (partition refinement)

- for each set obtained, restart the process

- stop at depth d^2

Theorem

All eccentricities of simplex graphs K(G) can be determined in $\tilde{O}(n)$.

<u>Idea</u>: - sort all vertices of K(G) in function of |f(u)|

- for each Θ -class E_i of $f(u_{\max})$, split the set and preserves the order (partition refinement)

- for each set obtained, restart the process
- stop at depth d^2

Examples:

$$f(x) = E_1$$
, then $ecc(u) = |\{E_1\}| + |u_{max}| = 4$
 $f(u) = E_1E_2$, then go to $\neg E_2$

Theorem

All eccentricities of simplex graphs K(G) can be determined in $\tilde{O}(n)$.

Idea: - sort all vertices of K(G) in function of |f(u)|

- for each Θ -class E_i of $f(u_{\max})$, split the set and preserves the order (partition refinement)

- for each set obtained, restart the process
- stop at depth d^2

Examples:

 $f(x) = E_1$, then $ecc(u) = |\{E_1\}| + |u_{max}| = 4$ $f(u) = E_1E_2$, then go to $\neg E_2$

Theorem

All eccentricities of simplex graphs K(G) can be determined in $\tilde{O}(n)$.

Depth: at most *d* blocks

<u>Idea</u>: - sort all vertices of K(G) in function of |f(u)|

- for each Θ -class E_i of $f(u_{\max})$, split the set and preserves the order (partition refinement)

- for each set obtained, restart the process

- stop at depth d^2

Examples:

 $f(x) = E_1$, then $ecc(u) = |\{E_1\}| + |u_{max}| = 4$ $f(u) = E_1E_2$, then go to $\neg E_2$

Perspectives

Open questions

<u>Diameter and eccentricities</u> : Can we obtain a quasilinear time algorithm ?

- Already true for simplex graphs
- With our current technique, not possible to overpass $ilde{O}(n^{1.5})$

<u>Idea</u> : characterize median graphs without balanced Θ -classes

• Perhaps their structure is not far from simplex graphs

<u>Long-term</u> : focus on larger families of graphs ? Reach/betweeness centrality ?