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Introduction to median graphs




1. Definition and examples

Graph G = (V, E), undirected and unweighted

Interval I(u,v) = {x € V:d(u,x) +d(x,v) =d(u,v)}
= the set of vertices lying on a shortest (u, v)-path.

Definition: Median graph

Graph G is a median graph if, for any triplet of vertices u, v,w, set I(u, v) N
I(v,w) N I(w,u) is asingleton {m(u, v,w)}
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1. Definition and examples

I(u, ) I[(v,w)

w

Triplet u, v,w has a
median m(u, v, w)

Triplet u, v, w has two
medians: no induced
K 3 in median graphs

Triplet u, v, w has no
median: median graphs
are triangle-free

(in fact, bipartite)



1. Definition and examples

Examples: trees, hypercubes, grids, cogwheels, squaregraphs




2. ®-classes

We say edges uv and xy are in relation 0 if there is an induced square
uvyx in the median graph G

Definition: O-classes

Relation © is the transitive closure of ®. Equivalence classes of © are called @-
classes and are denoted by Ej, ..., Eg.
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2. ®-classes

We say edges uv and xy are in relation 0 if there is an induced square
uvyx in the median graph G

Definition: O-classes

Relation © is the transitive closure of ®. Equivalence classes of © are called @-
classes and are denoted by Ej, ..., Eg.

Theorem: Bénéteau et al., 2020

Ex ®-classes can be determined in linear
time O(|E|) = O(nlogn).
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2. ®-classes

* ®-classes are matching cutsets
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2. ®-classes

* ®-classes are matching cutsets

* Halfspaces and boundaries are convex
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2. ®-classes

Definition: Orthogonal ©-classes

Classes E; and E; are orthogonal if there is an induced square of G with two edges
of E; and two edges of E;j.

aee=)

» All ®-classes in an hypercube are pairwise orthogonal
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2. ®-classes

Definition: Pairwise Orthogonal Family (POF)

A set X of O-classes is a POF if forany Ej, Ej € X, E; L E|
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2. ®-classes

Definition: Pairwise Orthogonal Family (POF)

A set X of O-classes is a POF if forany Ej, Ej € X, E; L E|

BFS from an arbitrary vy: for any vertex u, the ©-classes of all edges
incoming to u form a POF.
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2. ®-classes

Definition: Pairwise Orthogonal Family (POF)

A set X of O-classes is a POF if forany Ej, Ej € X, E; L E|

BFS from an arbitrary vy: for any vertex u, the ©-classes of all edges
incoming to u form a POF.

Definition: Dimension

The dimension d of a median graph is the dimension of the
largest induced hypercube of G: d < logn.

More generally, for any POF X, there is an hypercube of G
whose edges belong to the ®-classes in X, so |X| < d.
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3. Diameter and eccentricities

Theorem: B., Habib, 2021

All eccentricities of median graphs can be determined in time O(ZO(dlog d)n),
linear for constant dimension.

Best exact algorithm for the general case: Multiple BFS in 0(dn?)

0(1)

Objective: Find an exact algorithm in O(n¢log“‘*’ n), ¢ < 2, without restriction on d

Theorem: B., Ducoffe, Habib, 2021

All eccentricities of median graphs can be determined in time 0(n5/3(log3 n)).
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3. Diameter and eccentricities

Theorem: B., Habib, 2021

All eccentricities of median graphs can be determined in time O(ZO(dlog d)n),
linear for constant dimension.

‘ Partition refinement techniques
Intermediate result

All eccentricities of median graphs can be determined in time 0(22dnlog3 n)
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3. Diameter and eccentricities

Theorem: B., Habib, 2021

All eccentricities of median graphs can be determined in time O(ZO(dlogd)n),
linear for constant dimension.

‘ Partition refinement techniques
Intermediate result

All eccentricities of median graphs can be determined in time 0(22dnlog3 n)

‘ Splitting large ©-classes

Theorem: B., Ducoffe, Habib, 2021

All eccentricities of median graphs can be determined in time 0(n5/3(log3 n)).
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Eccentricities in subguadratic time

25



1. Splitting large ®-classes

Intermediate result (assumption)

All eccentricities of median graphs can be determined in time 5(22dn).

Objective: design of a subquadratic-time algorithm

|dea: Recursive calls to the halfspaces of large ®-classes

4 N\ )
@ O
) o Deduce all eccentricities of G given all
i N ® : eccentricities of both H;" and H;’
@ O
\ J U )




1. Splitting large ®-classes

In median graphs, convex = gated

A set H is gated if for any vertexu € V — H, there
fu ) (gHi,,(u) ) exists a unique vertex gy (u) € H such that, for any

./\,. w € H, a shortest (u, w)-path passes through gy (u).
H; @ h H;"
O

v vw € H,d(u,w) = d(u, gH(u)) + d(gy(u),w)

- RN J
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1. Splitting large ®-classes

In median graphs, convex = gated

A set H is gated if for any vertexu € V — H, there
fu ) (gHi,,(u) ) exists a unique vertex gy (u) € H such that, for any

./\,. w € H, a shortest (u, w)-path passes through gy (u).
H; @ h H;"
O

v vw € H,d(u,w) = d(u, gH(u)) + d(gy(u),w)

- RN J

Consequence: ecc; (1) = max {eccng (u),d (u gHiu(u)) + eCCHi"(gH{’(u))}
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1. Splitting large ®-classes

Let E, ..., E}, be the O-classes with cardinality = D (to be determined)
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1. Splitting large ®-classes

Let E3, ..., E}, be the O-classes with cardinality = D (to be determined)

]
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=

|E| nlogn
< —<
Depthp < > ==

Hypercube of dimension d
= O-class of size 2471

The leaves of the tree have
dimension at most 1 + log D,
their eccentricities are

obtained in 0(22(1+108D)n) =
0(D?n)
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1. Splitting large ®-classes

Let E, ..., E}, be the O-classes with cardinality = D (to be determined)

2
» o—o
> o

E,
R

- - 2
Cost of inductive steps: O(pn) = 0(%)

Optimization for D = n'/s
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=

|E| nlogn
< —<
Depthp < > ==

Hypercube of dimension d
= O-class of size 2471

The leaves of the tree have
dimension at most 1 + log D,
their eccentricities are
obtained in

0(22(1+10gD)n) — G(DZn)
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2. Simplex graphs

Result A Result B Result C Result

All eccentricities of simplex graphs

l l l K (G) can be determined in O(n).

Intermediate result

All eccentricities of median graphs can be determined in time 5(22dn).
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2. Simplex graphs

Result A Result B Result C Result

All eccentricities of simplex graphs

l l l K (G) can be determined in O(n).

Intermediate result

All eccentricities of median graphs can be determined in time 5(22dn).

Given G, the simplex graph K(G) is defined as: K
V(G): set of induced cliques of G (even not maximal) —
E(G): C and C' adjacentif C = C" U {u}
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2. Simplex graphs

Characterization: Simplex graphs are the median graphs s.t. all ®-classes
are incident to the same vertex v,
* 1-to-1 corresp.: vertices of G & 0-classes of K(G)
cligues of G & vertices of K(G) & hypercubes of K(G)

u
G K(G)
—0 ks
E Vo
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2. Simplex graphs

Characterization: Simplex graphs are the median graphs s.t. all ®-classes

are incident to the same vertex v,

* 1-to-1 corresp.: vertices of G & 0-classes of K(G)
cligues of G & vertices of K(G) & hypercubes of K(G)

u
G ) I K(G)
—0 fu) ={E, E;}
E, v

f (u): set of ®-classes of K(G) incoming into u with the vy-orientation
& set of vertices of G contained into the clique represented by u

ecc(u) = [f(W| +

max __|f(v)]

fnfw)=9
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2. Simplex graphs

Theorem

All eccentricities of simplex graphs K (G) can be determined in O (n).

E,E3E, ,E1E,  E3Ey, , ...

Idea: - sort all vertices of K(G) in function of |f(u)]|

- for each O-class E; of f(umax), split the set and
preserves the order (partition refinement)

- for each set obtained, restart the process
- stop at depth d?

u
E, max

X E, 36



2. Simplex graphs

Theorem
All eccentricities of simplex graphs K (G) can be determined in O (n).
Idea: - sort all vertices of K(G) in function of |f(u)]|
F(Uma) BBy, ErBy, Bsky .. - for each @-class E; of f(umayx), split the set and
max preserves the order (partition refinement)
E> k> - for each set obtained, restart the process
2
E,E5E,  E{E,, ... E5E, Ey, .. - stop at depth d
Examples:
Es s Es s f(x) = Ey, then ecc(u) = HE} + lumaxl = 4
E,E5E, , ... E\E,, .. E, EsE, , .. f() = EyEp, then go to 2E; .
E 3 umax
E4_ —IE4, E4 ﬂE4 E4_ —|E4_ E4/ _IE4_ u 1
E;
X E, 37
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2. Simplex graphs

Theorem
All eccentricities of simplex graphs K (G) can be determined in O (n).

Idea: - sort all vertices of K(G) in function of |f(u)]|

Block - for each O-class E; of f(umax), split the set and
preserves the order (partition refinement)

A‘ - for each set obtained, restart the process
A Depth: at - stop at depth d?

/o\ most d blocks Examples:
‘A f(x) = Ey, then ecc(u) = {E1} + |umax| = 4

A f(u) = E,E,, then go to =E,

v E3

umax
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Perspectives
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Open questions

Diameter and eccentricities : Can we obtain a quasilinear time algorithm ?
* Already true for simplex graphs
* With our current technique, not possible to overpass é(nl's)

|dea : characterize median graphs without balanced ®-classes
e Perhaps their structure is not far from simplex graphs

Long-term : focus on larger families of graphs ? Reach/betweeness
centrality ?
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