Quantified Constraint Satisfaction Problem: towards the classification of complexity

Dmitriy Zhuk joint with Barnaby Martin

Lomonosov Moscow State University Higher School of Economics

19th International Conference on Relational and Algebraic Methods in Computer Science RAMICS 2021

Established by the European Commission

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

 $(\mathbb{N};=)$

$$(\mathbb{N};=)$$

$$\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4),$$

$$(\mathbb{N};=)$$

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$

$$(\mathbb{N}; =) \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4),$$

$$(\mathbb{N}; =) \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$$

$$\begin{array}{l} (\mathbb{N};=) \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{array}$$

$QCSP(\mathbb{N}; x = y)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (x_{i_1} = x_{j_1} \land \dots \land x_{i_s} = x_{j_s})$. Decide whether it holds.

$$\begin{array}{l} (\mathbb{N};=) \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{array}$$

$QCSP(\mathbb{N}; x = y)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (x_{i_1} = x_{j_1} \land \dots \land x_{i_s} = x_{j_s})$. Decide whether it holds.

• $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.

$$\begin{aligned} &(\mathbb{N};=)\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

• $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.

$$\begin{aligned} &(\mathbb{N};=)\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].

$$\begin{array}{l} (\mathbb{N};=) \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{array}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

$$\begin{aligned} &(\mathbb{N};=)\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

$$\begin{aligned} &(\mathbb{N};=)\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

Easy to Formulate

$$\begin{aligned} &(\mathbb{N};=)\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

Open since 2007 Easy to Formulate

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question Accessible to anyone Open since 2007 Easy to Formulate

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

• $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is coNP-hard [Bodirsky, Chen, 2010].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021] QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is PSpace-hard.

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021] QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R_1, \ldots, R_s are definable by some Boolean combination of atoms of the form (x = y). Then QCSP($\mathbb{N}; R_1, \ldots, R_s$) is either tractable, NP-complete, or PSpace-complete.

A is a finite set,

 Γ is a set of relations on A (a constraint language)

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$QCSP(\Gamma)$:

```
Given a sentence \exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots)), where R_1, \dots, R_s \in \Gamma.
Decide whether it holds.
```


A is a finite set,

 Γ is a set of relations on A (a constraint language)

$QCSP(\Gamma)$:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$QCSP(\Gamma)$:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2),$

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$QCSP(\Gamma)$:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$QCSP(\Gamma)$:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y),$

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$QCSP(\Gamma)$:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$

A is a finite set,

 Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2),$

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$QCSP(\Gamma)$:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2), \text{ true}$

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$QCSP(\Gamma)$:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2), \text{ true}$

Main Question

What is the complexity of $QCSP(\Gamma)$ for different Γ ?

Σ	dual-Σ	Classification	Complexity Classes

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists,\forall,\wedge\}$			

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$		

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \lor\}$??????????	??????????

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$??????????	??????????
$\{\exists,\lor\}$	$\{ \forall, \wedge \}$	Trivial	L

Given a sentence $\exists y_1 \dots \exists y_t (R_1(\dots) \lor \dots \lor R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$??????????	??????????
$\{\exists,\lor\}$	$\{ \forall, \wedge \}$	Trivial	L
$\{\exists, \wedge\}$	$\{ \forall, \lor \}$	CSP Dichotomy	P, NP-complete

Constraint Satisfaction Problem:

Given a sentence $\exists y_1 \ldots \exists y_t ((R_1(\ldots) \lor R_2(\ldots)) \land R_3(\ldots))$, where $R_1, \ldots, R_3 \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \lor\}$??????????	??????????
$\{\exists,\lor\}$	$\{\forall, \wedge\}$	Trivial	L
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete
$\exists, \land, \lor\}$	$\{\forall,\wedge,\vee\}$	Trivial iff	L
		the core has	NP-complete
		one element	
$\{\exists,\forall,\wedge,\lor\}$		Positive equality	P, NP-complete
		free tetrachotomy	co-NP-complete
			PSPACE-complete

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t ((R_1(\dots) \lor R_2(\dots)) \land R_3(\dots))$, where $R_1, \dots, R_3 \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \lor\}$??????????	??????????
$\{\exists,\lor\}$	$\{\forall, \wedge\}$	Trivial	L
$\{\exists, \wedge\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete
$\{\exists,\wedge,\vee\}$	$\{\forall, \land, \lor\}$	Trivial iff	L
		the core has	NP-complete
		one element	
$\{\exists,\forall,\wedge,\vee\}$		Positive equality	P, NP-complete
		free tetrachotomy	co-NP-complete
			PSPACE-complete
$\{\exists, \forall, /$	$\setminus, \lor, \neg\}$	Trivial iff	L
		Γ is trivial	PSPACE-complete

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t ((\neg R_1(\dots) \lor R_2(\dots)) \land \neg R_3(\dots)),$ where $R_1, \dots, R_3 \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \lor\}$??????????	??????????
$\{\exists,\lor\}$	$\{\forall, \wedge\}$	Trivial	L
$\{\exists, \wedge\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete
$\left[\{ \exists, \land, \lor \} \right]$	$\{\forall,\wedge,\vee\}$	Trivial iff	L
		the core has	NP-complete
		one element	
$\{\exists,\forall,\wedge,\vee\}$		Positive equality	P, NP-complete
		free tetrachotomy	co-NP-complete
			PSPACE-complete
$\{\exists, \forall, /$	$\setminus, \lor, \neg\}$	Trivial iff	L
		Γ is trivial	PSPACE-complete

Quantified Constraint Satisfaction Problem:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

A is a finite set,

 Γ is a set of relations on A (a constraint language)

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a formula
$$(R_1(...) \land \cdots \land R_s(...))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether the formula is satisfiable.

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a sentence
$$\exists y_1 \ldots \exists y_t (R_1(\ldots) \land \cdots \land R_s(\ldots))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether it holds.

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a sentence
$$\exists y_1 \ldots \exists y_t (R_1(\ldots) \land \cdots \land R_s(\ldots))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether it holds.

An operation f preserves a relation R,

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a sentence
$$\exists y_1 \ldots \exists y_t (R_1(\ldots) \land \cdots \land R_s(\ldots))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether it holds.

An operation f preserves a relation R, (equivalently, f is a polymorphism of R, shortly $f \in Pol(R)$)

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a sentence
$$\exists y_1 \ldots \exists y_t (R_1(\ldots) \land \cdots \land R_s(\ldots))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether it holds.

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a sentence
$$\exists y_1 \ldots \exists y_t (R_1(\ldots) \land \cdots \land R_s(\ldots))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether it holds.

An operation
$$f$$
 preserves a relation R ,
(equivalently, f is a polymorphism of R , shortly $f \in Pol(R)$)
if for all $\begin{pmatrix} a_1^1 \\ \vdots \\ a_1^s \end{pmatrix}, \dots, \begin{pmatrix} a_n^n \\ \vdots \\ a_n^s \end{pmatrix} \in R$,
 $f \begin{pmatrix} a_1^1 & \cdots & a_n^1 \\ \vdots & \ddots & \vdots \\ a_1^s & \cdots & a_n^s \end{pmatrix} = \begin{pmatrix} f(a_1^1, \dots, a_n^1) \\ \vdots \\ f(a_1^s, \dots, a_n^s) \end{pmatrix} \in R$

f preserves Γ (equivalently $f \in Pol(\Gamma)$) if f preserves every $R \in \Gamma$.

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a sentence
$$\exists y_1 \ldots \exists y_t (R_1(\ldots) \land \cdots \land R_s(\ldots))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether it holds.

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a sentence
$$\exists y_1 \ldots \exists y_t (R_1(\ldots) \land \cdots \land R_s(\ldots))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

- CSP(Γ) is solvable in polynomial time (tractable) if there exists a weak near-unanimity operation preserving Γ,
- CSP(Γ) is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

$$w(y, x, x, \ldots, x) = w(x, y, x, \ldots, x) = \cdots = w(x, x, \ldots, x, y)$$

A is a finite set,

 Γ is a set of relations on A (a constraint language)

$CSP(\Gamma)$:

Given a sentence
$$\exists y_1 \ldots \exists y_t (R_1(\ldots) \land \cdots \land R_s(\ldots))$$
,
where $R_1, \ldots, R_s \in \Gamma$.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

- CSP(Γ) is solvable in polynomial time (tractable) if there exists a weak near-unanimity operation preserving Γ,
- CSP(Γ) is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

$$w(y, x, x, \ldots, x) = w(x, y, x, \ldots, x) = \cdots = w(x, x, \ldots, x, y)$$

Examples: $x \lor y, x \land y, xy \lor xz \lor yz, x + y + z, 0, \min(x, y), \dots$

• If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

- ▶ If Γ contains all relations then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).

- If Γ contains all relations then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).
- For A' = A ∪ {*}, Γ' an extension of Γ to A', QCSP(Γ') is equivalent to CSP(Γ).

- If Γ contains all relations then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).
- For A' = A ∪ {*}, Γ' an extension of Γ to A', QCSP(Γ') is equivalent to CSP(Γ). QCSP(Γ) can be NP-complete.

- If Γ contains all relations then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).
- For A' = A ∪ {*}, Γ' an extension of Γ to A', QCSP(Γ') is equivalent to CSP(Γ). QCSP(Γ) can be NP-complete.

Are there any other complexity classes?

 Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)
- Structures with 2-semilattice polymorphism. Dichotomy P, Pspace-complete. (Chen 2004 + Börner et al. 2009.)

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)
- Structures with 2-semilattice polymorphism. Dichotomy P, Pspace-complete. (Chen 2004 + Börner et al. 2009.)
- Semicomplete digraphs. Trichotomy. P, NP-complete, Pspace-complete. (Dapic et al. 2014.)

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)
- Structures with 2-semilattice polymorphism. Dichotomy P, Pspace-complete. (Chen 2004 + Börner et al. 2009.)
- Semicomplete digraphs. Trichotomy. P, NP-complete, Pspace-complete. (Dapic et al. 2014.)

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)
- Structures with 2-semilattice polymorphism. Dichotomy P, Pspace-complete. (Chen 2004 + Börner et al. 2009.)
- Semicomplete digraphs. Trichotomy. P, NP-complete, Pspace-complete. (Dapic et al. 2014.)
 PSPACE

Are there any other complexity classes?

Observation

Suppose each relation of Γ_1 is definable from Γ_2 using quantified conjunctive formulas

$$R(x_1,\ldots,x_n)=\forall y_1\exists y_2\forall y_3\exists y_4\ldots R_1(\ldots)\wedge\cdots\wedge R_s(\ldots).$$

Then $QCSP(\Gamma_1)$ is polynomially reducible to $QCSP(\Gamma_2)$.

Observation

Suppose each relation of Γ_1 is definable from Γ_2 using quantified conjunctive formulas

 $R(x_1,\ldots,x_n)=\forall y_1\exists y_2\forall y_3\exists y_4\ldots R_1(\ldots)\wedge\cdots\wedge R_s(\ldots).$

Then $QCSP(\Gamma_1)$ is polynomially reducible to $QCSP(\Gamma_2)$.

Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin, 2003)

 Γ_1 is definable by quantified conjunctive formulas over Γ_2 IFF each surjective polymorphism of Γ_2 is a polymorphism of Γ_1 .

Observation

Suppose each relation of Γ_1 is definable from Γ_2 using quantified conjunctive formulas

 $R(x_1,\ldots,x_n)=\forall y_1\exists y_2\forall y_3\exists y_4\ldots R_1(\ldots)\wedge\cdots\wedge R_s(\ldots).$

Then $QCSP(\Gamma_1)$ is polynomially reducible to $QCSP(\Gamma_2)$.

Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin, 2003)

 Γ_1 is definable by quantified conjunctive formulas over Γ_2 IFF each surjective polymorphism of Γ_2 is a polymorphism of Γ_1 .

 The complexity of QCSP(Γ) depends only on surjective polymorphisms of Γ.

Observation

Suppose each relation of Γ_1 is definable from Γ_2 using primitive positive formulas

 $R(x_1,\ldots,x_n) = \exists y_1 \exists y_2 \exists y_3 \exists y_4 \ldots R_1(\ldots) \land \cdots \land R_s(\ldots).$

Then $QCSP(\Gamma_1)$ is polynomially reducible to $QCSP(\Gamma_2)$.

Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin, 2003)

 Γ_1 is definable by quantified conjunctive formulas over Γ_2 IFF each surjective polymorphism of Γ_2 is a polymorphism of Γ_1 .

 The complexity of QCSP(Γ) depends only on surjective polymorphisms of Γ.

Two questions

What makes QCSP(Γ) easy?

What makes QCSP(Γ) hard?

Two questions

What makes QCSP(Γ) easy?

What makes QCSP(Γ) hard?

Π_2 -restriction of QCSP.

QCSP^{Π_2}(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Π_2 -restriction of QCSP.

QCSP^{Π_2}(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

We need to check that for all evaluations of x₁,..., x_t there exists a solution of the CSP (R₁(...) ∧ ··· ∧ R_s(...)).
Π_2 -restriction of QCSP.

QCSP^{Π_2}(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

- We need to check that for all evaluations of x₁,..., x_t there exists a solution of the CSP (R₁(...) ∧ ··· ∧ R_s(...)).
- How many tuples is it sufficient to check?

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

1.
$$A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$$
. It is sufficient to have $(0, ..., 0)$ and $(0, ..., 0, 1, 0, ..., 0)$ for any position of 1 to generate $\{0, 1\}^n$.

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- 1. $A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$. It is sufficient to have (0, ..., 0) and (0, ..., 0, 1, 0, ..., 0) for any position of 1 to generate $\{0, 1\}^n$.
- 2. $A = \{0, 1\}, F = \{\neg x\}, d_F(n) = 2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0, 1\}^n$.

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- 1. $A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$. It is sufficient to have (0, ..., 0) and (0, ..., 0, 1, 0, ..., 0) for any position of 1 to generate $\{0, 1\}^n$.
- 2. $A = \{0, 1\}, F = \{\neg x\}, d_F(n) = 2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0, 1\}^n$.
 - If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- 1. $A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$. It is sufficient to have (0, ..., 0) and (0, ..., 0, 1, 0, ..., 0) for any position of 1 to generate $\{0, 1\}^n$.
- 2. $A = \{0, 1\}, F = \{\neg x\}, d_F(n) = 2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0, 1\}^n$.
 - If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
 - If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (a_i, a_{i+1}) with $a_i \neq a_{i+1}$ is a switch in a tuple (a_1, \ldots, a_n) . (0,0,0,1,2,2,0,0,0,0) has 3 switches, (3,3,3,4,3,3,3,3,3,3) has 2 switches.

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (a_i, a_{i+1}) with $a_i \neq a_{i+1}$ is a switch in a tuple (a_1, \ldots, a_n) . (0,0,0,1,2,2,0,0,0,0) has 3 switches, (3,3,3,4,3,3,3,3,3,3) has 2 switches.

Theorem[Zhuk, 2015]

A finite algebra **A** has PGP IFF there exists k such that each **A**ⁿ is generated by all tuples with at most k switches.

QCSP^{Π_2}(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

QCSP^{Π_2}(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If $x \lor y$ preserves Γ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

QCSP^{Π_2}(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If $x \lor y$ preserves Γ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

Observation

If Pol(Γ) has PGP, then QCSP^{Π_2}(Γ) can be polynomially reduced to CSP($\Gamma \cup \{x = a \mid a \in A\}$).

QCSP^{Π_2}(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If $x \lor y$ preserves Γ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

Observation

If Pol(Γ) has PGP, then QCSP^{Π_2}(Γ) can be polynomially reduced to CSP($\Gamma \cup \{x = a \mid a \in A\}$).

Proof:

QCSP^{Π_2}(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If $x \lor y$ preserves Γ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

Observation

If Pol(Γ) has PGP, then QCSP^{Π_2}(Γ) can be polynomially reduced to CSP($\Gamma \cup \{x = a \mid a \in A\}$).

Proof: the instance is equivalent to the CSP instance

$$\bigwedge_{\substack{(a_1,\ldots,a_t) \text{ with} \\ \text{at most } k \text{ switches}}} (R_1(\ldots) \wedge \cdots \wedge R_s(\ldots) \wedge (x_1 = a_1) \wedge \cdots \wedge (x_t = a_t))$$

ወ

$$\exists y \forall x \ \Phi$$

$$\updownarrow$$

$$\forall x^1 \forall x^2 \dots \forall x^{|\mathcal{A}|} \exists y \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_{|\mathcal{A}|}$$
is obtained from Φ by renaming x by x^i

$$\begin{array}{c} \exists y \forall x \ \Phi \\ & \updownarrow \\ \forall x^1 \forall x^2 \dots \forall x^{|\mathcal{A}|} \exists y \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_{|\mathcal{A}|} \\ \Phi_i \text{ is obtained from } \Phi \text{ by renaming } x \text{ by } x^i \end{array}$$

 $\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t \Phi$

$$\exists y \forall x \ \Phi$$

$$\Leftrightarrow$$

$$\forall x^1 \forall x^2 \dots \forall x^{|A|} \exists y \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_{|A|}$$

$$\Phi_i \text{ is obtained from } \Phi \text{ by renaming } x \text{ by } x^i$$

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi \\ \updownarrow$$

$$\forall x_1^1 \dots \forall x_1^{|\mathcal{A}|} \ \forall x_2^1 \dots \forall x_2^{|\mathcal{A}|^2} \dots \forall x_t^1 \dots \forall x_t^{|\mathcal{A}|^t} \\ \exists y_1 \exists y_2^1 \dots \exists y_2^{|\mathcal{A}|} \dots \ \exists y_t^1 \dots \exists y_t^{|\mathcal{A}|^{t-1}} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q$$

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi \\ \updownarrow$$

$$\forall x_1^1 \dots \forall x_1^{|\mathcal{A}|} \ \forall x_2^1 \dots \forall x_2^{|\mathcal{A}|^2} \dots \forall x_t^{1} \dots \forall x_t^{|\mathcal{A}|^t} \\ \exists y_1 \exists y_2^1 \dots \exists y_2^{|\mathcal{A}|} \dots \ \exists y_t^1 \dots \exists y_t^{|\mathcal{A}|^{t-1}} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q$$

For the PGP case it is sufficient to check tuples with at most k switches

$$\exists y \forall x \ \Phi$$

$$(1)$$

$$\forall x^{1} \forall x^{2} \dots \forall x^{|A|} \exists y \ \Phi_{1} \land \Phi_{2} \land \dots \land \Phi_{|A|}$$

$$\Phi_{i} \text{ is obtained from } \Phi \text{ by renaming } x \text{ by } x^{i}$$

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \ \Phi$$

$$\uparrow$$

$$1 \ 1 \ 1 \dots 1 \ 1 \ 1 \ 1 \ 2 \dots 2 \ \dots \ 0 \ 0 \ 0 \ 0 \dots 0$$

$$\forall x_1^1 \dots \forall x_1^{|\mathcal{A}|} \ \forall x_2^1 \dots \forall x_2^{|\mathcal{A}|^2} \dots \ \forall x_t^1 \dots \forall x_t^{|\mathcal{A}|^t}$$

$$\exists y_1 \exists y_2^1 \dots \exists y_2^{|\mathcal{A}|} \dots \ \exists y_t^1 \dots \exists y_t^{|\mathcal{A}|^{t-1}} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q$$

For the PGP case it is sufficient to check tuples with at most k switches

$$\exists y \forall x \ \Phi$$

$$\updownarrow$$

$$\forall x^1 \forall x^2 \dots \forall x^{|\mathcal{A}|} \exists y \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_{|\mathcal{A}|}$$

$$\Phi_i \text{ is obtained from } \Phi \text{ by renaming } x \text{ by } x^i$$

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \ \Phi$$

$$\uparrow$$

$$1 \ 1 \ 1 \dots 1 \ 1 \ 1 \ 2 \dots 2 \dots 0 \ 0 \ 0 \ 0 \dots 0$$

$$\forall x_1^1 \dots \forall x_1^{|\mathcal{A}|} \ \forall x_2^1 \dots \forall x_2^{|\mathcal{A}|^2} \dots \forall x_t^1 \dots \forall x_t^{|\mathcal{A}|^t}$$

$$\exists y_1 \exists y_2^1 \dots \exists y_2^{|\mathcal{A}|} \dots \ \exists y_t^1 \dots \exists y_t^{|\mathcal{A}|^{t-1}} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q$$

- For the PGP case it is sufficient to check tuples with at most k switches
- We keep variables with the switches

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \ \Phi$$

$$\uparrow$$

$$1 \ 1 \ 1 \dots 1 \ 1 \ 1 \ 2 \dots 2 \dots 0 \ 0 \ 0 \ 0 \dots 0$$

$$\forall x_1^1 \dots \forall x_1^{|A|} \ \forall x_2^1 \dots \forall x_2^{|A|^2} \dots \forall x_t^1 \dots \forall x_t^{|A|^t}$$

$$\exists y_1 \exists y_2^1 \dots \exists y_2^{|A|} \dots \ \exists y_t^1 \dots \exists y_t^{|A|^{t-1}} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q$$

- For the PGP case it is sufficient to check tuples with at most k switches
- We keep variables with the switches

• We assign
$$x_1^1 = \cdots = x_1^{|\mathcal{A}|} = 1, \ldots, x_t^1 = \cdots = x_t^{|\mathcal{A}|^t} = 0$$

Theorem

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible to CSP($\Gamma \cup \{x = a \mid a \in A\}$).

Theorem*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible to CSP($\Gamma \cup \{x = a \mid a \in A\}$).

* For Γ containing all constants relations this was shown earlier by Chen, Martin, Carvalho, and Madelaine.

Theorem*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible to CSP($\Gamma \cup \{x = a \mid a \in A\}$).

* For Γ containing all constants relations this was shown earlier by Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose $Pol(\Gamma)$ has PGP. Then $QCSP(\Gamma)$ is in NP.

Theorem*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible to CSP($\Gamma \cup \{x = a \mid a \in A\}$).

* For Γ containing all constants relations this was shown earlier by Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose $Pol(\Gamma)$ has PGP. Then $QCSP(\Gamma)$ is in NP.

Corollary 2

Suppose $Pol(\Gamma)$ has PGP. Then $QCSP(\Gamma)$ is either tractable, or NP-complete.

Suppose Γ contains $\{x = a \mid a \in A\}$. Then QCSP(Γ)

Suppose Γ contains $\{x = a \mid a \in A\}$. Then QCSP(Γ)

is in P, if Pol(Γ) has PGP and WNU

Suppose Γ contains $\{x = a \mid a \in A\}$. Then QCSP(Γ)

- is in P, if Pol(Γ) has PGP and WNU
- is NP-complete, if Pol(Γ) has PGP and has no WNU

Chen Conjecture (QCSP Trichotomy Conjecture)

Suppose Γ contains $\{x = a \mid a \in A\}$. Then QCSP(Γ)

- is in P, if Pol(Γ) has PGP and WNU
- is NP-complete, if Pol(Γ) has PGP and has no WNU
- is PSPACE-complete, if Pol(Γ) has no PGP

Weak Chen Conjecture

If $Pol(\Gamma)$ has EGP, then $QCSP(\Gamma)$ is coNP-hard.

Weak Chen Conjecture

If $Pol(\Gamma)$ has EGP, then $QCSP(\Gamma)$ is coNP-hard.

Almost a proof of Weak Chen Conjecture

Weak Chen Conjecture

If $Pol(\Gamma)$ has EGP, then $QCSP(\Gamma)$ is coNP-hard.

Almost a proof of Weak Chen Conjecture

 If Pol(Γ) has EGP then we can define (encode) by a positive primitive formula the compliment to 3-CNF.

Chen Conjecture

Weak Chen Conjecture

If $Pol(\Gamma)$ has EGP, then $QCSP(\Gamma)$ is coNP-hard.

Almost a proof of Weak Chen Conjecture

- If Pol(Γ) has EGP then we can define (encode) by a positive primitive formula the compliment to 3-CNF.
- 2. If this definition is efficiently computable, then $QCSP(\Gamma)$ is coNP-hard.

Chen Conjecture

Weak Chen Conjecture

If $Pol(\Gamma)$ has EGP, then $QCSP(\Gamma)$ is coNP-hard.

Almost a proof of Weak Chen Conjecture

- **1.** If Pol(Γ) has EGP then we can define (encode) by a positive primitive formula the compliment to 3-CNF.
- 2. If this definition is efficiently computable, then $QCSP(\Gamma)$ is coNP-hard.

Lemma (Classification for the conservative case) [Zhuk, Martin, 2018]

Chen Conjecture holds for Γ containing all unary relations.

 there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.

- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.

- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.
- ► there exists Γ on a 10-element domain such that QCSP(Γ) is Θ₂^P-complete.

- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.
- ► there exists Γ on a 10-element domain such that QCSP(Γ) is Θ₂^P-complete.
- there exists Γ having EGP such that QCSP(Γ) is in P.

- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.
- ► there exists Γ on a 10-element domain such that QCSP(Γ) is Θ₂^P-complete.

coNP

• there exists Γ having EGP such that QCSP(Γ) is in P.

Are there any other monsters???

PSPACE

Classification for a 3-element-domain

Classification for a 3-element-domain

Theorem (Classification for a 3-element domain)

Suppose Γ is a constraint language on $\{0, 1, 2\}$ containing $\{x = a \mid a \in \{0, 1, 2\}\}$. Then QCSP(Γ) is

- in P, or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

Classification for a 3-element-domain

Theorem (Classification for a 3-element domain)

Suppose Γ is a constraint language on $\{0, 1, 2\}$ containing $\{x = a \mid a \in \{0, 1, 2\}\}$. Then QCSP(Γ) is

NP

coNP

- in P, or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

Two questions

What makes QCSP(Γ) easy?

What makes QCSP(Γ) hard?

Two questions

What makes QCSP(Γ) easy?

What makes QCSP(Γ) hard?

Two questions

What makes QCSP(Γ) easy?

What makes QCSP(Γ) PSpace-hard?

What makes $QCSP(\Gamma)$ PSpace-hard?

What makes $QCSP(\Gamma)$ **PSpace-hard?** Let $A = \{+, -, 0, 1\}$

What makes $QCSP(\Gamma)$ **PSpace-hard?** Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

What makes $QCSP(\Gamma)$ PSpace-hard?

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$

What makes QCSP(Γ) **PSpace-hard?**

What makes $QCSP(\Gamma)$ **PSpace-hard?**

Let
$$A = \{+, -, 0, 1\}, \Gamma = \{R_0, R_1, \{+\}, \{-\}\}.$$

 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 x
 y_1
 y_2

 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

What makes $QCSP(\Gamma)$ **PSpace-hard?**

х

*Y*1

 y_2

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

 $\forall x_1 \forall x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $\forall x_1 \forall x_2 \forall x_3 + x_3$

Claim

 $QCSP(\Gamma)$ is coNP-hard.

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

$\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

$\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

$\forall x_1 \exists x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

 $\forall x_1 \exists x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

Claim

 $QCSP(\Gamma)$ is PSpace-hard.
- is PSpace-hard if there exists a reflexive relation S ⊊ Aⁿ and a nontrivial equivalence relation σ on D ⊆ A such that R(y₁, y₂, x₁,..., x_n) = σ(y₁, y₂) ∨ S(x₁,..., x_n) is definable by a positive primitive formula over Γ
- in Π_2^P otherwise.

- Is PSpace-hard if there exists a reflexive relation S ⊊ Aⁿ and a nontrivial equivalence relation σ on D ⊆ A such that R(y₁, y₂, x₁,..., x_n) = σ(y₁, y₂) ∨ S(x₁,..., x_n) is definable by a positive primitive formula over Γ
- in Π_2^P otherwise.

- Is PSpace-hard if there exists a reflexive relation S ⊊ Aⁿ and a nontrivial equivalence relation σ on D ⊆ A such that R(y₁, y₂, x₁,..., x_n) = σ(y₁, y₂) ∨ S(x₁,..., x_n) is definable by a positive primitive formula over Γ
- in Π_2^P otherwise.

- is PSpace-hard if there exists a reflexive relation S ⊊ Aⁿ and a nontrivial equivalence relation σ on D ⊆ A such that R(y₁, y₂, x₁,..., x_n) = σ(y₁, y₂) ∨ S(x₁,..., x_n) is definable by a positive primitive formula over Γ
- in Π_2^P otherwise.

- is PSpace-hard if there exists a reflexive relation S ⊊ Aⁿ and a nontrivial equivalence relation σ on D ⊆ A such that R(y₁, y₂, x₁,..., x_n) = σ(y₁, y₂) ∨ S(x₁,..., x_n) is definable by a positive primitive formula over Γ
- in Π_2^P otherwise.

- is PSpace-hard if there exists a reflexive relation S ⊊ Aⁿ and a nontrivial equivalence relation σ on D ⊆ A such that R(y₁, y₂, x₁,..., x_n) = σ(y₁, y₂) ∨ S(x₁,..., x_n) is definable by a positive primitive formula over Γ
- in Π_2^P otherwise.

Suppose Γ contains $\{x = a \mid a \in A\}$. Then QCSP(Γ)

- is PSpace-hard if there exists a reflexive relation S ⊊ Aⁿ and a nontrivial equivalence relation σ on D ⊆ A such that R(y₁, y₂, x₁,..., x_n) = σ(y₁, y₂) ∨ S(x₁,..., x_n) is definable by a positive primitive formula over Γ
- in Π_2^P otherwise.

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is Π_2^P -complete.

1. P vs NP-hard (under Turing reductions).

- 1. P vs NP-hard (under Turing reductions).
- 2. NP vs coNP-hard

- 1. P vs NP-hard (under Turing reductions).
- 2. NP vs coNP-hard
- 3. coNP vs NP-hard

- 1. P vs NP-hard (under Turing reductions).
- 2. NP vs coNP-hard
- 3. coNP vs NP-hard
- **4.** NP \cup coNP vs DP-hard

- 1. P vs NP-hard (under Turing reductions).
- 2. NP vs coNP-hard
- 3. coNP vs NP-hard
- **4.** NP \cup coNP vs DP-hard
- **5.** DP vs Θ_2^P -hard

- 1. P vs NP-hard (under Turing reductions).
- 2. NP vs coNP-hard
- 3. coNP vs NP-hard
- **4.** NP \cup coNP vs DP-hard
- **5.** DP vs Θ_2^P -hard
- **6.** Θ_2^P vs Π_2^P -hard

- 1. P vs NP-hard (under Turing reductions).
- 2. NP vs coNP-hard
- 3. coNP vs NP-hard
- **4.** NP \cup coNP vs DP-hard
- **5.** DP vs Θ_2^P -hard
- **6.** Θ_2^P vs Π_2^P -hard
- **7.** Π_2^P vs PSpace-hard

- 1. P vs NP-hard (under Turing reductions).
- 2. NP vs coNP-hard
- 3. coNP vs NP-hard
- **4.** NP \cup coNP vs DP-hard
- **5.** DP vs Θ_2^P -hard
- **6.** Θ_2^P vs Π_2^P -hard
- **7.** Π_2^P vs PSpace-hard (proved for Γ containing $\{x = a \mid a \in A\}$)