Quantified Constraint Satisfaction Problem: towards the classification of complexity

Dmitriy Zhuk joint with Barnaby Martin
Lomonosov Moscow State University
Higher School of Economics

19th International Conference on Relational and Algebraic Methods in Computer Science RAMICS 2021

CoCoSym: Symmetry in Computational Complexity
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

Quantified Equality Constraints

$(\mathbb{N} ;=)$

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)
\end{aligned}
$$

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right), \text { true } \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right),
\end{aligned}
$$

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right), \text { true } \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right), \text { false }
\end{aligned}
$$

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false
$\operatorname{QCSP}(\mathbb{N} ; x=y)$
Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}\right)$. Decide whether it holds.

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right), \text { true } \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right), \text { false }
\end{aligned}
$$

$$
\operatorname{QCSP}(\mathbb{N} ; x=y)
$$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}\right)$. Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right), \text { true } \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right), \text { false }
\end{aligned}
$$

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

$\operatorname{QCSP}(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?
A concrete question

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?
A concrete question

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?
A concrete question

Open since 2007
Easy to Formulate

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

A concrete question
\square

Open since 2007
Easy to Formulate

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]
$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]
$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]
Suppose relations R_{1}, \ldots, R_{s} are definable by some Boolean combination of atoms of the form $(x=y)$. Then $\operatorname{QCSP}\left(\mathbb{N} ; R_{1}, \ldots, R_{s}\right)$ is either tractable, NP-complete, or PSpace-complete.

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$.

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$,

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$,

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$,

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$, true

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$, true

Main Question

What is the complexity of $\operatorname{QCSP}(\Gamma)$ for different Γ ?

Σ	dual- Σ	Classification	Complexity Classes

Quantified Constraint Satisfaction Problem:
Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Σ	dual- Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$			

Quantified Constraint Satisfaction Problem:
Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Σ	dual- Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \vee\}$		

Quantified Constraint Satisfaction Problem:
Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Σ	dual- Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \vee\}$??????????	??????????

Quantified Constraint Satisfaction Problem:
Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Σ	dual- Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \vee\}$??????????	??????????
$\{\exists, \vee\}$	$\{\forall, \wedge\}$	Trivial	L

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \vee \cdots \vee R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Σ	dual- Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \vee\}$??????????	??????????
$\{\exists, \vee\}$	$\{\forall, \wedge\}$	Trivial	L
$\{\exists, \wedge\}$	$\{\forall, \vee\}$	CSP Dichotomy	P, NP-complete

Constraint Satisfaction Problem:

 Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide whether it holds.| Σ | dual- Σ | Classification | Complexity Classes |
| :---: | :---: | :---: | :---: |
| $\{\exists, \forall, \wedge\}$ | $\{\exists, \forall, \vee\}$ | ?????????? | ?????????? |
| $\{\exists, \vee\}$ | $\{\forall, \wedge\}$ | Trivial | L |
| $\{\exists, \wedge\}$ | $\{\forall, \vee\}$ | CSP Dichotomy | P, NP-complete |
| $\{\exists, \wedge, \vee\}$ | $\{\forall, \wedge, \vee\}$ | Trivial iff
 the core has
 one element | NP-complete |

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(\left(R_{1}(\ldots) \vee R_{2}(\ldots)\right) \wedge R_{3}(\ldots)\right)$, where $R_{1}, \ldots, R_{3} \in \Gamma$.
Decide whether it holds.

Σ	dual- Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \vee\}$??????????	??????????
$\{\exists, \vee\}$	$\{\forall, \wedge\}$	Trivial	L
$\{\exists, \wedge\}$	$\{\forall, \vee\}$	CSP Dichotomy	P, NP-complete
$\{\exists, \wedge, \vee\}$	$\{\forall, \wedge, \vee\}$	Trivial iff the core has one element	NP-complete

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(\left(R_{1}(\ldots) \vee R_{2}(\ldots)\right) \wedge R_{3}(\ldots)\right)$, where $R_{1}, \ldots, R_{3} \in \Gamma$.
Decide whether it holds.

Σ	dual- Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \vee\}$??????????	??????????
$\{\exists, \vee\}$	$\{\forall, \wedge\}$	Trivial	L
$\{\exists, \wedge\}$	$\{\forall, \vee\}$	CSP Dichotomy	P, NP-complete
$\{\exists, \wedge, \vee\}$	$\{\forall, \wedge, \vee\}$	Trivial iff the core has one element	NP-complete

Given a sentence
$\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(\left(\neg R_{1}(\ldots) \vee R_{2}(\ldots)\right) \wedge \neg R_{3}(\ldots)\right)$, where $R_{1}, \ldots, R_{3} \in \Gamma$.
Decide whether it holds.

Σ	dual- Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \vee\}$??????????	??????????
$\{\exists, \vee\}$	$\{\forall, \wedge\}$	Trivial	L
$\{\exists, \wedge\}$	$\{\forall, \vee\}$	CSP Dichotomy	P, NP-complete
$\{\exists, \wedge, \vee\}$	$\{\forall, \wedge, \vee\}$	Trivial iff the core has one element	NP-complete
$\{\exists, \forall, \wedge, \vee\}$	Positive equality free tetrachotomy	P, NP-complete co-NP-complete PSPACE-complete	
$\{\exists, \forall, \wedge, \vee, \neg\}$	Trivial iff Γ is trivial	L PSPACE-complete	

Quantified Constraint Satisfaction Problem:
Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Г):

Given a formula $\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether the formula is satisfiable.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Г):

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

$\operatorname{CSP}(\Gamma):$

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
An operation f preserves a relation R,

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

$\operatorname{CSP}(\Gamma):$

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
An operation f preserves a relation R, (equivalently, f is a polymorphism of R, shortly $f \in \operatorname{Pol}(R)$)

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

$\operatorname{CSP}(\Gamma)$:

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
An operation f preserves a relation R,
(equivalently, f is a polymorphism of R, shortly $f \in \operatorname{Pol}(R)$)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP (Γ) :

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
An operation f preserves a relation R,
(equivalently, f is a polymorphism of R, shortly $f \in \operatorname{Pol}(R)$)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$
f preserves Γ (equivalently $f \in \operatorname{Pol}(\Gamma)$) if f preserves every $R \in \Gamma$.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Г):

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP (Γ) :

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

- $\operatorname{CSP}(\Gamma)$ is solvable in polynomial time (tractable) if there exists a weak near-unanimity operation preserving Γ,
- $\operatorname{CSP}(\Gamma)$ is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

$$
w(y, x, x, \ldots, x)=w(x, y, x, \ldots, x)=\cdots=w(x, x, \ldots, x, y)
$$

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Г):

Given a sentence $\exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

- $\operatorname{CSP}(\Gamma)$ is solvable in polynomial time (tractable) if there exists a weak near-unanimity operation preserving Γ,
- $\operatorname{CSP}(\Gamma)$ is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

$$
w(y, x, x, \ldots, x)=w(x, y, x, \ldots, x)=\cdots=w(x, x, \ldots, x, y)
$$

Examples: $x \vee y, x \wedge y, x y \vee x z \vee y z, x+y+z, 0, \min (x, y), \ldots$

Few facts about QCSP

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP (Γ) can be solved in polynomial time (tractable).

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then $\operatorname{QCSP}(\Gamma)$ can be solved in polynomial time (tractable).
- For $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ an extension of Γ to $A^{\prime}, \operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then $\operatorname{QCSP}(\Gamma)$ can be solved in polynomial time (tractable).
- For $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ an extension of Γ to $A^{\prime}, \operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$. QCSP (Γ) can be NP-complete.

PSPACE

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP (Γ) can be solved in polynomial time (tractable).
- For $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ an extension of Γ to $A^{\prime}, \operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$. QCSP (Γ) can be NP-complete.

Are there any other complexity classes?

PSPACE

QCSP classifications

QCSP classifications

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

QCSP classifications

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)

QCSP classifications

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

QCSP classifications

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)
- Structures with 2-semilattice polymorphism. Dichotomy P, Pspace-complete. (Chen 2004 + Börner et al. 2009.)

QCSP classifications

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)
- Structures with 2-semilattice polymorphism. Dichotomy P, Pspace-complete. (Chen 2004 + Börner et al. 2009.)
- Semicomplete digraphs. Trichotomy. P, NP-complete, Pspace-complete. (Dapic et al. 2014.)

QCSP classifications

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)
- Structures with 2-semilattice polymorphism. Dichotomy P, Pspace-complete. (Chen 2004 + Börner et al. 2009.)
- Semicomplete digraphs. Trichotomy. P, NP-complete, Pspace-complete. (Dapic et al. 2014.)

PSPACE

QCSP classifications

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various graphs Dichotomies and trichotomies P, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013)
- Structures with 2-semilattice polymorphism. Dichotomy P, Pspace-complete. (Chen 2004 + Börner et al. 2009.)
- Semicomplete digraphs. Trichotomy. P, NP-complete, Pspace-complete. (Dapic et al. 2014.)
Are there any other complexity classes?

PSPACE

Surjective polymorphisms

Observation

Suppose each relation of Γ_{1} is definable from Γ_{2} using quantified conjunctive formulas

$$
R\left(x_{1}, \ldots, x_{n}\right)=\forall y_{1} \exists y_{2} \forall y_{3} \exists y_{4} \ldots R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)
$$

Then $\operatorname{QCSP}\left(\Gamma_{1}\right)$ is polynomially reducible to $\operatorname{QCSP}\left(\Gamma_{2}\right)$.

Surjective polymorphisms

Observation

Suppose each relation of Γ_{1} is definable from Γ_{2} using quantified conjunctive formulas

$$
R\left(x_{1}, \ldots, x_{n}\right)=\forall y_{1} \exists y_{2} \forall y_{3} \exists y_{4} \ldots R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)
$$

Then QCSP $\left(\Gamma_{1}\right)$ is polynomially reducible to $\operatorname{QCSP}\left(\Gamma_{2}\right)$.
Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin, 2003)
Γ_{1} is definable by quantified conjunctive formulas over Γ_{2} IFF each surjective polymorphism of Γ_{2} is a polymorphism of Γ_{1}.

Surjective polymorphisms

Observation

Suppose each relation of Γ_{1} is definable from Γ_{2} using quantified conjunctive formulas

$$
R\left(x_{1}, \ldots, x_{n}\right)=\forall y_{1} \exists y_{2} \forall y_{3} \exists y_{4} \ldots R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)
$$

Then QCSP $\left(\Gamma_{1}\right)$ is polynomially reducible to $\operatorname{QCSP}\left(\Gamma_{2}\right)$.

Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin, 2003)
 Γ_{1} is definable by quantified conjunctive formulas over Γ_{2} IFF each surjective polymorphism of Γ_{2} is a polymorphism of Γ_{1}.

- The complexity of QCSP (Γ) depends only on surjective polymorphisms of Γ.

Surjective polymorphisms

Observation

Suppose each relation of Γ_{1} is definable from Γ_{2} using primitive positive formulas

$$
R\left(x_{1}, \ldots, x_{n}\right)=\exists y_{1} \exists y_{2} \exists y_{3} \exists y_{4} \ldots R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)
$$

Then QCSP $\left(\Gamma_{1}\right)$ is polynomially reducible to $\operatorname{QCSP}\left(\Gamma_{2}\right)$.

Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin, 2003)
 Γ_{1} is definable by quantified conjunctive formulas over Γ_{2} IFF each surjective polymorphism of Γ_{2} is a polymorphism of Γ_{1}.

- The complexity of QCSP (Γ) depends only on surjective polymorphisms of Γ.

Two questions

- What makes QCSP (Γ) easy?
- What makes QCSP (Γ) hard?

Two questions

- What makes QCSP (Γ) easy?
- What makes QCSP (Γ) hard?

Π_{2}-restriction of QCSP.

$\operatorname{QCSP}^{\Pi_{2}}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Π_{2}-restriction of QCSP.

$\operatorname{QCSP}^{\Pi_{2}}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- We need to check that for all evaluations of x_{1}, \ldots, x_{t} there exists a solution of the $\operatorname{CSP}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

Π_{2}-restriction of QCSP.

$\operatorname{QCSP}^{\Pi_{2}}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- We need to check that for all evaluations of x_{1}, \ldots, x_{t} there exists a solution of the $\operatorname{CSP}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.
- How many tuples is it sufficient to check?

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

Examples

1. $A=\{0,1\}, F=\{x \vee y\} . d_{F}(n)=n+1$. It is sufficient to have $(0, \ldots, 0)$ and $(0, \ldots, 0,1,0, \ldots, 0)$ for any position of 1 to generate $\{0,1\}^{n}$.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

Examples

1. $A=\{0,1\}, F=\{x \vee y\} . d_{F}(n)=n+1$. It is sufficient to have $(0, \ldots, 0)$ and $(0, \ldots, 0,1,0, \ldots, 0)$ for any position of 1 to generate $\{0,1\}^{n}$.
2. $A=\{0,1\}, F=\{\neg x\} . d_{F}(n)=2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0,1\}^{n}$.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

Examples

1. $A=\{0,1\}, F=\{x \vee y\} . d_{F}(n)=n+1$. It is sufficient to have $(0, \ldots, 0)$ and $(0, \ldots, 0,1,0, \ldots, 0)$ for any position of 1 to generate $\{0,1\}^{n}$.
2. $A=\{0,1\}, F=\{\neg x\} . d_{F}(n)=2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0,1\}^{n}$.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

Examples

1. $A=\{0,1\}, F=\{x \vee y\} . d_{F}(n)=n+1$. It is sufficient to have $(0, \ldots, 0)$ and $(0, \ldots, 0,1,0, \ldots, 0)$ for any position of 1 to generate $\{0,1\}^{n}$.
2. $A=\{0,1\}, F=\{\neg x\} . d_{F}(n)=2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0,1\}^{n}$.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A)
$d_{F}(n)$ is the minimal size of a generating set of A^{n}.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A)
$d_{F}(n)$ is the minimal size of a generating set of A^{n}.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.
Pair $\left(a_{i}, a_{i+1}\right)$ with $a_{i} \neq a_{i+1}$ is a switch in a tuple $\left(a_{1}, \ldots, a_{n}\right)$.
($0,0,0,1,2,2,0,0,0,0$) has 3 switches,
$(3,3,3,4,3,3,3,3,3,3)$ has 2 switches.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A)
$d_{F}(n)$ is the minimal size of a generating set of A^{n}.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.
Pair $\left(a_{i}, a_{i+1}\right)$ with $a_{i} \neq a_{i+1}$ is a switch in a tuple $\left(a_{1}, \ldots, a_{n}\right)$.
($0,0,0,1,2,2,0,0,0,0$) has 3 switches,
$(3,3,3,4,3,3,3,3,3,3)$ has 2 switches.
Theorem[Zhuk, 2015]
A finite algebra \mathbf{A} has PGP IFF there exists k such that each \mathbf{A}^{n} is generated by all tuples with at most k switches.

From Π_{2} to NP

$\operatorname{QCSP}^{\Pi_{2}}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

From Π_{2} to NP

$\operatorname{QCSP}^{\Pi_{2}}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Example

If $x \vee y$ preserves Γ then it is sufficient to check that $\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$ is satisfiable for $\left(x_{1}, \ldots, x_{t}\right)=(0, \ldots, 0)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right)=(0, \ldots, 0,1,0, \ldots, 0)$ for $\forall i$.

From Π_{2} to NP

$\operatorname{QCSP}^{\Pi_{2}}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Example

If $x \vee y$ preserves Γ then it is sufficient to check that $\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$ is satisfiable for $\left(x_{1}, \ldots, x_{t}\right)=(0, \ldots, 0)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right)=(0, \ldots, 0,1,0, \ldots, 0)$ for $\forall i$.

Observation

If $\operatorname{Pol}(\Gamma)$ has PGP , then $\mathrm{QCSP}^{\Pi_{2}}(\Gamma)$ can be polynomially reduced to $\operatorname{CSP}(\Gamma \cup\{x=a \mid a \in A\})$.

From Π_{2} to NP

$\operatorname{QCSP}^{\Pi_{2}}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Example

If $x \vee y$ preserves Γ then it is sufficient to check that $\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$ is satisfiable for $\left(x_{1}, \ldots, x_{t}\right)=(0, \ldots, 0)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right)=(0, \ldots, 0,1,0, \ldots, 0)$ for $\forall i$.

Observation

If $\operatorname{Pol}(\Gamma)$ has PGP , then $\mathrm{QCSP}^{\Pi_{2}}(\Gamma)$ can be polynomially reduced to $\operatorname{CSP}(\Gamma \cup\{x=a \mid a \in A\})$.

Proof:

From Π_{2} to NP

$\operatorname{QCSP}^{\Pi_{2}}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Example

If $x \vee y$ preserves Γ then it is sufficient to check that
$\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$ is satisfiable for $\left(x_{1}, \ldots, x_{t}\right)=(0, \ldots, 0)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right)=(0, \ldots, 0,1,0, \ldots, 0)$ for $\forall i$.

Observation

If $\operatorname{Pol}(\Gamma)$ has PGP , then $\mathrm{QCSP}^{\Pi_{2}}(\Gamma)$ can be polynomially reduced to $\operatorname{CSP}(\Gamma \cup\{x=a \mid a \in A\})$.

Proof: the instance is equivalent to the CSP instance

$$
\bigwedge \quad\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots) \wedge\left(x_{1}=a_{1}\right) \wedge \cdots \wedge\left(x_{t}=a_{t}\right)\right)
$$

$\left(a_{1}, \ldots, a_{t}\right)$ with
at most k switches

From PSpace to NP

From PSpace to NP

$$
\exists y \forall x \Phi
$$

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \stackrel{\Phi_{1}}{\uparrow} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \stackrel{\Phi_{1}}{\Uparrow} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi
$$

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\mathbb{1} \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\begin{gathered}
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi \\
\mathbb{1}
\end{gathered}
$$

$\forall x_{1}^{1} \ldots \forall x_{1}^{|A|} \forall x_{2}^{1} \ldots \forall x_{2}^{|A|^{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{\mid A t^{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{|A|} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{|A|^{t-1}} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\underset{~}{\|} \\
\forall x^{1} \forall x^{2} \ldots \forall x x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\begin{gathered}
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi \\
\mathbb{1}
\end{gathered}
$$

$\forall x_{1}^{1} \ldots \forall x_{1}^{|A|} \forall x_{2}^{1} \ldots \forall x_{2}^{|A|^{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{|A|^{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{|A|} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{\mid A t^{t-1}} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

- For the PGP case it is sufficient to check tuples with at most k switches

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\mathbb{1} \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\underset{\hat{\mathbb{1}}}{\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi}
$$

$111 \ldots 11112 \ldots 2 \ldots 0000 \ldots 0$
$\forall x_{1}^{1} \ldots \forall x_{1}^{|A|} \forall x_{2}^{1} \ldots \forall x_{2}^{|A|^{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{|A|^{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{|A|} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{|A|^{t-1}} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

- For the PGP case it is sufficient to check tuples with at most k switches

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\mathbb{1} \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\begin{gathered}
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi \\
\mathbb{1}
\end{gathered}
$$

$111 \ldots 11112 \ldots 2 \ldots 0000 \ldots 0$
$\forall x_{1}^{1} \ldots \forall x_{1}^{|A|} \forall x_{2}^{1} \ldots \forall x_{2}^{|A|^{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{|A|^{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{|A|} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{\mid A t-1} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

- For the PGP case it is sufficient to check tuples with at most k switches
- We keep variables with the switches

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\hat{\sim} \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\underset{\hat{\|}}{\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi}
$$

$111 \ldots 11112 \ldots 2 \ldots 0000 \ldots 0$
$\forall x_{1}^{1} \ldots \forall x_{1}^{|A|} \forall x_{2}^{1} \ldots \forall x_{2}^{|A|^{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{|A|^{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{|A|} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{\mid A t^{t-1}} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

- For the PGP case it is sufficient to check tuples with at most k switches
- We keep variables with the switches
- We assign $x_{1}^{1}=\cdots=x_{1}^{|A|}=1, \ldots, x_{t}^{1}=\cdots=x_{t}^{|A|^{t}}=0$

From PSpace to NP

From PSpace to NP

Theorem

Suppose $\operatorname{Pol}(\Gamma)$ has PGP. Then $\mathrm{QCSP}(\Gamma)$ is polynomially reducible to $\operatorname{CSP}(\Gamma \cup\{x=a \mid a \in A\})$.

From PSpace to NP

Theorem*

Suppose $\operatorname{Pol}(\Gamma)$ has PGP. Then $\operatorname{QCSP}(\Gamma)$ is polynomially reducible to $\operatorname{CSP}(\Gamma \cup\{x=a \mid a \in A\})$.

* For 「 containing all constants relations this was shown earlier by Chen, Martin, Carvalho, and Madelaine.

From PSpace to NP

Theorem*

Suppose $\operatorname{Pol}(\Gamma)$ has PGP. Then $\operatorname{QCSP}(\Gamma)$ is polynomially reducible to $\operatorname{CSP}(\Gamma \cup\{x=a \mid a \in A\})$.

* For 「 containing all constants relations this was shown earlier by Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose $\operatorname{Pol}(\Gamma)$ has PGP. Then $\operatorname{QCSP}(\Gamma)$ is in NP.

From PSpace to NP

Theorem*

Suppose $\operatorname{Pol}(\Gamma)$ has PGP. Then $\operatorname{QCSP}(\Gamma)$ is polynomially reducible to $\operatorname{CSP}(\Gamma \cup\{x=a \mid a \in A\})$.

* For Γ containing all constants relations this was shown earlier by Chen, Martin, Carvalho, and Madelaine.
Corollary 1
Suppose Pol (Γ) has PGP. Then QCSP (Γ) is in NP.

Corollary 2

Suppose $\operatorname{Pol}(\Gamma)$ has PGP. Then QCSP (Γ) is either tractable, or NP-complete.

Chen Conjecture

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

Chen Conjecture

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is in P , if $\operatorname{Pol}(\Gamma)$ has PGP and WNU

Chen Conjecture

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is in P , if $\operatorname{Pol}(\Gamma)$ has PGP and WNU
- is NP-complete, if $\operatorname{Pol}(\Gamma)$ has PGP and has no WNU

Chen Conjecture

Chen Conjecture (QCSP Trichotomy Conjecture)

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is in P , if $\operatorname{Pol}(\Gamma)$ has PGP and WNU
- is NP-complete, if $\operatorname{Pol}(\Gamma)$ has PGP and has no WNU
- is PSPACE-complete, if $\operatorname{Pol}(\Gamma)$ has no PGP

PSPACE

Chen Conjecture

Weak Chen Conjecture

If $\operatorname{Pol}(\Gamma)$ has EGP, then $\operatorname{QCSP}(\Gamma)$ is coNP-hard.

Chen Conjecture

Weak Chen Conjecture
 If $\operatorname{Pol}(\Gamma)$ has EGP, then $\operatorname{QCSP}(\Gamma)$ is coNP-hard.

Almost a proof of Weak Chen Conjecture

Chen Conjecture

Weak Chen Conjecture
 If $\operatorname{Pol}(\Gamma)$ has EGP, then $\operatorname{QCSP}(\Gamma)$ is coNP-hard.

Almost a proof of Weak Chen Conjecture

1. If $\operatorname{Pol}(\Gamma)$ has $E G P$ then we can define (encode) by a positive primitive formula the compliment to $3-C N F$.

Chen Conjecture

Weak Chen Conjecture

If $\operatorname{Pol}(\Gamma)$ has EGP, then $\operatorname{QCSP}(\Gamma)$ is coNP-hard.

Almost a proof of Weak Chen Conjecture

1. If $\operatorname{Pol}(\Gamma)$ has $E G P$ then we can define (encode) by a positive primitive formula the compliment to $3-C N F$.
2. If this definition is efficiently computable, then QCSP (Γ) is coNP-hard.

Chen Conjecture

Weak Chen Conjecture
 If $\operatorname{Pol}(\Gamma)$ has EGP, then $\operatorname{QCSP}(\Gamma)$ is coNP-hard.

Almost a proof of Weak Chen Conjecture

1. If $\operatorname{Pol}(\Gamma)$ has EGP then we can define (encode) by a positive primitive formula the compliment to $3-C N F$.
2. If this definition is efficiently computable, then QCSP (Γ) is coNP-hard.

Lemma (Classification for the conservative case) [Zhuk, Martin, 2018]
Chen Conjecture holds for Γ containing all unary relations.

QCSP Monsters

QCSP Monsters

- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.

QCSP Monsters

- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- there exists Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where $\mathrm{DP}=\mathrm{NP} \wedge$ coNP.

QCSP Monsters

- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- there exists Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where DP $=\mathrm{NP} \wedge$ coNP.
- there exists Γ on a 10 -element domain such that $\operatorname{QCSP}(\Gamma)$ is Θ_{2}^{P}-complete.

QCSP Monsters

- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- there exists Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where DP $=\mathrm{NP} \wedge$ coNP.
- there exists Γ on a 10 -element domain such that $\operatorname{QCSP}(\Gamma)$ is Θ_{2}^{P}-complete.
- there exists Γ having EGP such that $\operatorname{QCSP}(\Gamma)$ is in P .

QCSP Monsters

- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- there exists Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where DP $=\mathrm{NP} \wedge$ coNP.
- there exists Γ on a 10 -element domain such that $\operatorname{QCSP}(\Gamma)$ is Θ_{2}^{P}-complete.
- there exists Γ having EGP such that $\operatorname{QCSP}(\Gamma)$ is in P .

Classification for a 3-element-domain

Classification for a 3-element-domain

Theorem (Classification for a 3-element domain)
Suppose Γ is a constraint language on $\{0,1,2\}$ containing $\{x=a \mid a \in\{0,1,2\}\}$. Then $\operatorname{QCSP}(\Gamma)$ is

- in P, or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

Classification for a 3-element-domain

Theorem (Classification for a 3-element domain)
Suppose Γ is a constraint language on $\{0,1,2\}$ containing $\{x=a \mid a \in\{0,1,2\}\}$. Then $\operatorname{QCSP}(\Gamma)$ is

- in P , or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

Two questions

- What makes QCSP (Γ) easy?
- What makes QCSP (Γ) hard?

Two questions

- What makes QCSP (Γ) easy?
- What makes QCSP (Γ) hard?

Two questions

- What makes QCSP (Γ) easy?
- What makes QCSP(Г) PSpace-hard?

What makes QCSP(Г) PSpace-hard?

What makes QCSP (Г) PSpace-hard?
Let $A=\{+,-, 0,1\}$

What makes QCSP(Г) PSpace-hard?

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

What makes QCSP(Г) PSpace-hard?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right)
\end{aligned}
$$

What makes QCSP(Г) PSpace-hard?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x
\end{aligned}
$$

What makes QCSP(Г) PSpace-hard?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x
\end{aligned}
$$

$$
R_{1}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 1\right)
$$

What makes QCSP(Г) PSpace-hard?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x \\
& y_{1} \xrightarrow{y_{2}} \\
& R_{1}\left(y_{1}, y_{2}, x\right)=\underset{x}{\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 1\right)} \\
& y_{1} \longrightarrow y_{2}
\end{aligned}
$$

What makes QCSP(Г) PSpace-hard?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x \\
& y_{1} \xrightarrow{y_{2}} \\
& R_{1}\left(y_{1}, y_{2}, x\right)=\underset{x}{\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 1\right)} \\
& y_{1} \longrightarrow y_{2} \\
& \exists u_{1} \exists u_{2} R_{1}\left(y_{1}, u_{1}, x_{1}\right) \wedge R_{0}\left(u_{1}, u_{2}, x_{2}\right) \wedge R_{1}\left(u_{2}, y_{2}, x_{3}\right)
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1
$$

How to prove PSpace-hardness?

$$
\text { Let } \begin{aligned}
A=\{+,- & \left., 0,1 \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. }
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\left\{+,-, 0,1 \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& \forall x_{1} \forall x_{2} \forall x_{3}
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\left\{+,-, 0, \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& \forall x_{1} \forall x_{2} \forall x_{3}
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\left\{+,-, 0,1 \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& \forall x_{1} \forall x_{2} \forall x_{3}
\end{aligned}
$$

Claim

QCSP (Γ) is coNP-hard.

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.
$\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{3}$

$$
\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

How to prove PSpace-hardness?

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.
$\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{3}$

$\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)$
\Uparrow
$\neg\left(\exists x_{1} \forall x_{2} \exists x_{3} \quad\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)\right.$

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

$$
\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{3}
$$

$\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)$
\Uparrow

$$
\neg\left(\exists x_{1} \forall x_{2} \exists x_{3} \quad\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)\right.
$$

Claim

QCSP (Γ) is PSpace-hard.

Theorem (Π_{2}^{P} vs PSpace)

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is PSpace-hard if there exists a reflexive relation $S \subsetneq A^{n}$ and a nontrivial equivalence relation σ on $D \subseteq A$ such that $R\left(y_{1}, y_{2}, x_{1}, \ldots, x_{n}\right)=\sigma\left(y_{1}, y_{2}\right) \vee S\left(x_{1}, \ldots, x_{n}\right)$ is definable by a positive primitive formula over Γ
- in Π_{2}^{P} otherwise.

Theorem (Π_{2}^{P} vs PSpace)

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is PSpace-hard if there exists a reflexive relation $S \subsetneq A^{n}$ and a nontrivial equivalence relation σ on $D \subseteq A$ such that $R\left(y_{1}, y_{2}, x_{1}, \ldots, x_{n}\right)=\sigma\left(y_{1}, y_{2}\right) \vee S\left(x_{1}, \ldots, x_{n}\right)$ is definable by a positive primitive formula over Γ
- in Π_{2}^{P} otherwise.

PSPACE

Theorem (Π_{2}^{P} vs PSpace)

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is PSpace-hard if there exists a reflexive relation $S \subsetneq A^{n}$ and a nontrivial equivalence relation σ on $D \subseteq A$ such that $R\left(y_{1}, y_{2}, x_{1}, \ldots, x_{n}\right)=\sigma\left(y_{1}, y_{2}\right) \vee S\left(x_{1}, \ldots, x_{n}\right)$ is definable by a positive primitive formula over Γ
- in Π_{2}^{P} otherwise.

Theorem (Π_{2}^{P} vs PSpace)

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is PSpace-hard if there exists a reflexive relation $S \subsetneq A^{n}$ and a nontrivial equivalence relation σ on $D \subseteq A$ such that $R\left(y_{1}, y_{2}, x_{1}, \ldots, x_{n}\right)=\sigma\left(y_{1}, y_{2}\right) \vee S\left(x_{1}, \ldots, x_{n}\right)$ is definable by a positive primitive formula over Γ
- in Π_{2}^{P} otherwise.

Theorem (Π_{2}^{P} vs PSpace)

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is PSpace-hard if there exists a reflexive relation $S \subsetneq A^{n}$ and a nontrivial equivalence relation σ on $D \subseteq A$ such that $R\left(y_{1}, y_{2}, x_{1}, \ldots, x_{n}\right)=\sigma\left(y_{1}, y_{2}\right) \vee S\left(x_{1}, \ldots, x_{n}\right)$ is definable by a positive primitive formula over Γ
- in Π_{2}^{P} otherwise.

Theorem (Π_{2}^{P} vs PSpace)

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is PSpace-hard if there exists a reflexive relation $S \subsetneq A^{n}$ and a nontrivial equivalence relation σ on $D \subseteq A$ such that $R\left(y_{1}, y_{2}, x_{1}, \ldots, x_{n}\right)=\sigma\left(y_{1}, y_{2}\right) \vee S\left(x_{1}, \ldots, x_{n}\right)$ is definable by a positive primitive formula over Γ
- in Π_{2}^{P} otherwise.

Theorem (Π_{2}^{P} vs PSpace)

Suppose Γ contains $\{x=a \mid a \in A\}$. Then $\operatorname{QCSP}(\Gamma)$

- is PSpace-hard if there exists a reflexive relation $S \subsetneq A^{n}$ and a nontrivial equivalence relation σ on $D \subseteq A$ such that $R\left(y_{1}, y_{2}, x_{1}, \ldots, x_{n}\right)=\sigma\left(y_{1}, y_{2}\right) \vee S\left(x_{1}, \ldots, x_{n}\right)$ is definable by a positive primitive formula over Γ
- in Π_{2}^{P} otherwise.

Lemma

There exists Γ on a 6 -element set such that $\operatorname{QCSP}(\Gamma)$ is Π_{2}^{P}-complete.

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).
2. NP vs coNP-hard

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).
2. NP vs coNP-hard
3. coNP vs NP-hard

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).
2. NP vs coNP-hard
3. coNP vs NP-hard
4. NP \cup coNP vs DP-hard

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).
2. NP vs coNP-hard
3. coNP vs NP-hard
4. $N P \cup$ coNP vs DP-hard
5. DP vs Θ_{2}^{P}-hard

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).
2. NP vs coNP-hard
3. coNP vs NP-hard
4. $N P \cup$ coNP vs DP-hard
5. DP vs Θ_{2}^{P}-hard
6. Θ_{2}^{P} vs Π_{2}^{P}-hard

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).
2. NP vs coNP-hard
3. coNP vs NP-hard
4. $N P \cup$ coNP vs DP-hard
5. DP vs Θ_{2}^{P}-hard
6. Θ_{2}^{P} vs Π_{2}^{P}-hard
7. Π_{2}^{P} vs PSpace-hard

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).
2. NP vs coNP-hard
3. coNP vs NP-hard
4. $N P \cup$ coNP vs DP-hard
5. DP vs Θ_{2}^{P}-hard
6. Θ_{2}^{P} vs Π_{2}^{P}-hard
7. Π_{2}^{P} vs PSpace-hard (proved for Γ containing $\{x=a \mid a \in A\}$)

Thank you for your attention

Thank you for your attention

Thank you for your attention

Thank you for your attention

