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Time Warps

Recall that ω+ = ω ∪ {ω}. We call a map f : ω+ → ω+ a time warp if it
is join-preserving (for all S ⊆ ω+, f(

∨
S) =

∨
f [S]).

The set of time warps W gives rise to a bounded residuated lattice
W = 〈W ,∧,∨, ◦, \, /, id,⊥,>〉, i.e.,

〈W ,∧,∨,⊥,>〉 is a bounded lattice with ∧ and ∨ defined point-wise
(e.g., (f ∧ g)(p) = max{f(p), g(p)}), ⊥(p) = 0 for all p ∈ ω+, and
>(p) = ω for all p ∈ ω+ \ {0}.
〈W , ◦, id〉 is a monoid with (f ◦ g)(p) = f(g(p)) and id the identity.
For all f, g, h ∈ W

f ◦ g ≤ h ⇐⇒ g ≤ f\h ⇐⇒ f ≤ h/g, (residuation)

where f\g =
∨
{h ∈ W | f ◦ h ≤ g}, g/f =

∨
{h ∈ W | h ◦ f ≤ g}.

We call W the time warp algebra.
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Properties of the Time Warp Algebra

Properties
1 A map f : ω+ → ω+ is a time warp if and only if it is order-preserving

and satisfies f(0) = 0 and f(ω) =
∨
{f(n) | n ∈ ω}.

2 〈W ,∧,∨〉 is a complete distributive lattice.

3 For all f, g1, g2, h ∈ W ,

f(g1 ∨ g2)h = fg1h ∨ fg2h and f(g1 ∧ g2)h = fg1h ∧ fg2h.
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Motivation

Why do we care about the time warp algebra?

Computer Science: Time warps can be used as gradings for graded
modalities in type systems (Guatto 2018). This is also where the name
‘time warp’ comes from.
Universal Algebra: Endomorphism algebras are natural to consider,
e.g., automorphism `-groups of chains in the theory of lattice-ordered
groups, or, more closely related, quantales of sup-preserving functions
on complete lattices (see e.g., Santocanale 2020).

For potential real-world applications of time warps as graded modalities it
is important to have a decidable equational theory, i.e., an algorithm to
decide which equations hold in the time warp algebra.

Main Theorem
The equational theory of the time warp algebra W is decidable.
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Notation

We fix a countably infinite set of variables Var and the term algebra
T(Var) over the language {∧,∨, ◦, \, /, id,⊥,>} of type (2, 2, 2, 2, 0, 0, 0).

We call elements t of T(Var) time warp terms and denote by s ≤ t the
equation s ∧ t ≈ s.
Then we have W |= s ≈ t if and only if W |= s ≤ t and W |= t ≤ s, and,
by residuation, W |= s ≤ t if and only if W |= id ≤ s\t.
Therefore, to show that the equational theory of W is decidable it is
enough to show that for every time warp term t it is decidable whether
W |= id ≤ t holds or not.
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Overview of the Proof

We prove the main theorem by describing an algorithm with the following
behaviour:

Input. A time warp term t in the variables x1, . . . , xk.
Output. If W |= id ≤ t, the algorithm returns ‘Valid’;
if W 6|= id ≤ t, the algorithm returns ‘Invalid at (f̂1, . . . , f̂k, p)’ for
some p ∈ ω+ and finite descriptions f̂1, . . . , f̂k of time warps
f1, . . . , fk such that JtK(p) < p, where JtK is the time warp obtained
from t by mapping each xi to fi.
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Overview of the Proof

The proof of the main theorem can be divided into three parts:

1 Step 1. We prove that time warp terms can be ‘brought’ into a normal
form.

2 Step 2. We give a finitary characterization of ‘potential
counterexamples’ via ‘diagrams’1.

3 Step 3. We encode the existence of a ‘diagram’ as a first-order
satisfiability problem over 〈N,≤N〉.

1The name ‘diagram’ recalls a similar concept used to prove the decidability of the
equational theory of `-groups (Holland and McCleary 1979).
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Step 1. A Normal Form for Time Warps

For a time warp f we define

f ` := id/f, f r := f\id, and fo := >\f.

and we call terms constructed using only the operations ◦, id,⊥ and the
defined operations t` = id/t, tr = t\id, and to = >\t basic terms.

One can show that join and meet ‘distribute’ over the residuals and that for
any time warps f, g,

f\g = f rg ∨ (>f)r ∨ go and g/f = gf ` ∨ (f `)
o

Theorem
There is an effective procedure that given any time warp term t, produces
positive integers m,n1, . . . , nm and a set of basic time warp terms
{ti,j | 1 ≤ i ≤ m; 1 ≤ j ≤ ni} satisfying W |= t ≈

∧m
i=1

∨ni
j=1 ti,j .
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Step 1. A Normal Form for Time Warps

In universal algebra terms the normal form theorem states that the time
warp algebra is term equivalent to the algebra 〈W ,∧,∨, ◦, r, `, o, id,⊥〉,
so as a direct consequence we get:

Corollary
The equational theory of W is decidable if, and only if, there exists an
effective procedure that decides for any finite non-empty set of basic time
warp terms {t1, . . . , tn} if W |= id ≤ t1 ∨ · · · ∨ tn.

Accordingly in the following we will consider joins of basic terms. We
extend a valuation θ : Var→ W inductively to basic terms

JxKθ := θ(x), JidKθ := id, J⊥Kθ := ⊥,

JtuKθ := JtKθJuKθ, Jt?Kθ := JtK?θ for ? ∈ {o, `, r}.
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Step 2. Samples

Goal: Find for id ≤ t a finitary way to describe the relevant information of
a counterexample θ : Var→ W , p ∈ ω, such that JtKθ(p) < p.

The idea is to define syntactic objects which we want to associate with
points in ω+.

We fix a countably infinite set IV of time variables which we denote by
κ, κ′, etc. and we define a sample to be an object belonging to the
following grammar (where t is any basic term)

I 3 α ::= κ | t[α] | s(α) | p(α) | last(t).

Samples are purely syntactic, but the notation already suggests the
intended meaning.
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Step 2. Saturated Sample Sets

We say that a sample set ∆ is saturated if whenever α ∈ ∆ and α β,
then β ∈ ∆, where  is the relation between samples defined by

t[α] α to[α] t[α]

s(α) α tr[α] t[tr[α]], t[s(tr[α])]

p(α) α t`[α] t[t`[α]], t[p(t`[α])]

tu[α] t[u[α]] t[α] t[last(t)].

The saturation of a sample set ∆ is defined as

∆ := {β | ∃α ∈ ∆, α ∗ β},

where  ∗ denotes the reflexive transitive closure of  .

Lemma
If ∆ is a finite sample set, then its saturation ∆ is also finite.
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Step 2. Diagrams

Let us fix a saturated sample set ∆. A ∆-prediagram is a map
δ : ∆→ ω+.

We call a ∆-prediagram a ∆-diagram if it satisfies a number of conditions.

The first four conditions are

∀t[α], t[β] ∈ ∆, δ(α) ≤ δ(β) ⇒ δ(t[α]) ≤ δ(t[β]) (1)
∀t[α] ∈ ∆, δ(α) = 0 ⇒ δ(t[α]) = 0 (2)
∀p(α) ∈ ∆, δ(p(α)) = δ(α)	 1 (3)
∀s(α) ∈ ∆, δ(s(α)) = δ(α)⊕ 1 (4)
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p	 1 :=

{
p− 1 if p ∈ ω \{0}
p if p ∈ {0, ω}

, p⊕ 1 :=

{
p+ 1 if p ∈ ω
p if p = ω
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There are 19 more conditions which capture how the three constants, the
product, and the three residuals behave. For example condition (16) is

∀tr[α] ∈ ∆, (0 < δ(α) < ω and δ(tr[α]) < ω) ⇒ δ(α) < δ(t[s(tr[α])])
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Step 2. From Valuations to Diagrams

Proposition
Let T be a set of basic terms, κ a time variable, and ∆ the saturation of
the sample set {t[κ] | t ∈ T}. Then for any valuation θ and p ∈ ω+, there
exists a ∆-diagram δ such that δ(κ) = p and δ(t[κ]) = JtKθ(p) for all t ∈ T .

Define the map δ : ∆→ ω+ by structural induction on the samples in ∆ as
follows

δ(κ) := p
∀last(t) ∈ ∆, δ(last(t)) :=

∧
{p ∈ ω+ | JtKθ(p) = JtKθ(ω)}

∀t[α] ∈ ∆, δ(t[α]) := JtKθ(δ(α))
∀p(α) ∈ ∆, δ(p(α)) := δ(α)	 1
∀s(α) ∈ ∆, δ(s(α)) := δ(α)⊕ 1.
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Step 2. From Diagrams to Valuations

To go from diagrams to valuations we define for a ∆-diagram δ and basic
term t

btcδ := {(δ(α), δ(t[α])) | t[α] ∈ ∆}.

Note that btcδ is a partial map from ω+ to ω+.

Proposition
There is an effective procedure that produces for any finite ∆-diagram δ,
an algorithmic description of a valuation θ satisfying
JtKθ(δ(α)) = btcδ(δ(α)) for all t[α] ∈ ∆.
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Step 2. Diagram Theorem

Summarizing the two propositions we get

Theorem (Diagram Theorem)
Let t1, . . . , tn be basic terms, κ a time variable, and ∆ the saturation of the
sample set {t1[κ], . . . , tn[κ]}. Then W 6|= id ≤ t1 ∨ · · · ∨ tn if, and only if,
there exists a ∆-diagram δ such that δ(κ) > δ(ti[κ]) for all i ∈ {1, . . . , n}.

So what remains to do is to describe an algorithm to decide whether a
suitable diagram exists or not.
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Step 3. Translation into Logic

Fix ∆ = {t1[κ], . . . , tn[κ]} . We consider the first-order (relational)
signature τ = {�,S,O, I} of type (2, 2, 1, 1) and ω+ as a τ structure by
defining

�ω+
as the natural order of ω+,

Sω+
:= {〈n, n+ 1〉 | n ∈ ω} ∪ {〈ω, ω〉},

Oω+
:= {ω}, and Iω+

:= {0}.

If we consider the elements of ∆ as variables, a ∆-prediagram δ : ∆→ ω+

is just a τ -valuation into ω+. Moreover, we can translate the diagram
conditions into a finite set Γ∆ of quantifier-free first-order formulas.

For example, the condition

∀t[α], t[β] ∈ ∆, δ(α) ≤ δ(β) ⇒ δ(t[α]) ≤ δ(t[β]) (1)

yields the set {α � β ⇒ t[α] � t[β] | t[α], t[β] ∈ ∆}.
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Step 3. Decidability via Logic

If we set fail := {ti[κ] ≺ κ | 1 ≤ i ≤ n} and take the conjunction over
Γ∆ ∪ fail, we get a quantifier-free formula ψ∆.

Proposition
Let δ : ∆→ ω+ be a ∆-prediagram. Then ω+, δ |= ψ∆ if, and only if, δ is
a ∆-diagram such that δ(ti[κ]) < δ(κ) for each i ∈ {1, . . . , n}.

Together with the Diagram Theorem we get that ψ∆ is satisfiable in ω+ if
and only if W 6|= id ≤ t1 ∨ . . . ∨ tn. From this the decidability follows, by a
classical decidability result about ordinals (Läuchli and Leonard 1966).
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Step 3. Translation into a Problem over N

A structure which is more commonly available in satisfiability solvers (for
example in the Z3 theorem prover) is the structure 〈N,≤N, 0N,SN〉, where
≤N is the natural order, 0N = 0, and SN is the successor relation.

We can explicitly translate the τ -formula ψ∆ into a quantifier-free
{≤, 0,S}-formula φ∆ such that ψ∆ is satisfiable in ω+ if and only if φ∆ is
satisfiable in N.

Theorem
The time warp equation id ≤ t1 ∨ · · · ∨ tn is valid in W if, and only if, the
quantifier-free formula φ∆ is unsatisfiable in N. Moreover, any valuation
w : ∆→ N such that N, w |= φ∆ effectively yields a valuation θ of the time
warp variables occurring in t1 ∨ · · · ∨ tn such that W, θ |= id � t1 ∨ · · · ∨ tn.
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Conclusion and Further Directions

We found a procedure to decide whether an equation holds in W. From
the proof an upper bound for the complexity of the decidability problem
can be calculated, but the precise complexity is unknown.

Some further directions are

Implementing the procedure.
Finding a more suitable way to encode the decidability procedure.
Finding a good equational basis for the equational theory to establish
which variety of residuated lattices is generated by W.
Generalizing the decidability proof to other residuated lattices of
sup-preserving endomaps.
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Thank you!

Thank you!
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