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The Lambek Calculus

The Lambek calculus is a version of non-commutative intuitionistic

linear logic, formulated as the following sequent calculus:
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Lambek’s Restriction

« A distinctive feature of the original Lambek calculus L (Lambek
1958) is the Lambek’s antecedent non-emptiness

restriction.
« In\ Rand / R, the antecedent I should be non-empty.

o This restriction is motivated by linguistic applications:
otherwise, having “extremely interesting book” validated as
(N/N)/(N/N),N/N,N— N, we would also validate
“extremely book” as (N / N) /(N / N), N — N.
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considered.
 We denote it by L.

« The two systems, L and L, are not directly reducible to one
another, so theory here goes in parallel.

« In this talk, we show one example of different behaviour of L
and L.
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« While linguistic applications suggest interpreting Lambek
formulae as formal languages (L-models), we consider another
class of models: relational models, or R-models.

Definition
An R-model is a triple M = (W, U, v), where W is a non-empty set,
U C W x W is transitive and v: Fm — P(U) obeys the following:

V(A-B) = v(A)ov(B) ={(x,z) | dy € W (x,y) € v(A) and (y,z) € v(B)};
v(A\B) = v(A)\u v(B) = {(y;2) € U|Vx € W (x,y) € v(A) = (x,2) € v(B)};
v(B/A) = v(B) /uv(A) = {(x,y) € U[Vz € W(y,2) € v(A) = (x, 2) € v(B)}.

Definition
A sequent Ay, ..., A, = B, where n > 0, is true in M if

v(A1)o...ov(A,) C v(B).
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Relational Models

Definition
An R-model M = (W, U, v) is a square one, if U= W x W.

Definition
In a square R-model M, a sequent A — B (with an empty

antecedent) is true if § = {(x, x) | x € W} C v(B).

« Square R-models are natural models for L, while arbitrary

ones are for L.
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Completeness Results

« Both L and L are strongly sound and complete w.r.t.
corresponding classes of R-models.

Theorem (Andréka & Mikulas 1994)
HEL M — B <— H ':allR—models n— B.

Theorem (Andréka & Mikulas 1994)

HbEpwMN— B << HE n— B.

square R-models
+ The proofs, however, are essentially different.

« We shall now explore what happens with these proofs when we
extend the Lambek calculi with extra operations.
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Proof Ideas by Andréka and Mikulas

« For L, Andréka and Mikulas build the needed R-model as an
oriented graph G = (W, U) with edges marked by (equivalence
classes of) formulae.

« v(A) ={(x,y) e U[FL lx,y) = A}.

« No loops are allowed: (x, x) ¢ E

« The graph is constructed iteratively, and in the limit we get a

universal model for a given set of hypotheses .
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Proof Ideas by Andréka and Mikulas

« For L%, the situation is more involved.
« Now we are required to have loops, since U =W x W.

« The loop over each vertex x should somehow support any
formula A such that Fja A — A.
« In particular, there should be ‘labels’ p / p and q / g, which are

incomparable if p and g are different variables.

« Andréka and Mikulas consider sets of formulae as labels: now
v(A) ={(x,y) e Wx W |Fn A — Aforsome A" € L(x,y)}.
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« Let us extend L and L* with intersection (additive

conjunction):

r7A7A_>C r7B7A_>C [M—A I1— B

rarBAsc ™ Farsascb noang /R

+ In R-models, it is interpreted set-theoretically:
v(A A B) = v(A) N v(B).

« The corresponding calculi will be denoted by LA and LA,

depending on whether Lambek’s restriction is imposed.
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Intersection

« Adding the dual connective, union (additive disjunction),
immediately yields incompleteness, even in the weak sense,
due to issues with distributivity (Kanovich et al. 2019).

« In the L case, the proof of Andréka and Mikulas extends to LA:
this calculus is strongly R-complete.

« For LA, however, the situation is different.

+ Mikulas (2015) managed to prove only R-completeness.

Theorem
Fiua M — B <= M E 1 — B for each square R-model M.

10
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Loops and Units

« As noticed before, in the LA case each edge of our graph gets
labelled by a set of formulae.

« In particular, the set for a loop (x, x) should include all
formulae of the form A\ A.

« This, however, violates v(A A B) = v(A) N v(B): we have
FA — Aand - B' — B, but A and B could be different
elements of L(x, y).

« The solution proposed by Mikulas is as follows: instead of
arbitrary sets, he considered filters, which are closed under
finite intersections.

« We propose another approach, which uses an explicit unit

constant.
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These rules reflect neutrality of 1, so its natural interpretation
would be v(1) =6 = {(x,x) | x € W}.
« However, it is well-known that this leads to incompleteness.

« Examples: (1A FAG) — (1 AF)-(1AG) (Andréka and
Mikulas), 1 /(F/ F) — (1 /(F/ F)) - (1 /(F / F)) (Buszkowski).
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Unit in Relational Models

The unit 1 is axiomatized as follows:

NA—C i
F,I,A—>C1 A—>1]R

« These rules reflect neutrality of 1, so its natural interpretation
would be v(1) =6 = {(x,x) | x € W}.

« However, it is well-known that this leads to incompleteness.

« Examples: (1A FAG) — (1 AF)-(1AG) (Andréka and
Mikulas), 1 /(F/ F) — (1 /(F/ F)) - (1 /(F / F)) (Buszkowski).

« With such extra principles we conjecture undecidability (cf.
Kanovich et al. 2020).
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Non-Standard Units

« However, we shall prove completeness of the original L*A1,
but w.r.t. square R-models with a non-standard interpretation
of 1.

+ Let 2( be a subset of the set of all possible relations on W,

closed under Lambek operations and intersection.

o This 2 could have a unit which is different from §'!

Definition
An 20-unit 1g is such an element of 2 that for R=Tg 0o R= Ro 1y
for each R € 2.

A non-standard model is M® = (W, 2L, 1y, v).

13
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Non-Standard Units

+ Now, having the unit, we can use the older construction by
Andréeka and Mikulas and construct a universal model, with
l(x,x)=1.

« Indeed, {(x,y) | F ¢(x,y) — 1} is a non-standard unit.

« This, however, will not work with hypotheses, since a crucial
part hereis-F1—B-C=F1— Band -1 — C.

« Reducts of non-standard models to the language without 1 are

standard R-models.

 Thus, we get another, more straightforward proof of Mikulas
2015 theorem.
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Infinite Conjunctions

« One advantage of this construction is that it easily generalizes

to infinite conjunctions.

o A particular example of such a conjunction is Kleene star in
the denominator, or iterated division (Sedlar 2020, K. &

Ryzhkova 2020).
« A*\ B= A (A"\ B), same for B/ A*.
n=0

« We get (weak) R-completeness with the extension of L*A1 with

such operations.
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But what about strong completeness?

Mikulas (2015) proposes a series of potential counterexamples.

The first one is

a\a—b-cEd—d-b-((c-b)A(a\a))-c
This is indeed true in square R-models:

a\a@@’@)@(c-b)/\(a\a)

C

.

« ... but Mikulas didn’t prove that it is not derivable in L*A.
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Strong Incompleteness

« Let us replace a and d with 1. This will not destroy derivability.
« Now we rewrite the hypothesis A — b - ¢ (b and c are concrete
variables) with a sequential rule:

I b,c,A—F

N

o This rule admits cut elimination, so we establish

non-derivability of A — b- ((c- b) A (a\ a)) - c by exhaustive

proof search.
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Further Questions

 Algorithmic complexity: with 1 and extra axioms and with
iterated divisions.

« Finite axiomatizability of semantic entailment on square
R-models (Mikulas 2015).

« Strong completeness without product.
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Thanks! Merci! Koszonom!
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