Relational Models for the Lambek calculus with Intersection and Unit

Stepan L. Kuznetsov, Steklov Mathematical Institute of RAS
RAMICS 2021, C.I.R.M., Luminy, Nov 2-5, 2021

The Lambek Calculus

The Lambek calculus is a version of non-commutative intuitionistic linear logic, formulated as the following sequent calculus:

$$
\begin{aligned}
& \overline{A \rightarrow A} \text { ld } \quad \frac{\Pi \rightarrow A \quad \Gamma, A, \Delta \rightarrow C}{\Gamma, \Pi, \Delta \rightarrow C} C u t \\
& \begin{array}{lll}
\frac{\Pi \rightarrow A \quad \Gamma, B, \Delta \rightarrow C}{\Gamma, \Pi, A \backslash B, \Delta \rightarrow C} \backslash L & \frac{A, \Pi \rightarrow B}{\Pi \rightarrow A \backslash B} \backslash R & \frac{\Gamma, A, B, \Delta \rightarrow C}{\Gamma, A \cdot B, \Delta \rightarrow C} \cdot L \\
\frac{\Pi \rightarrow A}{\Gamma, B / A, \Pi, \Delta \rightarrow C} / L & \frac{\Pi, A \rightarrow B}{\Pi \rightarrow B / A} / R & \frac{\Pi \rightarrow A \Delta \rightarrow B}{\Pi, \Delta \rightarrow A \cdot B} \cdot R
\end{array}
\end{aligned}
$$

Lambek's Restriction

- A distinctive feature of the original Lambek calculus \mathbf{L} (Lambek 1958) is the Lambek's antecedent non-emptiness restriction.

Lambek's Restriction

- A distinctive feature of the original Lambek calculus \mathbf{L} (Lambek 1958) is the Lambek's antecedent non-emptiness restriction.
- In $\backslash R$ and / R, the antecedent Π should be non-empty.

Lambek's Restriction

- A distinctive feature of the original Lambek calculus \mathbf{L} (Lambek 1958) is the Lambek's antecedent non-emptiness restriction.
- In $\backslash R$ and / R, the antecedent Π should be non-empty.
- This restriction is motivated by linguistic applications: otherwise, having "extremely interesting book" validated as $(N / N) /(N / N), N / N, N \rightarrow N$, we would also validate "extremely book" as $(N / N) /(N / N), N \rightarrow N$.

Lambek's Restriction

- The Lambek calculus without Lambek's restriction is also considered.

Lambek's Restriction

- The Lambek calculus without Lambek's restriction is also considered.
- We denote it by \mathbf{L}^{Λ}.

Lambek's Restriction

- The Lambek calculus without Lambek's restriction is also considered.
- We denote it by \mathbf{L}^{Λ}.
- The two systems, \mathbf{L} and \mathbf{L}^{Λ}, are not directly reducible to one another, so theory here goes in parallel.

Lambek's Restriction

- The Lambek calculus without Lambek's restriction is also considered.
- We denote it by \mathbf{L}^{Λ}.
- The two systems, \mathbf{L} and \mathbf{L}^{Λ}, are not directly reducible to one another, so theory here goes in parallel.
- In this talk, we show one example of different behaviour of \mathbf{L}^{Λ} and \mathbf{L}.

Relational Models

- While linguistic applications suggest interpreting Lambek formulae as formal languages (L-models), we consider another class of models: relational models, or R-models.

Relational Models

- While linguistic applications suggest interpreting Lambek formulae as formal languages (L-models), we consider another class of models: relational models, or R-models.

Definition

An R-model is a triple $\mathcal{M}=(W, U, v)$, where W is a non-empty set, $U \subseteq W \times W$ is transitive and $v: \mathrm{Fm} \rightarrow \mathcal{P}(U)$ obeys the following: $v(A \cdot B)=v(A) \circ v(B)=\{(x, z) \mid \exists y \in W(x, y) \in v(A)$ and $(y, z) \in v(B)\} ;$ $v(A \backslash B)=v(A) \backslash u v(B)=\{(y, z) \in U \mid \forall x \in W(x, y) \in v(A) \Rightarrow(x, z) \in v(B)\} ;$ $v(B / A)=v(B) / u v(A)=\{(x, y) \in U \mid \forall z \in W(y, z) \in v(A) \Rightarrow(x, z) \in v(B)\}$.

Relational Models

- While linguistic applications suggest interpreting Lambek formulae as formal languages (L-models), we consider another class of models: relational models, or R-models.

Definition

An R-model is a triple $\mathcal{M}=(W, U, v)$, where W is a non-empty set, $U \subseteq W \times W$ is transitive and $v: \mathrm{Fm} \rightarrow \mathcal{P}(U)$ obeys the following:
$v(A \cdot B)=v(A) \circ v(B)=\{(x, z) \mid \exists y \in W(x, y) \in v(A)$ and $(y, z) \in v(B)\} ;$
$v(A \backslash B)=v(A) \backslash u v(B)=\{(y, z) \in U \mid \forall x \in W(x, y) \in v(A) \Rightarrow(x, z) \in v(B)\} ;$
$v(B / A)=v(B) / u v(A)=\{(x, y) \in U \mid \forall z \in W(y, z) \in v(A) \Rightarrow(x, z) \in v(B)\}$.

Definition

A sequent $A_{1}, \ldots, A_{n} \rightarrow B$, where $n>0$, is true in \mathcal{M} if $v\left(A_{1}\right) \circ \ldots \circ v\left(A_{n}\right) \subseteq v(B)$.

Relational Models

Definition

An R-model $\mathcal{M}=(W, U, v)$ is a square one, if $U=W \times W$.

Relational Models

Definition

An R-model $\mathcal{M}=(W, U, v)$ is a square one, if $U=W \times W$.

Definition

In a square R-model \mathcal{M}, a sequent $\Lambda \rightarrow B$ (with an empty antecedent) is true if $\delta=\{(x, x) \mid x \in W\} \subseteq v(B)$.

Relational Models

Definition

An R-model $\mathcal{M}=(W, U, v)$ is a square one, if $U=W \times W$.

Definition

In a square R-model \mathcal{M}, a sequent $\Lambda \rightarrow B$ (with an empty antecedent) is true if $\delta=\{(x, x) \mid x \in W\} \subseteq v(B)$.

- Square R-models are natural models for \mathbf{L}^{Λ}, while arbitrary ones are for \mathbf{L}.

Completeness Results

- Both \mathbf{L} and \mathbf{L}^{Λ} are strongly sound and complete w.r.t. corresponding classes of R-models.

Completeness Results

- Both \mathbf{L} and \mathbf{L}^{Λ} are strongly sound and complete w.r.t. corresponding classes of R-models.

Theorem (Andréka \& Mikulás 1994)
$\mathcal{H} \vdash_{\mathbf{L}} \Pi \rightarrow B \Longleftrightarrow \mathcal{H} \vDash_{\text {all } R \text {-models }} \Pi \rightarrow B$.

Completeness Results

- Both \mathbf{L} and \mathbf{L}^{Λ} are strongly sound and complete w.r.t. corresponding classes of R-models.

Theorem (Andréka \& Mikulás 1994)
$\mathcal{H} \vdash_{\mathbf{L}} \Pi \rightarrow B \Longleftrightarrow \mathcal{H} \vDash_{\text {all } R \text {-models }} \Pi \rightarrow B$.
Theorem (Andréka \& Mikulás 1994)
$\mathcal{H} \vdash_{\mathbf{L}^{\wedge}} \Pi \rightarrow B \Longleftrightarrow \mathcal{H} \vDash_{\text {square } R \text {-models }} \Pi \rightarrow B$.

Completeness Results

- Both \mathbf{L} and \mathbf{L}^{Λ} are strongly sound and complete w.r.t. corresponding classes of R-models.

Theorem (Andréka \& Mikulás 1994)
$\mathcal{H} \vdash_{\mathbf{L}} \Pi \rightarrow B \Longleftrightarrow \mathcal{H} \vDash_{\text {all } R \text {-models }} \Pi \rightarrow B$.
Theorem (Andréka \& Mikulás 1994)
$\mathcal{H} \vdash_{\mathbf{L}^{\Lambda}} \Pi \rightarrow B \Longleftrightarrow \mathcal{H} \vDash_{\text {square } R \text {-models }} \Pi \rightarrow B$.

- The proofs, however, are essentially different.

Completeness Results

- Both \mathbf{L} and \mathbf{L}^{Λ} are strongly sound and complete w.r.t. corresponding classes of R-models.

Theorem (Andréka \& Mikulás 1994)
$\mathcal{H} \vdash_{\mathbf{L}} \Pi \rightarrow B \Longleftrightarrow \mathcal{H} \vDash_{\text {all R-models }} \Pi \rightarrow B$.
Theorem (Andréka \& Mikulás 1994)
$\mathcal{H} \vdash_{\mathbf{L}^{\Lambda}} \Pi \rightarrow B \Longleftrightarrow \mathcal{H} \vDash_{\text {square } R \text {-models }} \Pi \rightarrow B$.

- The proofs, however, are essentially different.
- We shall now explore what happens with these proofs when we extend the Lambek calculi with extra operations.
- For L, Andréka and Mikulás build the needed R-model as an oriented graph $G=(W, U)$ with edges marked by (equivalence classes of) formulae.

Proof Ideas by Andréka and Mikulás

- For L, Andréka and Mikulás build the needed R-model as an oriented graph $G=(W, U)$ with edges marked by (equivalence classes of) formulae.
- $v(A)=\left\{(x, y) \in U \mid \vdash_{\mathbf{L}} \ell(x, y) \rightarrow A\right\}$.

Proof Ideas by Andréka and Mikulás

- For L, Andréka and Mikulás build the needed R-model as an oriented graph $G=(W, U)$ with edges marked by (equivalence classes of) formulae.
- $v(A)=\left\{(x, y) \in U \mid \vdash_{\mathbf{L}} \ell(x, y) \rightarrow A\right\}$.
- No loops are allowed: $(x, x) \notin E$

Proof Ideas by Andréka and Mikulás

- For L, Andréka and Mikulás build the needed R-model as an oriented graph $G=(W, U)$ with edges marked by (equivalence classes of) formulae.
- $v(A)=\left\{(x, y) \in U \mid \vdash_{\mathbf{L}} \ell(x, y) \rightarrow A\right\}$.
- No loops are allowed: $(x, x) \notin E$
- The graph is constructed iteratively, and in the limit we get a universal model for a given set of hypotheses \mathcal{H}.

Proof Ideas by Andréka and Mikulás

- For \mathbf{L}^{Λ}, the situation is more involved.

Proof Ideas by Andréka and Mikulás

- For \mathbf{L}^{Λ}, the situation is more involved.
- Now we are required to have loops, since $U=W \times W$.
- For \mathbf{L}^{Λ}, the situation is more involved.
- Now we are required to have loops, since $U=W \times W$.
- The loop over each vertex x should somehow support any formula A such that $\vdash_{\mathbf{L}^{\Lambda}} \Lambda \rightarrow A$.

Proof Ideas by Andréka and Mikulás

- For \mathbf{L}^{Λ}, the situation is more involved.
- Now we are required to have loops, since $U=W \times W$.
- The loop over each vertex x should somehow support any formula A such that $\vdash_{\mathbf{L}^{\Lambda}} \Lambda \rightarrow A$.
- In particular, there should be 'labels' p / p and q / q, which are incomparable if p and q are different variables.

Proof Ideas by Andréka and Mikulás

- For \mathbf{L}^{Λ}, the situation is more involved.
- Now we are required to have loops, since $U=W \times W$.
- The loop over each vertex x should somehow support any formula A such that $\vdash_{\mathbf{L}^{\Lambda}} \Lambda \rightarrow A$.
- In particular, there should be 'labels' p / p and q / q, which are incomparable if p and q are different variables.
- Andréka and Mikulás consider sets of formulae as labels: now $v(A)=\left\{(x, y) \in W \times W \mid \vdash_{\mathbf{L}^{\wedge}} A^{\prime} \rightarrow A\right.$ for some $\left.A^{\prime} \in \mathcal{L}(x, y)\right\}$.

Intersection

- Let us extend \mathbf{L} and \mathbf{L}^{Λ} with intersection (additive conjunction):

$$
\frac{\Gamma, A, \Delta \rightarrow C}{\Gamma, A \wedge B, \Delta \rightarrow C} \wedge L_{1} \quad \frac{\Gamma, B, \Delta \rightarrow C}{\Gamma, A \wedge B, \Delta \rightarrow C} \wedge L_{2} \quad \frac{\Pi \rightarrow A \quad \Pi \rightarrow B}{\Pi \rightarrow A \wedge B} \wedge R
$$

Intersection

- Let us extend \mathbf{L} and \mathbf{L}^{Λ} with intersection (additive conjunction):

$$
\frac{\Gamma, A, \Delta \rightarrow C}{\Gamma, A \wedge B, \Delta \rightarrow C} \wedge L_{1} \quad \frac{\Gamma, B, \Delta \rightarrow C}{\Gamma, A \wedge B, \Delta \rightarrow C} \wedge L_{2} \quad \frac{\Pi \rightarrow A \quad \Pi \rightarrow B}{\Pi \rightarrow A \wedge B} \wedge R
$$

- In R-models, it is interpreted set-theoretically:

$$
v(A \wedge B)=v(A) \cap v(B)
$$

Intersection

- Let us extend \mathbf{L} and \mathbf{L}^{Λ} with intersection (additive conjunction):

$$
\frac{\Gamma, A, \Delta \rightarrow C}{\Gamma, A \wedge B, \Delta \rightarrow C} \wedge L_{1} \quad \frac{\Gamma, B, \Delta \rightarrow C}{\Gamma, A \wedge B, \Delta \rightarrow C} \wedge L_{2} \quad \frac{\Pi \rightarrow A \quad \Pi \rightarrow B}{\Pi \rightarrow A \wedge B} \wedge R
$$

- In R-models, it is interpreted set-theoretically:

$$
v(A \wedge B)=v(A) \cap v(B)
$$

- The corresponding calculi will be denoted by $\mathbf{L} \wedge$ and $\mathbf{L}^{\Lambda} \wedge$, depending on whether Lambek's restriction is imposed.

Intersection

- Adding the dual connective, union (additive disjunction), immediately yields incompleteness, even in the weak sense, due to issues with distributivity (Kanovich et al. 2019).

Intersection

- Adding the dual connective, union (additive disjunction), immediately yields incompleteness, even in the weak sense, due to issues with distributivity (Kanovich et al. 2019).
- In the \mathbf{L} case, the proof of Andréka and Mikulás extends to $\mathbf{L} \wedge$: this calculus is strongly R-complete.

Intersection

- Adding the dual connective, union (additive disjunction), immediately yields incompleteness, even in the weak sense, due to issues with distributivity (Kanovich et al. 2019).
- In the \mathbf{L} case, the proof of Andréka and Mikulás extends to $\mathbf{L} \wedge$: this calculus is strongly R -complete.
- For $\mathbf{L}^{\Lambda} \wedge$, however, the situation is different.

Intersection

- Adding the dual connective, union (additive disjunction), immediately yields incompleteness, even in the weak sense, due to issues with distributivity (Kanovich et al. 2019).
- In the \mathbf{L} case, the proof of Andréka and Mikulás extends to $\mathbf{L} \wedge$: this calculus is strongly R -complete.
- For $\mathbf{L}^{\Lambda} \wedge$, however, the situation is different.
- Mikulás (2015) managed to prove only weak R-completeness.

Intersection

- Adding the dual connective, union (additive disjunction), immediately yields incompleteness, even in the weak sense, due to issues with distributivity (Kanovich et al. 2019).
- In the \mathbf{L} case, the proof of Andréka and Mikulás extends to $\mathbf{L} \wedge$: this calculus is strongly R-complete.
- For $\mathbf{L}^{\Lambda} \wedge$, however, the situation is different.
- Mikulás (2015) managed to prove only weak R-completeness.

Theorem

$\left\llcorner_{L^{\wedge} \wedge} \Pi \rightarrow B \Longleftrightarrow \mathcal{M} \vDash \Pi \rightarrow B\right.$ for each square R-model \mathcal{M}.

Loops and Units

- As noticed before, in the $\mathbf{L}^{\Lambda} \wedge$ case each edge of our graph gets labelled by a set of formulae.

Loops and Units

- As noticed before, in the $\mathbf{L}^{\Lambda} \wedge$ case each edge of our graph gets labelled by a set of formulae.
- In particular, the set for a loop (x, x) should include all formulae of the form $A \backslash A$.

Loops and Units

- As noticed before, in the $\mathbf{L}^{\Lambda} \wedge$ case each edge of our graph gets labelled by a set of formulae.
- In particular, the set for a loop (x, x) should include all formulae of the form $A \backslash A$.
- This, however, violates $v(A \wedge B)=v(A) \cap v(B)$: we have $\vdash A^{\prime} \rightarrow A$ and $\vdash B^{\prime} \rightarrow B$, but A and B could be different elements of $\mathcal{L}(x, y)$.

Loops and Units

- As noticed before, in the $\mathbf{L}^{\Lambda} \wedge$ case each edge of our graph gets labelled by a set of formulae.
- In particular, the set for a loop (x, x) should include all formulae of the form $A \backslash A$.
- This, however, violates $v(A \wedge B)=v(A) \cap v(B)$: we have $\vdash A^{\prime} \rightarrow A$ and $\vdash B^{\prime} \rightarrow B$, but A and B could be different elements of $\mathcal{L}(x, y)$.
- The solution proposed by Mikulás is as follows: instead of arbitrary sets, he considered filters, which are closed under finite intersections.

Loops and Units

- As noticed before, in the $\mathbf{L}^{\Lambda} \wedge$ case each edge of our graph gets labelled by a set of formulae.
- In particular, the set for a loop (x, x) should include all formulae of the form $A \backslash A$.
- This, however, violates $v(A \wedge B)=v(A) \cap v(B)$: we have $\vdash A^{\prime} \rightarrow A$ and $\vdash B^{\prime} \rightarrow B$, but A and B could be different elements of $\mathcal{L}(x, y)$.
- The solution proposed by Mikulás is as follows: instead of arbitrary sets, he considered filters, which are closed under finite intersections.
- We propose another approach, which uses an explicit unit constant.

Unit in Relational Models

- The unit $\mathbf{1}$ is axiomatized as follows:

$$
\frac{\Gamma, \Delta \rightarrow C}{\Gamma, \mathbf{1}, \Delta \rightarrow C} \mathbf{1} L \quad \overline{\Lambda \rightarrow \mathbf{1}} \mathbf{1} R
$$

Unit in Relational Models

- The unit $\mathbf{1}$ is axiomatized as follows:

$$
\frac{\Gamma, \Delta \rightarrow C}{\Gamma, \mathbf{1}, \Delta \rightarrow C} \mathbf{1} L \quad \overline{\Lambda \rightarrow \mathbf{1}} \mathbf{1} R
$$

- These rules reflect neutrality of $\mathbf{1}$, so its natural interpretation would be $v(\mathbf{1})=\delta=\{(x, x) \mid x \in W\}$.

Unit in Relational Models

- The unit $\mathbf{1}$ is axiomatized as follows:

$$
\frac{\Gamma, \Delta \rightarrow C}{\Gamma, \mathbf{1}, \Delta \rightarrow C} \mathbf{1} L \quad \overline{\Lambda \rightarrow \mathbf{1}} \mathbf{1} R
$$

- These rules reflect neutrality of $\mathbf{1}$, so its natural interpretation would be $v(\mathbf{1})=\delta=\{(x, x) \mid x \in W\}$.
- However, it is well-known that this leads to incompleteness.

Unit in Relational Models

- The unit $\mathbf{1}$ is axiomatized as follows:

$$
\frac{\Gamma, \Delta \rightarrow C}{\Gamma, \mathbf{1}, \Delta \rightarrow C} \mathbf{1} L \quad \overline{\Lambda \rightarrow \mathbf{1}} \mathbf{1} R
$$

- These rules reflect neutrality of $\mathbf{1}$, so its natural interpretation would be $v(\mathbf{1})=\delta=\{(x, x) \mid x \in W\}$.
- However, it is well-known that this leads to incompleteness.
- Examples: $(\mathbf{1} \wedge F \wedge G) \rightarrow(1 \wedge F) \cdot(\mathbf{1} \wedge G)$ (Andréka and Mikulás), $\mathbf{1} /(F / F) \rightarrow(\mathbf{1} /(F / F)) \cdot(\mathbf{1} /(F / F))$ (Buszkowski).

Unit in Relational Models

- The unit $\mathbf{1}$ is axiomatized as follows:

$$
\frac{\Gamma, \Delta \rightarrow C}{\Gamma, \mathbf{1}, \Delta \rightarrow C} \mathbf{1} L \quad \overline{\Lambda \rightarrow \mathbf{1}} \mathbf{1} R
$$

- These rules reflect neutrality of $\mathbf{1}$, so its natural interpretation would be $v(\mathbf{1})=\delta=\{(x, x) \mid x \in W\}$.
- However, it is well-known that this leads to incompleteness.
- Examples: $(\mathbf{1} \wedge F \wedge G) \rightarrow(\mathbf{1} \wedge F) \cdot(\mathbf{1} \wedge G)$ (Andréka and Mikulás), $\mathbf{1} /(F / F) \rightarrow(\mathbf{1} /(F / F)) \cdot(\mathbf{1} /(F / F))$ (Buszkowski).
- With such extra principles we conjecture undecidability (cf. Kanovich et al. 2020).

Non-Standard Units

- However, we shall prove completeness of the original $\mathbf{L}^{\Lambda} \wedge \mathbf{1}$, but w.r.t. square R-models with a non-standard interpretation of 1 .

Non-Standard Units

- However, we shall prove completeness of the original $\mathbf{L}^{\Lambda} \wedge \mathbf{1}$, but w.r.t. square R-models with a non-standard interpretation of 1 .
- Let \mathfrak{A} be a subset of the set of all possible relations on W, closed under Lambek operations and intersection.

Non-Standard Units

- However, we shall prove completeness of the original $\mathbf{L}^{\Lambda} \wedge \mathbf{1}$, but w.r.t. square R-models with a non-standard interpretation of 1 .
- Let \mathfrak{A} be a subset of the set of all possible relations on W, closed under Lambek operations and intersection.
- This \mathfrak{A} could have a unit which is different from δ !

Non-Standard Units

- However, we shall prove completeness of the original $\mathbf{L}^{\Lambda} \wedge \mathbf{1}$, but w.r.t. square R-models with a non-standard interpretation of 1 .
- Let \mathfrak{A} be a subset of the set of all possible relations on W, closed under Lambek operations and intersection.
- This \mathfrak{A} could have a unit which is different from δ !

Definition
An \mathfrak{A}-unit $\mathbf{1}_{\mathfrak{A}}$ is such an element of \mathfrak{A} that for $R=\mathbf{1}_{\mathfrak{A}} \circ R=R \circ \mathbf{1}_{\mathfrak{A}}$ for each $R \in \mathfrak{A}$.
A non-standard model is $\mathcal{M}^{\mathfrak{A}}=\left(W, \mathfrak{A}, \mathbf{1}_{\mathfrak{A}}, v\right)$.

Non-Standard Units

- Now, having the unit, we can use the older construction by Andréka and Mikulás and construct a universal model, with $\ell(x, x)=1$.

Non-Standard Units

- Now, having the unit, we can use the older construction by Andréka and Mikulás and construct a universal model, with $\ell(x, x)=1$.
- Indeed, $\{(x, y) \mid \vdash \ell(x, y) \rightarrow \mathbf{1}\}$ is a non-standard unit.

Non-Standard Units

- Now, having the unit, we can use the older construction by Andréka and Mikulás and construct a universal model, with $\ell(x, x)=1$.
- Indeed, $\{(x, y) \mid \vdash \ell(x, y) \rightarrow \mathbf{1}\}$ is a non-standard unit.
- This, however, will not work with hypotheses, since a crucial part here is $\vdash \mathbf{1} \rightarrow B \cdot C \Rightarrow \vdash \mathbf{1} \rightarrow B$ and $\vdash \mathbf{1} \rightarrow C$.

Non-Standard Units

- Now, having the unit, we can use the older construction by Andréka and Mikulás and construct a universal model, with $\ell(x, x)=1$.
- Indeed, $\{(x, y) \mid \vdash \ell(x, y) \rightarrow \mathbf{1}\}$ is a non-standard unit.
- This, however, will not work with hypotheses, since a crucial part here is $\vdash \mathbf{1} \rightarrow B \cdot C \Rightarrow \vdash \mathbf{1} \rightarrow B$ and $\vdash \mathbf{1} \rightarrow C$.
- Reducts of non-standard models to the language without $\mathbf{1}$ are standard R-models.

Non-Standard Units

- Now, having the unit, we can use the older construction by Andréka and Mikulás and construct a universal model, with $\ell(x, x)=1$.
- Indeed, $\{(x, y) \mid \vdash \ell(x, y) \rightarrow \mathbf{1}\}$ is a non-standard unit.
- This, however, will not work with hypotheses, since a crucial part here is $\vdash \mathbf{1} \rightarrow B \cdot C \Rightarrow \vdash \mathbf{1} \rightarrow B$ and $\vdash \mathbf{1} \rightarrow C$.
- Reducts of non-standard models to the language without $\mathbf{1}$ are standard R-models.
- Thus, we get another, more straightforward proof of Mikulás 2015 theorem.

Infinite Conjunctions

- One advantage of this construction is that it easily generalizes to infinite conjunctions.

Infinite Conjunctions

- One advantage of this construction is that it easily generalizes to infinite conjunctions.
- A particular example of such a conjunction is Kleene star in the denominator, or iterated division (Sedlár 2020, K. \& Ryzhkova 2020).

Infinite Conjunctions

- One advantage of this construction is that it easily generalizes to infinite conjunctions.
- A particular example of such a conjunction is Kleene star in the denominator, or iterated division (Sedlár 2020, K. \& Ryzhkova 2020).
- $A^{*} \backslash B \equiv \bigwedge_{n=0}^{\infty}\left(A^{n} \backslash B\right)$, same for B / A^{*}.

Infinite Conjunctions

- One advantage of this construction is that it easily generalizes to infinite conjunctions.
- A particular example of such a conjunction is Kleene star in the denominator, or iterated division (Sedlár 2020, K. \& Ryzhkova 2020).
- $A^{*} \backslash B \equiv \bigwedge_{n=0}^{\infty}\left(A^{n} \backslash B\right)$, same for B / A^{*}.
- We get (weak) R-completeness with the extension of $\mathbf{L}^{\Lambda} \wedge \mathbf{1}$ with such operations.

Strong Incompleteness

- But what about strong completeness?

Strong Incompleteness

- But what about strong completeness?
- Mikulás (2015) proposes a series of potential counterexamples.

Strong Incompleteness

- But what about strong completeness?
- Mikulás (2015) proposes a series of potential counterexamples.
- The first one is

$$
a \backslash a \rightarrow b \cdot c \vDash d \rightarrow d \cdot b \cdot((c \cdot b) \wedge(a \backslash a)) \cdot c .
$$

Strong Incompleteness

- But what about strong completeness?
- Mikulás (2015) proposes a series of potential counterexamples.
- The first one is

$$
a \backslash a \rightarrow b \cdot c \vDash d \rightarrow d \cdot b \cdot((c \cdot b) \wedge(a \backslash a)) \cdot c .
$$

- This is indeed true in square R-models:

Strong Incompleteness

- But what about strong completeness?
- Mikulás (2015) proposes a series of potential counterexamples.
- The first one is

$$
a \backslash a \rightarrow b \cdot c \vDash d \rightarrow d \cdot b \cdot((c \cdot b) \wedge(a \backslash a)) \cdot c .
$$

- This is indeed true in square R-models:

- ... but Mikulás didn't prove that it is not derivable in $\mathbf{L}^{\Lambda} \wedge$.

Strong Incompleteness

- Let us replace a and d with $\mathbf{1}$. This will not destroy derivability.

Strong Incompleteness

- Let us replace a and d with $\mathbf{1}$. This will not destroy derivability.
- Now we rewrite the hypothesis $\Lambda \rightarrow b \cdot c$ (b and c are concrete variables) with a sequential rule:

$$
\frac{\Gamma, b, c, \Delta \rightarrow F}{\Gamma, \Delta \rightarrow F} b c
$$

Strong Incompleteness

- Let us replace a and d with 1 . This will not destroy derivability.
- Now we rewrite the hypothesis $\Lambda \rightarrow b \cdot c$ (b and c are concrete variables) with a sequential rule:

$$
\frac{\Gamma, b, c, \Delta \rightarrow F}{\Gamma, \Delta \rightarrow F} b c
$$

- This rule admits cut elimination, so we establish non-derivability of $\Lambda \rightarrow b \cdot((c \cdot b) \wedge(a \backslash a)) \cdot c$ by exhaustive proof search.

Further Questions

- Algorithmic complexity: with $\mathbf{1}$ and extra axioms and with iterated divisions.

Further Questions

- Algorithmic complexity: with $\mathbf{1}$ and extra axioms and with iterated divisions.
- Finite axiomatizability of semantic entailment on square R-models (Mikulás 2015).

Further Questions

- Algorithmic complexity: with $\mathbf{1}$ and extra axioms and with iterated divisions.
- Finite axiomatizability of semantic entailment on square R-models (Mikulás 2015).
- Strong completeness without product.

Thanks! Merci! Köszönöm!

