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The Lambek Calculus

The Lambek calculus is a version of non-commutative intuitionistic
linear logic, formulated as the following sequent calculus:

A→ A Id
Π→ A Γ,A,∆→ C

Γ,Π,∆→ C Cut

Π→ A Γ,B,∆→ C
Γ,Π,A \B,∆→ C

\ L A,Π→ B
Π→ A \B \R

Γ,A,B,∆→ C
Γ,A · B,∆→ C ·L

Π→ A Γ,B,∆→ C
Γ,B /A,Π,∆→ C

/ L
Π,A→ B
Π→ B /A

/R Π→ A ∆→ B
Π,∆→ A · B ·R
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Lambek’s Restriction

• A distinctive feature of the original Lambek calculus L (Lambek
1958) is the Lambek’s antecedent non-emptiness
restriction.

• In \R and /R, the antecedent Π should be non-empty.

• This restriction is motivated by linguistic applications:
otherwise, having “extremely interesting book” validated as
(N /N) /(N /N),N /N ,N → N , we would also validate
“extremely book” as (N /N) /(N /N),N → N .
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Lambek’s Restriction

• The Lambek calculus without Lambek’s restriction is also
considered.

• We denote it by LΛ.

• The two systems, L and LΛ, are not directly reducible to one
another, so theory here goes in parallel.

• In this talk, we show one example of di�erent behaviour of LΛ

and L.
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Relational Models

• While linguistic applications suggest interpreting Lambek
formulae as formal languages (L-models), we consider another
class of models: relational models, or R-models.

Definition
An R-model is a tripleM = (W ,U, v), where W is a non-empty set,
U ⊆ W ×W is transitive and v : Fm→ P(U) obeys the following:

v(A · B) = v(A) ◦ v(B) = {(x, z) | ∃y ∈ W (x, y) ∈ v(A) and (y, z) ∈ v(B)};
v(A \B) = v(A) \U v(B) = {(y, z) ∈ U | ∀x ∈ W (x, y) ∈ v(A)⇒ (x, z) ∈ v(B)};
v(B /A) = v(B) /U v(A) = {(x, y) ∈ U | ∀z ∈ W (y, z) ∈ v(A)⇒ (x, z) ∈ v(B)}.

Definition
A sequent A1, . . . ,An → B, where n > 0, is true inM if
v(A1) ◦ . . . ◦ v(An) ⊆ v(B).
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Relational Models

Definition
An R-modelM = (W ,U, v) is a square one, if U = W ×W .

Definition
In a square R-modelM, a sequent Λ→ B (with an empty
antecedent) is true if δ = {(x, x) | x ∈ W} ⊆ v(B).

• Square R-models are natural models for LΛ, while arbitrary
ones are for L.
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Completeness Results

• Both L and LΛ are strongly sound and complete w.r.t.
corresponding classes of R-models.

Theorem (Andréka & Mikulás 1994)
H `L Π→ B ⇐⇒ H �all R-models Π→ B.

Theorem (Andréka & Mikulás 1994)
H `LΛ Π→ B ⇐⇒ H �square R-models Π→ B.

• The proofs, however, are essentially di�erent.

• We shall now explore what happens with these proofs when we
extend the Lambek calculi with extra operations.
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Theorem (Andréka & Mikulás 1994)
H `L Π→ B ⇐⇒ H �all R-models Π→ B.

Theorem (Andréka & Mikulás 1994)
H `LΛ Π→ B ⇐⇒ H �square R-models Π→ B.

• The proofs, however, are essentially di�erent.

• We shall now explore what happens with these proofs when we
extend the Lambek calculi with extra operations.

6



Completeness Results

• Both L and LΛ are strongly sound and complete w.r.t.
corresponding classes of R-models.
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Proof Ideas by Andréka and Mikulás

• For L, Andréka and Mikulás build the needed R-model as an
oriented graph G = (W ,U) with edges marked by (equivalence
classes of) formulae.

• v(A) = {(x, y) ∈ U | `L `(x, y)→ A}.
• No loops are allowed: (x, x) /∈ E

• The graph is constructed iteratively, and in the limit we get a
universal model for a given set of hypothesesH.
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Proof Ideas by Andréka and Mikulás

• For LΛ, the situation is more involved.

• Now we are required to have loops, since U = W ×W .

• The loop over each vertex x should somehow support any
formula A such that `LΛ Λ→ A.

• In particular, there should be ‘labels’ p / p and q / q, which are
incomparable if p and q are di�erent variables.

• Andréka and Mikulás consider sets of formulae as labels: now
v(A) = {(x, y) ∈ W ×W | `LΛ A′ → A for some A′ ∈ L(x, y)}.
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Intersection

• Let us extend L and LΛ with intersection (additive
conjunction):

Γ,A,∆→ C
Γ,A ∧ B,∆→ C

∧L1
Γ,B,∆→ C

Γ,A ∧ B,∆→ C
∧L2

Π→ A Π→ B
Π→ A ∧ B ∧R

• In R-models, it is interpreted set-theoretically:

v(A ∧ B) = v(A) ∩ v(B).

• The corresponding calculi will be denoted by L∧ and LΛ∧,
depending on whether Lambek’s restriction is imposed.
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Intersection

• Adding the dual connective, union (additive disjunction),
immediately yields incompleteness, even in the weak sense,
due to issues with distributivity (Kanovich et al. 2019).

• In the L case, the proof of Andréka and Mikulás extends to L∧:
this calculus is strongly R-complete.

• For LΛ∧, however, the situation is di�erent.

• Mikulás (2015) managed to prove only weak R-completeness.

Theorem
`LΛ∧ Π→ B ⇐⇒ M � Π→ B for each square R-modelM.
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Loops and Units

• As noticed before, in the LΛ∧ case each edge of our graph gets
labelled by a set of formulae.

• In particular, the set for a loop (x, x) should include all
formulae of the form A \A.

• This, however, violates v(A ∧ B) = v(A) ∩ v(B): we have
` A′ → A and ` B′ → B, but A and B could be di�erent
elements of L(x, y).

• The solution proposed by Mikulás is as follows: instead of
arbitrary sets, he considered filters, which are closed under
finite intersections.

• We propose another approach, which uses an explicit unit
constant.
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Unit in Relational Models

• The unit 1 is axiomatized as follows:

Γ,∆→ C
Γ, 1,∆→ C 1L Λ→ 1 1R

• These rules reflect neutrality of 1, so its natural interpretation
would be v(1) = δ = {(x, x) | x ∈ W}.

• However, it is well-known that this leads to incompleteness.

• Examples: (1 ∧ F ∧ G)→ (1 ∧ F ) · (1 ∧ G) (Andréka and
Mikulás), 1 /(F / F )→ (1 /(F / F )) · (1 /(F / F )) (Buszkowski).

• With such extra principles we conjecture undecidability (cf.
Kanovich et al. 2020).
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Non-Standard Units

• However, we shall prove completeness of the original LΛ∧1,
but w.r.t. square R-models with a non-standard interpretation
of 1.

• Let A be a subset of the set of all possible relations on W ,
closed under Lambek operations and intersection.

• This A could have a unit which is di�erent from δ !

Definition
An A-unit 1A is such an element of A that for R = 1A ◦ R = R ◦ 1A
for each R ∈ A.
A non-standard model isMA = (W ,A, 1A, v).

13
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Definition
An A-unit 1A is such an element of A that for R = 1A ◦ R = R ◦ 1A
for each R ∈ A.
A non-standard model isMA = (W ,A, 1A, v).
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Non-Standard Units

• Now, having the unit, we can use the older construction by
Andréka and Mikulás and construct a universal model, with
`(x, x) = 1.

• Indeed, {(x, y) | ` `(x, y)→ 1} is a non-standard unit.

• This, however, will not work with hypotheses, since a crucial
part here is ` 1→ B · C ⇒ ` 1→ B and ` 1→ C.

• Reducts of non-standard models to the language without 1 are
standard R-models.

• Thus, we get another, more straightforward proof of Mikulás
2015 theorem.
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Infinite Conjunctions

• One advantage of this construction is that it easily generalizes
to infinite conjunctions.

• A particular example of such a conjunction is Kleene star in
the denominator, or iterated division (Sedlár 2020, K. &
Ryzhkova 2020).

• A∗ \B ≡
∞∧
n=0

(An \B), same for B /A∗.

• We get (weak) R-completeness with the extension of LΛ∧1 with
such operations.
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Strong Incompleteness

• But what about strong completeness?

• Mikulás (2015) proposes a series of potential counterexamples.

• The first one is

a \ a→ b · c � d → d · b ·
(
(c · b) ∧ (a \ a)

)
· c.

• This is indeed true in square R-models:

y za \ a

b

c

(c · b) ∧ (a \ a)

• ... but Mikulás didn’t prove that it is not derivable in LΛ∧.
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Strong Incompleteness

• Let us replace a and d with 1. This will not destroy derivability.

• Now we rewrite the hypothesis Λ→ b · c (b and c are concrete
variables) with a sequential rule:

Γ, b, c,∆→ F
Γ,∆→ F bc

• This rule admits cut elimination, so we establish
non-derivability of Λ→ b ·

(
(c · b) ∧ (a \ a)

)
· c by exhaustive

proof search.
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Further Questions

• Algorithmic complexity: with 1 and extra axioms and with
iterated divisions.

• Finite axiomatizability of semantic entailment on square
R-models (Mikulás 2015).

• Strong completeness without product.
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Thanks! Merci! Köszönöm!
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