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@ Case of Multiple Equations

© Fixpoint Games

© Soundness and Completeness

@ Conclusion

@ Motivation: Solving Systems of Fixpoint Equations
@ Case of One Equation



Solving one Fixpoint Equation

equations over a complete lattice

e e e L L
We are interested in techniques for solving (systems of) fixpoint
Solve the equation E given as  x =, f(x)
where
(L,E)

@ f: L — L is a monotone function over a complete lattice

analysis

Applications in concurrency theory, model checking, program
o F = = E 9DHAE
~  BarbaraKoénig  Fixpoint Games 3

e 7 € {u, v}, indicating whether we are interested in the least
(1) or greatest (v) fixpoint

The solution of E is denoted by sol(E)




Solving one Fixpoint Equation
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@ The Knaster-Tarski theorem guarantees the existence of least
and greatest fixpoints for monotone functions
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Solving one Fixpoint Equation

_ Bladvaion (st G Gauaize g Ceopliages oo
@ The Knaster-Tarski theorem guarantees the existence of least
and greatest fixpoints for monotone functions

o Kleene iteration: whenever f is (co-)continuous
o 1 = (least fixpoint): sol(E) =| |;cy (L)

o 1 = v (greatest fixpoint): sol(E) =[],y F/(T)




Solving one Fixpoint Equation

_ Bladvaion (st G Gauaize g Ceopliages oo
@ The Knaster-Tarski theorem guarantees the existence of least
and greatest fixpoints for monotone functions

o Kleene iteration: whenever f is (co-)continuous

o 1 = (least fixpoint): sol(E) =| |;cy (L)
o 1 = v (greatest fixpoint): sol(E) =[],y F/(T)

@ In order to check whether / C sol(E) for some / € L:
o 7 = p (least fixpoint): use ranking functions

e 7 = v (greatest fixpoint): construct a postfix-point /’
(I" T (1)) such that / T /'




Solving one Fixpoint Equation




Solving one Fixpoint Equation

If f is not (co-)continuous:

~» Kleene iteration over the ordinals
(beyond w)
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Solving one Fixpoint Equation

o Dataflow analysis (least or greatest fixpoint)

o Bisimilarity characterized as a greatest fixpoint

@ Behavioural metric characterized a a least fixpoint
° ...
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Solving (Systems of) Fixpoint Equations

Let L be a complete lattice. A system of equations E over L is of
the following form, where f;: L™ — L are monotone functions and

ni € {u,v}.
x1 =p  h(xt, ..., Xm)

Xm . TmlXL) - 5 Xim)




Solving (Systems of) Fixpoint Equations

Let L be a complete lattice. A system of equations E over L is of
the following form, where f;: L™ — L are monotone functions and

ni € {u,v}.
x1 =p  h(xt, ..., Xm)

Xm . TmlXL) - 5 Xim)

The solution of E, denoted sol(E) € L™, is defined inductively as
follows:

sol(0) = ()
sol(E) = (sol(E[xm := Sm]), Sm)

where sp, = Nm(Ax. fn(sol( E[xm := x]), x))
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Solving (Systems of) Fixpoint Equations

Remarks:
o E[xm := x] is a system of m — 1 equations that one obtains by
fixing the value of x,,, as x and removing the last equation.

@ Intuitively we fix the value of x,, as x, solve the remaining
equation systems parameterized over x and then perform a
fixpoint iteration (least or greatest) with f,, over x.

@ The order of the equations matters.

@ The solution is a fixpoint of the equation system (one of
typically many fixpoints).



Solving (Systems of) Fixpoint Equations
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We consider the modal p-calculus with O (“all successor states
satisfy ..."), & (“some successor state satisfies ..."), least and
greatest fixpoints.

P

vxa.(pux1.(Ox1 V (P A Ox2)) A Oxz)




Solving (Systems of) Fixpoint Equations

C Ll B SsnleseniEEbass CadEa
We consider the modal p-calculus with O (“all successor states
satisfy ..."), & (“some successor state satisfies ..."), least and
greatest fixpoints.

P

vxa.(ux1.(Ox1 V (P A $xz)) A Oxz)
Equations over the powerset lattice of states:

X1 =pu
X2 =y

Ox1 U (P N <>X2)
x1 N Oxo




Solving (Systems of) Fixpoint Equations

‘Example: p-calculus model checking |

Equations over the powerset lattice of states:
x1 = Ox1U (PN <Oxo)

x1: “there exists a path such that eventually P holds and x» holds
for some successor”

X2 =, x1N0x
xp: “largest set such that x; holds and all successors satisfy x"

Combined: “from all reachable states there is a path along which
P holds infinitely often”

A
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Solving (Systems of) Fixpoint Equations

Efficient algorithms for p-calculus model-checking
n: number of states d: alternation depth of formula

o Naive approach: use the definition ~» O(n9)

@ Reduce model-checking problem to a parity game and
determine whether the existential player has a winning
strategy

o Local on-the fly algorithms [Stevens, Stirling]
that perform an on-the fly search for a winning strategy
of the existential player (proving that a given state
satisfies a formula)

o Progress measures [Jurdzinski] ~ O(n%)

o Quasi-polynomial algorithms [Calude, Jain, Khoussainov,
Bakhadyr, Li, Stephan] ~» O(nl'ogd1+¢)




Solving (Systems of) Fixpoint Equations

Example: lattice-valued p-calculi
Variants: Non-boolean p-calculi that do not check whether a
formula holds in a state, but measure the “degree” with respect to
which a formula is satisfied:
x = @ is replaced by [¢]: X — L
o Latticed p-calculus [Kupferman, Lustig]
~> over a lattice L
e Quantitative probabilistic p-calculus [Huth, Kwiatkowskal]
~> over the real interval L = [0, 1]

@ tukasiewicz p-calculus [Mio, Simpson]
~> over the real interval L = [0, 1]

~» we require methods and techniques for solving fixpoint
equations over general lattices (as opposed to powerset lattices)
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Fixpoint Games

Aim: consider a game perspective for solving systems of fixpoint
equations for general lattices

Let E be a system of m equations over a lattice L with basis B;

(B C L such that every | € L can be obtained as / = | | B’ where
B' C By).




Fixpoint Games

Aim: consider a game perspective for solving systems of fixpoint
equations for general lattices

Let E be a system of m equations over a lattice L with basis B;
(B C L such that every | € L can be obtained as / = | | B’ where
B’ C By). Let sol(E) = (s1,---,Sm) be the solution.

e Given be By, i € {1,..., m} the existential player (3, Eve)
wants to prove that b C s;.

@ The universal player (V, Adam) is the adversary of 3 and
wants to show that b [£ s;.
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Fixpoint Games

Aim: consider a game perspective for solving systems of fixpoint
equations for general lattices

Let E be a system of m equations over a lattice L with basis B;
(B C L such that every | € L can be obtained as / = | | B’ where
B’ C By). Let sol(E) = (s1,---,Sm) be the solution.
e Given b€ By, i € {1,..., m} the existential player (3, Eve)
wants to prove that b C s;.

@ The universal player (V, Adam) is the adversary of 3 and
wants to show that b [£ s;.

Precursor games:
@ Parity games
e Unfolding games [Venema]
o are being played on a powerset lattice
e single fixpoint equation



- Motivation Fixpoint Games Soundness and Completeness Conclusion
Fixpoint Games
Position
(b, 1)

| Player | Moves
3
(hyooeyim)

.|

(h,...,Im) such that b C fi(h,.
(b',j) such that b’ T J;
b,b, € B, L Q B, (/1,. .,Im) eLm

)




| Player | Moves
3
(hyooeyim)

(.
v

,Im) such that b C fi(h,.
(b',j) such that b’ T J;
b,bl € By, J_QBL, (/1,. .,Im) eLm

coylm)
| E | v
Finite game | V unable to move
Infinite game Np=v
infinitely often.

3 unable to move

Nh = [
Where h € {1,..., m} is the highest equation index occurring

- Motivation Fixpoint Games Soundness and Completeness Conclusion
Fixpoint Games
Position
(b, i)




Fixpoint Games

B, = {{a},{b}} for b={a}, i=2:

We play the game on the powerset lattice L = P({a, b}) with basis

P

X1 =pu
X2 =y

Oxp U (P M <>X2) = fl(Xl,Xz)
x1 N Oxy = fz(Xl,Xz)

which P holds infinitely often”

Remember: the second component of the solution contains all
states such that “from all reachable states there is a path along
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Notation:

e Game positions (nodes) of 3: &

e Game positions (nodes) of V: O



Fixpoint Games

({a},{a, b})

(@10 [{BL0)] (b} {b])]

Only minimal moves of 3 are given.




Fixpoint Games

({a},{a, b})

(@10 [{BL0)] (b} {b])]

Thick arrows: winning strategy of 3
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Fixpoint Games

Is the game correct and complete for all (complete) lattices?
(“3d has a winning strategy for (b,i) <= bLCs")
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Fixpoint Games

Is the game correct and complete for all (complete) lattices?
(“3d has a winning strategy for (b,i) <= bLCs")

L =NU{w}, B, = L\{0}
f-L—L f(n)=n+1, flw)=w

x =, f(x) w

We play a game to check whether w is below the

solution (= least fixpoint): :
1

3 v !

W W~ W... 0

V would win this game ... This means that something is
wrong!

= Dae

— —



Fixpoint Games

In this case w C | |, £/(0), but w Z £7(0) for all i € N.

However, in order to win, 3 has to descend in the lattice in order
to reach L = 0 and enforce a finite game. (3 has to be able to go
below the “limit ordinals” in the fixpoint iteration.)

Solution: play with basis B, = N\{0}. This forces V to pick some
neN.

What are the restrictions on the basis in general?



Way-Below Relation, Algebraic and Continuous Lattices

Given two elements /, I’ € L we say that / is way-below //, written

| < I" when for all directed sets D C L, if I’ C | | D then there
exists d € D such that / C d.

@ It holds that w &« w, since w C | |N, but w is not below any
element of the directed set N.

e For two sets Y, Y’ € P(X) it holds that Y < Y iff Y C Y’
and Y finite.

e For x,x’ € [0,1] it holds that x < x" iff x < x" or x = 0.



Way-Below Relation, Algebraic and Continuous Lattices

An element / € L is compact if | < [.

A complete lattice L is algebraic if the compact elements form a
basis.

@ Every powerset lattice is algebraic.
o NU {w} is algebraic.

e [0,1] is not algebraic. (Only 0 is compact.)
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Way-Below Relation, Algebraic and Continuous Lattices

An element / € L is compact if | < [.
A complete lattice L is algebraic if the compact elements form a
basis.

@ Every powerset lattice is algebraic.
o NU {w} is algebraic.
e [0,1] is not algebraic. (Only 0 is compact.)

The game is

@ always correct (“3 has a winning strategy for (b, i) = b C s;")

@ and complete (“b C s; = 3 has a winning strategy for (b,i)")

iff B, consists of compact elements (and hence L is algebraic).
- _—oa
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Way-Below Relation, Algebraic and Continuous Lattices

I=|{lreL|r<i.

A complete lattice L is continuous if for all / € L it holds that
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Way-Below Relation, Algebraic and Continuous Lattices

I=|{lreL|r<i.

A complete lattice L is continuous if for all / € L it holds that

@ Every algebraic lattice is continuous.

e [0,1] is a continuous lattice.

W

\

2 a
1/
0
O» <@ «=r»«E=r» E 9AC
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@ The lattice to the right is not continuous:
akaso|l{lelL|l<a}=0+#a.



Way-Below Relation, Algebraic and Continuous Lattices

Position | Player | Moves
(b, 1) 3 (h,...,Im) such that b C fi(h,.
(hy.oyim) v
b,b, € B, L ¢ B, (/1,. .,Im) eLm

(b, )) such that b’ < [;

)

The winning conditions stay unchanged.




Way-Below Relation, Algebraic and Continuous Lattices

Position | Player | Moves
(b, 1) 3 (h,...,Im) such that b C fi(h,.
(hy.oyim) v j
b,b, € By, J_gB[_, (/1,. .,Im) eLm

(b, )) such that b’ < [;

)

The winning conditions stay unchanged.
The game is

@ always complete

@ and correct iff L is continuous.




Way-Below Relation, Algebraic and Continuous Lattices

This works also for non-continuous functions! Let f: [0,1] — [0, 1]
be defined as:

P4+3x ifo<x<}
f)=9 35 1. .1
5+ 35X if 5<x<1

y
1 - We have puf = 3 (this fixpoint is not
B reachable in w steps, since f is not
3/41 - continuous)
2/4+ 7 Game:
1 1230 3-e )2
0+—+—+—++Hx 33IIL1 5000
0 1/42/43/4 1 3 wins!
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_ Motivation Fixpoint Games Soundness and Completeness Conclusion
Conclusion

player (global algorithm)

@ Progress measures: computing the strategy of the existential

o Constraining the moves of the existential player via selections
~» POPL '19
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Conclusion

@ Progress measures: computing the strategy of the existential
player (global algorithm)

e Constraining the moves of the existential player via selections

~ POPL '19

@ Local algorithm for checking whether a lattice element is
below the solution

@ Integration with up-to techniques for stopping earlier

e Variant of the game: play on the powerset of the basis (sound
and complete for all (complete) lattices)

~» CONCUR "20



Conclusion

Generalization of the quasipolynomial algorithms for parity games
to finite lattices, based on fixpoint games:

Daniel Hausmann, Lutz Schroder: Quasipolynomial Computation
of Nested Fixpoints. TACAS 21
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Conclusion

Does the theory developed here help to compute solutions of

fixpoint equations over the reals, metrics and other infinite lattices?
@ initial experiments with SMT solvers

@ methods for approximating the solution
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