Barbara König Universität Duisburg-Essen

Joint work with

Paolo Baldan, Tommaso Padoan (Università di Padova) Christina Mika-Michalski (Hochschule Rhein-Waal)

1 Motivation: Solving Systems of Fixpoint Equations

- Case of One Equation
- Case of Multiple Equations

2 Fixpoint Games

Soundness and Completeness

We are interested in techniques for solving (systems of) fixpoint equations over a complete lattice

One-equation case

Solve the equation E given as $x =_{\eta} f(x)$ where

- $f: L \to L$ is a monotone function over a complete lattice (L, \sqsubseteq)
- $\eta \in \{\mu, \nu\}$, indicating whether we are interested in the least (μ) or greatest (ν) fixpoint

The solution of E is denoted by sol(E)

Applications in concurrency theory, model checking, program analysis

・ 同 ト ・ ヨ ト ・ ヨ ト

Solution techniques

• The Knaster-Tarski theorem guarantees the existence of least and greatest fixpoints for monotone functions

Solution techniques

- The Knaster-Tarski theorem guarantees the existence of least and greatest fixpoints for monotone functions
- Kleene iteration: whenever f is (co-)continuous
 - $\eta = \mu$ (least fixpoint): $sol(E) = \bigsqcup_{i \in \mathbb{N}} f^i(\bot)$

•
$$\eta = \nu$$
 (greatest fixpoint): $sol(E) = \prod_{i \in \mathbb{N}} f^i(\top)$

Solution techniques

- The Knaster-Tarski theorem guarantees the existence of least and greatest fixpoints for monotone functions
- Kleene iteration: whenever f is (co-)continuous
 - $\eta = \mu$ (least fixpoint): $sol(E) = \bigsqcup_{i \in \mathbb{N}} f^i(\bot)$

•
$$\eta = \nu$$
 (greatest fixpoint): $sol(E) = \prod_{i \in \mathbb{N}} f^i(\top)$

- In order to check whether $I \sqsubseteq sol(E)$ for some $I \in L$:
 - $\eta = \mu$ (least fixpoint): use ranking functions
 - η = ν (greatest fixpoint): construct a postfix-point l' (l' ⊂ f(l')) such that l ⊂ l'

æ

≣⇒

< (17) × <

If f is not (co-)continuous:

 \rightsquigarrow Kleene iteration over the ordinals (beyond ω)

Examples

- Dataflow analysis (least or greatest fixpoint)
- Bisimilarity characterized as a greatest fixpoint
- Behavioural metric characterized a a least fixpoint
- . . .

System of fixpoint equations

Let *L* be a complete lattice. A system of equations *E* over *L* is of the following form, where $f_i : L^m \to L$ are monotone functions and $\eta_i \in \{\mu, \nu\}$.

$$x_1 =_{\eta_1} f_1(x_1,\ldots,x_m)$$

. . .

$$x_m =_{\eta_m} f_m(x_1,\ldots,x_m)$$

System of fixpoint equations

Let *L* be a complete lattice. A system of equations *E* over *L* is of the following form, where $f_i : L^m \to L$ are monotone functions and $\eta_i \in \{\mu, \nu\}$.

$$x_1 =_{\eta_1} f_1(x_1,\ldots,x_m)$$

$$x_m =_{\eta_m} f_m(x_1,\ldots,x_m)$$

The solution of *E*, denoted $sol(E) \in L^m$, is defined inductively as follows:

$$sol(\emptyset) = ()$$

 $sol(E) = (sol(E[x_m := s_m]), s_m)$

where $s_m = \eta_m(\lambda x. f_m(sol(E[x_m := x]), x))$

Remarks:

- $E[x_m := x]$ is a system of m 1 equations that one obtains by fixing the value of x_m as x and removing the last equation.
- Intuitively we fix the value of x_m as x, solve the remaining equation systems parameterized over x and then perform a fixpoint iteration (least or greatest) with f_m over x.
- The order of the equations matters.
- The solution is a fixpoint of the equation system (one of typically many fixpoints).

< 同 > < 国 > < 国 >

Example: μ -calculus model checking

We consider the modal μ -calculus with \Box ("all successor states satisfy ..."), \diamond ("some successor state satisfies ..."), least and greatest fixpoints.

 $\nu x_2.(\mu x_1.(\Diamond x_1 \lor (P \land \Diamond x_2)) \land \Box x_2)$

Example: μ -calculus model checking

We consider the modal μ -calculus with \Box ("all successor states satisfy ..."), \diamond ("some successor state satisfies ..."), least and greatest fixpoints.

 $\nu x_2.(\mu x_1.(\Diamond x_1 \lor (P \land \Diamond x_2)) \land \Box x_2)$

Equations over the powerset lattice of states:

$$\begin{array}{ll} x_1 &=_{\mu} & \Diamond x_1 \cup (P \cap \Diamond x_2) \\ x_2 &=_{\nu} & x_1 \cap \Box x_2 \end{array}$$

Equations over the powerset lattice of states:

$$x_1 =_{\mu} \diamond x_1 \cup (P \cap \diamond x_2)$$

 x_1 : "there exists a path such that eventually P holds and x_2 holds for some successor"

$$x_2 =_{\nu} x_1 \cap \Box x_2$$

 x_2 : "largest set such that x_1 holds and all successors satisfy x_2 " Combined: "from all reachable states there is a path along which P holds infinitely often"

Efficient algorithms for μ -calculus model-checking

n: number of states *d*: alternation depth of formula

- Naive approach: use the definition $\rightsquigarrow O(n^d)$
- Reduce model-checking problem to a parity game and determine whether the existential player has a winning strategy
 - Local on-the fly algorithms [Stevens, Stirling] that perform an on-the fly search for a winning strategy of the existential player (proving that a given state satisfies a formula)
 - Progress measures [Jurdzinski] $\rightsquigarrow O(n^{\frac{d}{2}})$
 - Quasi-polynomial algorithms [Calude, Jain, Khoussainov, Bakhadyr, Li, Stephan] $\rightsquigarrow O(n^{\lceil \log d \rceil + c})$

イロト イヨト イヨト

Example: lattice-valued μ -calculi

Variants: Non-boolean μ -calculi that do not check whether a formula holds in a state, but measure the "degree" with respect to which a formula is satisfied:

 $x \models \varphi$ is replaced by $\llbracket \varphi \rrbracket \colon X \to L$

- Latticed μ-calculus [Kupferman, Lustig]
 → over a lattice L
- Quantitative probabilistic μ -calculus [Huth, Kwiatkowska] \rightsquigarrow over the real interval L = [0, 1]
- Łukasiewicz μ-calculus [Mio, Simpson]
 → over the real interval L = [0, 1]

 \rightsquigarrow we require methods and techniques for solving fixpoint equations over general lattices (as opposed to powerset lattices)

Aim: consider a game perspective for solving systems of fixpoint equations for general lattices

Let *E* be a system of *m* equations over a lattice *L* with basis B_L $(B_L \subseteq L \text{ such that every } l \in L \text{ can be obtained as } l = \bigsqcup B'$ where $B' \subseteq B_L$).

Aim: consider a game perspective for solving systems of fixpoint equations for general lattices

Let *E* be a system of *m* equations over a lattice *L* with basis B_L $(B_L \subseteq L \text{ such that every } l \in L \text{ can be obtained as } l = \bigsqcup B'$ where $B' \subseteq B_L$). Let $sol(E) = (s_1, \ldots, s_m)$ be the solution.

- Given $b \in B_L$, $i \in \{1, ..., m\}$ the existential player (\exists , Eve) wants to prove that $b \sqsubseteq s_i$.
- The universal player (∀, Adam) is the adversary of ∃ and wants to show that b ⊈ s_i.

Aim: consider a game perspective for solving systems of fixpoint equations for general lattices

Let *E* be a system of *m* equations over a lattice *L* with basis B_L $(B_L \subseteq L \text{ such that every } l \in L \text{ can be obtained as } l = \bigsqcup B'$ where $B' \subseteq B_L$). Let $sol(E) = (s_1, \ldots, s_m)$ be the solution.

- Given $b \in B_L$, $i \in \{1, ..., m\}$ the existential player (\exists , Eve) wants to prove that $b \sqsubseteq s_i$.
- The universal player (∀, Adam) is the adversary of ∃ and wants to show that b ⊈ s_i.

Precursor games:

- Parity games
- Unfolding games [Venema]
 - are being played on a powerset lattice
 - single fixpoint equation

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Fixpoint game (first version)				
Position	Player	Moves		
(<i>b</i> , <i>i</i>)	Э	(I_1,\ldots,I_m) such that $b \sqsubseteq f_i(I_1,\ldots,I_m)$		
(I_1,\ldots,I_m)	\forall	(b',j) such that $b'\sqsubseteq l_j$		
$b,b'\in B_L,\perp ot\in B_L,(I_1,\ldots,I_m)\in L^m$				

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Fixpoint game (first version)				
Position	Player	Moves		
(b, i)	Э	(I_1,\ldots,I_m) such that $b \sqsubseteq f_i(I_1,\ldots,I_m)$		
(I_1,\ldots,I_m)	\forall	(b',j) such that $b'\sqsubseteq l_j$		
$b,b'\in B_L,\perp ot\in B_L,(I_1,\ldots,I_m)\in L^m$				

Winning condition ("parity condition")						
	Э	A				
Finite game Infinite game	\forall unable to move $\eta_h = \nu$	$\exists \text{ unable to move} \\ \eta_h = \mu$				
Where $h \in \{1, \dots, m\}$ is the highest equation index occurring infinitely often.						

æ

・ロト ・四ト ・ヨト ・ヨト

We play the game on the powerset lattice $L = \mathcal{P}(\{a, b\})$ with basis $B_L = \{\{a\}, \{b\}\}$ for $b = \{a\}, i = 2$:

$$\begin{array}{ll} x_1 & =_{\mu} & \diamond x_1 \cup (P \cap \diamond x_2) = f_1(x_1, x_2) \\ x_2 & =_{\nu} & x_1 \cap \Box x_2 = f_2(x_1, x_2) \end{array}$$

Remember: the second component of the solution contains all states such that "from all reachable states there is a path along which P holds infinitely often"

Notation:

- Game positions (nodes) of $\exists: \diamond$
- Game positions (nodes) of $\forall: \Box$

э

Only minimal moves of \exists are given.

æ

Thick arrows: winning strategy of \exists

・ロト ・四ト ・ヨト ・ヨト

æ

Is the game correct and complete for all (complete) lattices? (" \exists has a winning strategy for $(b, i) \iff b \sqsubseteq s_i$ ")

・日・ ・ ヨト・

Is the game correct and complete for all (complete) lattices? (" \exists has a winning strategy for $(b, i) \iff b \sqsubseteq s_i$ ")

Counterexample

$$L = \mathbb{N} \cup \{\omega\}, B_L = L \setminus \{0\}$$

f: L \rightarrow L, f(n) = n + 1, f(\omega) = \omega

$$x =_{\mu} f(x)$$

We play a game to check whether ω is below the solution (= least fixpoint):

$$\omega \stackrel{\exists}{\rightsquigarrow} \omega \stackrel{\forall}{\rightsquigarrow} \omega \dots \qquad 0$$

 \forall would win this game \ldots This means that something is wrong!

ω

2

In this case $\omega \sqsubseteq \bigsqcup_{i \in \mathbb{N}} f^i(0)$, but $\omega \not\sqsubseteq f^i(0)$ for all $i \in \mathbb{N}$.

However, in order to win, \exists has to descend in the lattice in order to reach $\bot = 0$ and enforce a finite game. (\exists has to be able to go below the "limit ordinals" in the fixpoint iteration.)

Solution: play with basis $B_L = \mathbb{N} \setminus \{0\}$. This forces \forall to pick some $n \in \mathbb{N}$.

What are the restrictions on the basis in general?

(日本) (日本) (日本)

Way-below relation (definition)

Given two elements $I, I' \in L$ we say that I is way-below I', written $I \ll I'$ when for all directed sets $D \subseteq L$, if $I' \sqsubseteq \bigsqcup D$ then there exists $d \in D$ such that $I \sqsubseteq d$.

- It holds that ω ≪ ω, since ω ⊑ ∐ N, but ω is not below any element of the directed set N.
- For two sets $Y, Y' \in \mathcal{P}(X)$ it holds that $Y \ll Y'$ iff $Y \subseteq Y'$ and Y finite.
- For $x, x' \in [0, 1]$ it holds that $x \ll x'$ iff x < x' or x = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

Algebraic lattice (definition)

An element $I \in L$ is compact if $I \ll I$. A complete lattice L is algebraic if the compact elements form a basis.

- Every powerset lattice is algebraic.
- $\mathbb{N} \cup \{\omega\}$ is algebraic.
- [0,1] is *not* algebraic. (Only 0 is compact.)

Algebraic lattice (definition)

An element $l \in L$ is compact if $l \ll l$. A complete lattice L is algebraic if the compact elements form a basis.

- Every powerset lattice is algebraic.
- $\mathbb{N} \cup \{\omega\}$ is algebraic.
- [0,1] is *not* algebraic. (Only 0 is compact.)

Soundness and completeness of the fixpoint game (first version)

The game is

- always correct (" \exists has a winning strategy for $(b,i) \Rightarrow b \sqsubseteq s_i$ ")
- and complete ("b ⊑ s_i ⇒ ∃ has a winning strategy for (b, i)") iff B_L consists of compact elements (and hence L is algebraic).

Continuous Lattice [Scott]

A complete lattice *L* is continuous if for all $l \in L$ it holds that $l = \bigsqcup \{l' \in L \mid l' \ll l\}.$

Continuous Lattice [Scott]

A complete lattice *L* is continuous if for all $l \in L$ it holds that $l = \bigsqcup \{l' \in L \mid l' \ll l\}$.

- Every algebraic lattice is continuous.
- [0,1] is a continuous lattice.
- The lattice to the right is not continuous: $a \not\ll a$, so $\bigsqcup \{ l \in L \mid l \ll a \} = 0 \neq a$.

Fixpoint game (second version)				
Position	Player	Moves		
(b, i)	Ξ	(I_1,\ldots,I_m) such that $b \sqsubseteq f_i(I_1,\ldots,I_m)$		
(I_1,\ldots,I_m)	\forall	(b',j) such that $b' \ll l_j$		
$b,b'\in B_L,\perp ot\in B_L,(I_1,\ldots,I_m)\in L^m$				

The winning conditions stay unchanged.

A ≥ ▶

B b

Fixpoint game (second version)				
Position	Player	Moves		
(<i>b</i> , <i>i</i>)	Э	(I_1,\ldots,I_m) such that $b \sqsubseteq f_i(I_1,\ldots,I_m)$		
(I_1,\ldots,I_m)	\forall	(b',j) such that $b' \ll l_j$		
$b,b'\in B_L,\perp ot\in B_L,(I_1,\ldots,I_m)\in L^m$				

The winning conditions stay unchanged.

This works also for non-continuous functions! Let $f : [0,1] \rightarrow [0,1]$ be defined as:

$$f(x) = \begin{cases} \frac{1}{4} + \frac{1}{2}x & \text{if } 0 \le x < \frac{1}{2} \\ \frac{3}{8} + \frac{1}{2}x & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

We have $\mu f = \frac{3}{4}$ (this fixpoint is not reachable in ω steps, since f is not continuous)

Game:

$$\frac{3}{4} \stackrel{\exists}{\rightsquigarrow} \frac{3}{4} \stackrel{\forall}{\rightsquigarrow} \frac{3}{4} - \varepsilon \stackrel{\exists}{\rightsquigarrow} \frac{3}{4} - 2\varepsilon \rightsquigarrow \cdots \gg$$

$$\frac{5}{8} \stackrel{\exists}{\rightsquigarrow} \frac{1}{2} \stackrel{\forall}{\rightsquigarrow} \frac{1}{2} - \delta \rightsquigarrow \cdots \rightsquigarrow 0$$

$$\exists \text{ wins!}$$

Barbara König Fix

Further contributions

- Progress measures: computing the strategy of the existential player (global algorithm)
- Constraining the moves of the existential player via selections

 \sim POPL '19

Further contributions

- Progress measures: computing the strategy of the existential player (global algorithm)
- Constraining the moves of the existential player via selections

ightarrow POPL '19

Further contributions

- Local algorithm for checking whether a lattice element is below the solution
- Integration with up-to techniques for stopping earlier
- Variant of the game: play on the powerset of the basis (sound and complete for all (complete) lattices)

\rightsquigarrow CONCUR '20

Generalization of the quasipolynomial algorithms for parity games to finite lattices, based on fixpoint games: Daniel Hausmann, Lutz Schröder: Quasipolynomial Computation of Nested Fixpoints. TACAS '21

Open questions

Does the theory developed here help to compute solutions of fixpoint equations over the reals, metrics and other infinite lattices?

- initial experiments with SMT solvers
- methods for approximating the solution