Construction of Bolzmann and Mc Kean Vlasov flows

(the sewing argument)

Vlad Bally and Aurelian Alfonsi

University Marne-la-Vallée
In honor of Denis Talay

1. Bolzmann type equations

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} \varphi(x) f_{s, t}(d x) \tag{1}\\
& =\int_{\mathbb{R}^{d}} \varphi(x) d \rho(x)+\int_{s}^{t} \int_{\mathbb{R}^{d}}\left\langle\nabla \varphi(x), b\left(x, f_{s, r}\right)\right\rangle f_{s, r}(d x) d r \\
& +\int_{s}^{t} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f_{s, t}(d x) f_{s, r}(d v) \int_{E}\left(\varphi\left(x+c\left(v, z, x, f_{s, t}\right)\right)-\varphi(x)\right) \gamma(v, z, x) \mu(d z) d r
\end{align*}
$$

We look for a family of probability measures $f_{s, t}(d v), s \leq t$ which verify the above weak integro-differential equation.
a. If the coefficients does not depend on $f_{s, t}$ this is a Bolzmann type equation.
b. If $f_{s, r}(d v)$ is a given (known) $g_{s, r}(d v)$ and the coeffieints depend on $f_{s, t}$ this is a McKean Vlaso type equation

2. Stochastic equation

We consider the stochastc equation

$$
\begin{align*}
X_{s, t} & =X+\int_{s}^{t} b\left(X_{s, r}, \mathcal{L}\left(X_{s, r}\right)\right) d r \tag{2}\\
& +\int_{s}^{t} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c\left(v, z, X_{s, r-}, \mathcal{L}\left(X_{s, r}\right)\right) 1_{\left\{u \leq \gamma\left(v, z, X_{s, r-}\right)\right\}} N_{\mathcal{L}\left(X_{s, r}\right)}(d v, d z, d u, d r) \tag{3}
\end{align*}
$$

With $N_{\mathcal{L}\left(X_{s, r}\right)}$ a Poisson point measure with compensator

$$
\widehat{N}_{\mathcal{L}\left(X_{s, r}\right)}(d v, d z, d u, d r)=\mathcal{L}\left(X_{s, r}\right)(d v) \mu(d z) d u d r
$$

This represents a "probabilistic representation" (Tanaka) for the solution of the weak eqaution :

$$
f_{s, r}(d x)=\mathcal{L}\left(X_{s, r}\right)(d x)
$$

3. Flow solution (a new formulation of the problem)

$$
\begin{aligned}
\mathcal{P}_{1} & =\left\{\mu \text { probailiy, } \int_{R^{d}}|x| \mu(d x)<\infty\right\} \\
W_{1}(\mu, \nu) & =\sup _{|\nabla f| \leq 1}\left|\int f d \mu-\int f d \nu\right|
\end{aligned}
$$

Folws of maps

$$
\begin{aligned}
\mathcal{E} & =\left\{\theta: \mathcal{P}_{1} \rightarrow \mathcal{P}_{1}\right\} \\
d_{*}\left(\theta, \theta^{\prime}\right) & =\sup _{\rho \in \mathcal{P}_{1}} \frac{W_{1}\left(\theta(\rho), \theta^{\prime}(\rho)\right)}{1+\int_{R^{d}}|x| \rho(d x)}
\end{aligned}
$$

Then $\left(\mathcal{P}_{1}, W_{1}\right)$ and $\left(\mathcal{E}, d_{*}\right)$ are complete metric spaces.

One step Euler scheme : Given $\rho \in \mathcal{P}_{1}$ we take $X \sim \rho$ and construct

$$
\begin{aligned}
Y_{s, t}(\rho) & =X+b(X, \rho)(t-s) \\
& +\int_{s}^{t} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c(v, z, X, \rho) 1_{\{u \leq \gamma(v, z, X)\}} N_{\rho}(d v, d z, d u, d r)
\end{aligned}
$$

Then define $\Theta_{s, t}: \mathcal{P}_{1} \rightarrow \mathcal{P}_{1}$ by

$$
\rho \rightarrow \Theta_{s, t}(\rho)=\mathcal{L}\left(Y_{s, t}(\rho)\right)
$$

Theorem (flow solution) There exists a unique flow $\theta_{s, t} \in \mathcal{E}, s<t$, such that

$$
\theta_{s, t}=\theta_{r, t} \circ \theta_{s, r} \quad s<r<t \quad \text { (flow property) }
$$

and

$$
d_{*}\left(\theta_{s, t}, \Theta_{s, t}\right) \leq C(t-s)^{2}
$$

Moreover, $\theta_{s, t}(\rho)$ solves the weak equation (1) and admits the stochastic representation (2). We call $\theta_{s, t}$ the "flow solution"

Remark 1 A simlar point of view has been introduced by Devie in the framework of rough path equations.

Remark 2 The construction of the flow solution is done as limit of the Euler schemes:

$$
\Theta_{s, t}^{\mathcal{P}}=\Theta_{s_{n-1}, s_{n}} \circ \ldots \circ \Theta_{s_{0}, s_{1}} \quad \mathcal{P}=\left\{s=s_{0}<\ldots<s_{n}=t\right\}
$$

Then

$$
d_{*}\left(\theta_{s, t}, \Theta_{s, t}^{\mathcal{P}}\right) \leq C(t-s) \times \max _{i=1, n}\left(s_{i+1}-s_{i}\right)
$$

Remark 3 : Uniqueness of the solution of the weak equation is a difficult problem for the flow solution we have uniquenss easely : there exists a unique solution constructed as limit of Euler schemes (but this produces just "one possible solution" of the weak equation).

Remark 4 : Stability

$$
W_{1}\left(\theta_{s, t}(\rho), \theta_{s, t}(\xi)\right) \leq C(t-s) W_{1}(\rho, \xi)
$$

Sewing Lemma (Feyel De la Pradele, et independement Gubinelli 2004/Ismael Bailleul 2015) Take V abstract set and consider the maps

$$
\begin{aligned}
\mathcal{E}(V) & =\{\Theta: V \rightarrow V\} \\
d_{*} & =\text { metric on } \mathcal{E}(V) \text { such that }\left(\mathcal{E}(V), d_{*}\right) \text { is complete. }
\end{aligned}
$$

In our case : $V=\mathcal{P}_{1}$ and $\Theta_{s, t}$ is the one step Euler scheme. We construct Euler schemes

$$
\Theta_{s, t}^{\mathcal{P}}=\Theta_{s_{n-1}, s_{n}} \circ \ldots \circ \Theta_{s_{0}, s_{1}} \quad \mathcal{P}=\left\{s=s_{0}<\ldots .<s_{n}=t\right\}
$$

General Let $\Theta_{s, t} \in \mathcal{E}(V), s<t$ which has the following two properties:
Lipschitz $\quad d_{*}\left(\Theta_{s, t}^{\mathcal{P}} \circ U, \Theta_{s, t}^{\mathcal{P}} \circ U^{\prime}\right) \leq C d_{*}\left(U, U^{\prime}\right) \quad \forall U, U^{\prime} \in \mathcal{E}(V)$.
And SEWING property

$$
d_{*}\left(\Theta_{s, t}, \Theta_{r, t} \circ \Theta_{s, r}\right) \leq C(t-s)^{1+\varepsilon} \quad \forall s<r<t
$$

Sewing Lemma Under the above hypothesis there exists a unique $\theta_{s, t} \in \mathcal{E}(V), s<t$, which has the flow property $\theta_{s, t}=\theta_{r, t} \circ \theta_{s, r}$ and such that $d\left(\Theta_{s, t}, \theta_{s, t}\right) \leq C(t-s)^{1+\varepsilon}$.

Stability: Given X and ρ define

$$
\begin{aligned}
Y_{s, t}(\rho, X) & =X+b(X, \rho)(t-s) \\
& +\int_{s}^{t} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c(v, z, X, \rho) 1_{\{u \leq \gamma(v, z, X)\}} N_{\rho}(d v, d z, d u, d r)
\end{aligned}
$$

Then define $\Theta_{s, t}(\rho, X)=\mathcal{L}\left(Y_{s, t}(\rho, X)\right)$.

Take also \bar{X} and $\bar{\rho}$ and construct $Y_{s, t}(\bar{\rho}, \bar{X})$ and $\Theta_{s, t}(\bar{\rho}, \bar{X})=\mathcal{L}\left(Y_{s, t}(\bar{\rho}, \bar{X})\right)$ as above. Then

$$
W_{1}\left(\Theta_{s, t}(\rho, X), \Theta_{s, t}(\bar{\rho}, \bar{X})\right) \leq\left(E|X-\bar{X}|+W_{1}(\rho, \bar{\rho})\right) \times(1+C(t-s))
$$

We concatenate

$$
W_{1}\left(\Theta_{s, t}^{\mathcal{P}}(\rho, X), \Theta_{s, t}^{\mathcal{P}}(\bar{\rho}, \bar{X})\right) \leq\left(E|X-\bar{X}|+W_{1}(\rho, \bar{\rho})\right) \times e^{C(t-s)}
$$

Proof Take $\Pi(\rho, \bar{\rho})$ optimal coupling of ρ and $\bar{\rho}$ and construct $\tau=\left(\tau^{1}, \tau^{2}\right):[0,1] \rightarrow$ $R^{d} \times R^{d}$ such that

$$
\int_{R^{d} \times R^{d}} f\left(x, x^{\prime}\right) \Pi(\rho, \bar{\rho})\left(d x, d x^{\prime}\right)=\int_{0}^{1} f(\tau(w)) d w
$$

Consider also $\Pi(X, \bar{X})$ an optimal coupling of the laws of X and \bar{X} and construct $\left(X^{\prime}, \bar{X}^{\prime}\right) \sim \Pi(X, \bar{X})$. Then we take

$$
\begin{aligned}
Y_{s, t}^{\prime}(\rho, X) & =X^{\prime}+b\left(X^{\prime}, \rho\right)(t-s) \\
& +\int_{s}^{t} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c\left(\tau^{1}(w), z, X^{\prime}, \rho\right) 1_{\left\{u \leq \gamma\left(v, z, X^{\prime}\right)\right\}} N(d w, d z, d u, d r)
\end{aligned}
$$

with

$$
\left.\widehat{N}(d w, d z, d u, d r)=1_{(0,1)}(w) d w \mu(d z) d u d r\right)
$$

In a similar way

$$
\begin{aligned}
\bar{Y}_{s, t}^{\prime}(\bar{\rho}, \bar{X}) & =\bar{X}^{\prime}+b\left(\bar{X}^{\prime}, \bar{\rho}\right)(t-s) \\
& +\int_{s}^{t} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c\left(\tau^{2}(w), z, \bar{X}^{\prime}, \bar{\rho}\right) 1_{\left\{u \leq \gamma\left(v, z, \bar{X}^{\prime}\right)\right\}} N(d w, d z, d u, d r)
\end{aligned}
$$

Now we are on the same probability space and so

$$
\begin{aligned}
& W_{1}\left(\Theta_{s, t}(\rho, X), \Theta_{s, t}(\bar{\rho}, \bar{X})\right) \\
& \leq E\left|Y_{s, t}^{\prime}(\rho,)-Y_{s, t}^{\prime}(\bar{\rho}, \bar{X})\right| \\
& \leq E\left|X^{\prime}-\bar{X}^{\prime}\right|+C \int_{s}^{t} E\left|X^{\prime}-\bar{X}^{\prime}\right|+\int_{0}^{1} f\left(\tau^{1}(w)-\tau^{2}(w)\right) d w+W_{1}(\rho, \bar{\rho}) d r \\
& \leq\left(E\left|X^{\prime}-\bar{X}^{\prime}\right|+W_{1}(\rho, \bar{\rho})\right) \times(1+C(t-s))
\end{aligned}
$$

Lipschitz

$$
W_{1}\left(\Theta_{s, t}^{\mathcal{P}}(\rho), \Theta_{s, t}^{\mathcal{P}}(\bar{\rho})\right) \leq W_{1}(\rho, \bar{\rho}) \times e^{C(t-s)}
$$

Sewing Property One takes $s<r<t$ and $X \sim \rho$ and writes

$$
\begin{aligned}
Y_{s, t}(X) & =X+\int_{s}^{t} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c(v, z, X, \rho) 1_{\{u \leq \gamma(v, z, X)\}} N_{\rho}(d v, d z, d u, d r) \\
& =Z+\int_{r}^{t} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c(v, z, X, \rho) 1_{\{u \leq \gamma(v, z, X)\}} N_{\rho}(d v, d z, d u, d r)
\end{aligned}
$$

with

$$
Z=X+\int_{s}^{r} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c(v, z, X, \rho) 1_{\{u \leq \gamma(v, z, X)\}} N_{\rho}(d v, d z, d u, d r)
$$

Notice that

$$
Z \sim \Theta_{s, r}(\rho)
$$

Then write

$$
\begin{aligned}
& Y_{r, t}(Z) \\
& =Z+\int_{r}^{t} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c\left(v, z, Z, \Theta_{s, r}(\rho)\right) 1_{\{u \leq \gamma(v, z, Z)\}} N_{\Theta_{s, r}(\rho)}(d v, d z, d u, d r)
\end{aligned}
$$

Then, the stability property give

$$
\begin{aligned}
E\left|Y_{s, t}(X)-Y_{r, t}(Z)\right| & \leq C \int_{r}^{t} E|X-Z|+W_{1}\left(\rho, \Theta_{s, r}(\rho)\right) d r \\
& \leq C(t-r) E|X-Z| \leq C(t-r)(r-s)
\end{aligned}
$$

Since

$$
Y_{s, t}(X) \sim \Theta_{s, t}(\rho) \quad \text { and } \quad Y_{r, t}(Z) \sim \Theta_{r, t} \circ \Theta_{s, r}(\rho)
$$

we get

$$
\begin{aligned}
W_{1}\left(\Theta_{s, t}(\rho), \Theta_{r, t} \circ \Theta_{s, r}(\rho)\right) & \leq E\left|Y_{s, t}(X)-Y_{r, t}(Z)\right| \\
& \leq C(t-r)(r-s) \leq C(t-s)^{2}
\end{aligned}
$$

Remark Finite variation :

$$
E\left|Y_{s, t}(X)-Y_{s, t+h}(X)\right| \sim h \quad \rightarrow \quad h \times h=h^{2}
$$

If a maritgale term appears then

$$
E\left|Y_{s, t}(X)-Y_{s, t+h}(Z)\right| \sim h^{1 / 2} \quad \rightarrow \quad h^{1 / 2} \times h^{1 / 2}=h
$$

Particle systhem approximation. For $i=1, \ldots, N$

$$
\begin{aligned}
X_{k+1}^{i} & =X_{k}^{i}+b\left(X_{k}^{i}, \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{k}^{i}}\right)\left(s_{k+1}-s_{k}\right) \\
& +\int_{s_{k}}^{s_{k+1}} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} c\left(v, z, X_{k}^{i}, \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{k}^{i}}\right) 1_{\left\{u \leq \gamma\left(v, z, X_{k}^{i}\right)\right\}} N_{k}^{i}(d v, d z, d u, d r)
\end{aligned}
$$

with $N_{k}^{i}, i=1, \ldots, N$ independent $P P M$ with intensity

$$
\widehat{N}_{k}^{i}(d v, d z, d u, d r)=\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{k}^{i}}(d v)\right) \times \mu(d z) d u d r
$$

Theorem For f Lipscitz

$$
\left|E\left(\frac{1}{N} \sum_{i=1}^{N} f\left(X_{n k}^{i}\right)\right)-\int f(x) \theta_{0, t}(\rho)(d x)\right| \leq \frac{C}{N^{1 / d}}+\frac{C}{n}
$$

Homogenous Bolzmann equation

$$
V_{k+1}^{i}=V_{k}^{i}+\int_{s_{k}}^{s_{k+1}} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} A(z)\left(V_{k}^{i}-v\right) 1_{\left.\left\{u \leq\left|V_{k}^{i}-v\right|^{\alpha}\right)\right\}} N_{k}^{i}(d v, d z, d u, d r)
$$

with

$$
\widehat{N}_{k}^{i}(d v, d z, d u, d r)=\frac{1}{N} \sum_{j=1}^{N} \delta_{V_{k}^{j}}(d v) \times \mu(d z) d u d r
$$

Inhomogenous Bolzmann equation

$$
X_{k+1}^{i}=X_{k}^{i}+V_{k}^{i}\left(s_{k+1}-s_{k}\right)
$$

and
$V_{k+1}^{i}=V_{k}^{i}+\int_{s_{k}}^{s_{k+1}} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} A(z)\left(V_{k}^{i}-v\right) 1_{\left.\left\{u \leq\left|V_{k}^{i}-v\right|^{\alpha}\right)\right\}} 1_{\left\{\left|X_{k}^{i}-x\right| \leq R\right\}} N_{k}^{i}(d(v, x), d z, d u$,
with

$$
\widehat{N}_{k}^{i}(d(x, v), d z, d u, d r)=\frac{1}{N} \sum_{j=1}^{N} \delta_{\left(V_{k}^{j}, X_{k}^{j}\right)}(d v, d x) \times \mu(d z) d u d r
$$

Inhomogenuous equation with min field interaction

$$
\begin{aligned}
& V_{k+1}^{i}=V_{k}^{i}+\int_{s_{k}}^{s_{k+1}} \int_{\mathbb{R}^{d} \times E \times \mathbb{R}_{+}} A(z)\left(V_{k}^{i}-v\right) 1_{\left.\left\{u \leq\left|V_{k}^{i}-v\right|^{\alpha}\right)\right\}^{1}\left\{u \leq \frac{1}{N} \sum_{j=1}^{N} n_{\varepsilon}\left(X_{k}^{i}-X_{k}^{j}\right)\right\}} \quad N_{k}^{i}(d(v, x), d z, d u, d r)
\end{aligned}
$$

