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A long friendship but no photos!



Adaptation and Evolution for asexual populations

Individuals are characterized by genetic or phenotypic information (trait) that
influences their ability to reproduce and their probability of survival.

The evolution of the trait distribution results from the following mechanisms:

Heredity. (Vertical) transmission of the ancestral trait to the offsprings.

Mutation. Creates variability in the trait values.

Selection. Individuals with a higher probability of survival or a better
ability to reproduce will invade the population over time (genetical
selection), as will those most able to survive in competition with others
(ecological selection).

Horizontal Gene Transfer (HGT): the bacteria exchange genetic
information.

HGT has a main role in the evolution of virulence and is considered as the
primary reason for bacterial antibiotic resistance.



Asexual populations (cells, bacteria).

Usual biological assumptions:

large populations

rare mutations

small mutation steps

long (evolutionary) time scale.

The main goal:

predict the long term evolutionary dynamics.

model and quantify the successive invasions of successful mutants: by
mutation-selection, the population concentrates on advantageous
mutants.

That is a multi-scale question : different mathematical approaches using
different analytical tools.



Game Theory - Dynamical Systems:
Maynard-Smith 1974, Hofbauer-Sigmund 1990, Marrow-Law-Cannings
1992, Metz-Geritz-Meszéna et al. 1992, 1996, Dieckmann-Law 1996,
Diekmann 2004.

Partial or integro-differential and Hamilton-Jacobi equations (Hopf-Cole
transformation):
Perthame-Barles-Mirrahimi 07-10, Jabin, Desvillettes, Raoul, Mischler
08-10.
Concentration phenomenon on advantageous mutants but evolution
seems too fast.



Stochastic individual-based processes (birth and death processes
with mutation and selection) :
(Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Fournier-M. 04,
Ferrière-Champagnat-M. 06, Champagnat 06, Champagnat-M. 10).

Concentration phenomenon on advantageous mutants but evolution
seems too slow (time scale separation between competition phases and
mutation arrivals).

It is not clear how these models are related.



Some motivating questions

Mutations rare but not so rare.

How to interpret the results of the Hamilton-Jacobi approach with regard
to the initial individual based model.

What new behaviours does horizontal transfer entail?

How to keep track of small subpopulations in large population
approximations?



Two discrete models

The trait space is a discretized version of [0, 1].

In both cases, there is a scaling parameter K : order of magnitude of the
population size or of the resources amount.

We will follow the populations of size K β , on the time scale logK .

(β = 0 means "extinction").

If NK (t logK ) ∼ K βK (t), then βK (t) ∼ log(1 + NK (t logK ))

logK
.

First model : a joint work with N. Champagnat and V.C. Tran.

The mutations are rare but not small ; The discretization mesh is fixed.

Second model : a joint work with N. Champagnat, S. Mirrahimi and V.C.
Tran.

The mutations are small but not rare; The discretization mesh is going to
0.



A discrete model - Rare mutations

(Durrett, Mayberry 2011 - Bovier, Coquille, Smadi 2019).

The trait space [0, 1] is discretized : δ > 0 is fixed.

x = iδ ∈ [0, 1], i ∈
{

0, . . . b1
δ
c
}
.

Divisions: rate b(x) = 1− x

Probability pK = K−α with 0 < α < 1: mutant trait x + δ.

Probability 1− K−α: clonal reproduction.

Note that K pK = K 1−α tends to infinity.

Deaths: rate d(x) = d + C
NK

K
; d < 1.

Unilateral transfer: (x , y)→ (y , y) at rate
τ

NK 1y>x .



Evolutionary point of view
The population is at equilibrium, with a single trait x and population size
of order K . The trait x is called resident trait.

It is well known that, when K tends to infinity, the total population size
can be approximated by K n(t) where n(.) solves the ODE

n′(t) = n(t)(1− d − x − Cn(t)),

whose unique positive stable equilibrium is given by

n(x) =
1− d − x

C
.

When a single mutant with trait y appears, its growth rate is
approximatively the invasion fitness, given by

S(y ; x) = (1− d − y)− Cn(x) +
( τ

n(x)
(1y>x − 1x>y )

)
n(x);

S(y ; x) = x − y + τ sign(y − x).

The sign of S(y ; x) will impact the mutant dynamics: trade-off between
demography and transfer.



Dynamics of the process

K = 10000; d = 0.25; δ = 0.1;α = 0.5;C = 1;

Initial subpopulation sizes: 0 is the resident trait.

NK
0 (0) = (1−d)K

C ; NK
iδ(0) = K 1−iα ∨ 0.

(a)-(b): τ = 0.3 : equilibrium near 0;

(c)-(d): τ = 0.6: cycli re-emergences of the fittest traits;

(e)-(f): τ = 0.75: re-emergence towards higher and less fit trait values;

(g)-(h): τ = 0.8 : evolutionary suicide.



Possible resurgences :

For any i ∈
{

0, . . . b 1
δ
c
}

, we follow the small populations NK
iδ ∼ K βK

i at the
logarithm time scale.

Then we study, for all i ∈ {0, 1, . . . , b1/δc}, the asymptotic behaviour of the
process (

log(1 + NK
iδ(s logK ))

logK
, s ∈ [0,T ]

)
when K → +∞.



Exponents for birth and death processes

A small population with trait y in a resident population with trait x with y < x
behaves as a branching process with birth and death rates respectively:

4− y and 1 +
CNK

x (t)
K

+ τ.

Lemma Let us consider a linear birth and death process (Z K
t )t≥0 with rates

b and d, starting from the initial condition [K β − 1] (avec β ≤ 1).
Then,(

log(1 + Z K
s log K )

logK
, s ∈ [0,T ]

)
−−−−−→
K→+∞

(
(β + s(b − d)) ∨ 0, s ∈ [0,T ]

)
,

uniformly on [0,T ], in probability.

Note that
E[Z K (t)] = E(Z K (0))e(b−d)t .

Therefore,
E[Z K (s logK )] = [K β − 1]K (b−d)s.



Exponents for birth and death processes with immigration
A small population with trait y in a resident population with trait x , with y = x + δ,
behaves as a branching process with birth and death rates respectively:

4− y + τ et 1 +
CNK

x (t)
K

.

But y can also receive a contribution from x due to mutations: NK
x (t)K−α.

Previous lemma : NK
x (s logK )K−α behaves as K c+as with a, c ∈ R.

Lemma Hypotheses of previous lemma+ immigration at rate K ceat , for
a, c ∈ R. Assume that c ≤ β and either β > 0 or c 6= 0. Then,( log(1 + Z K

s log K )

logK
, s ∈ [0,T ]

)
−−−−−→
K→+∞

(
(β + s(b − d)) ∨ (c + as) ∨ 0,

s ∈ [0,T ]
)
,

uniformly on any [0,T ] and in probability.



Case of three traits
Three traits: 0, δ, 2δ satisfying δ < τ < 2δ < 3.

Recall that 0 < α < 1/2 and that S(y ; x) = x − y + τ sign(y − x).

At time 0, βK (0) = (1, 1− α, 1− 2α) , NK
0 (0) = 3K

C .

First step:
• Trait δ: β1(0) = 1− α and S(δ; 0) = τ − δ > 0: then

β1(s) = (1− α) + (τ − δ)s (≥ 1− α).

• Trait 2δ : β2(0) = 1− 2α and S(2δ; 0) = τ − 2δ < 0 but there are
mutations from trait δ: β2(s) = (1− 2α) + (τ − δ)s.

Second step: δ becomes dominant. We compute the fitnesses, and so on...

For δ = 1.3, α = 0.32, τ = 1.5:
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The system is periodic.



Asymptotic behaviours
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δ = 0.41, α = 0.32, τ = 4.
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Main result

Theorem For i ∈ {0, 1, . . . , b1/δc},(
log(1 + Niδ(s logK ))

logK
, s ∈ [0,T ]

)
−−−−−→
K→+∞

(βi(s), s ∈ [0,T ])

uniformly on [0,T ], in probability,

where βi is continuous, piecewise affine and solution of a ODEs system with
βi(0) = (1− iα) ∨ 0

and where changes of slopes of the exponents (β0(s), . . . , βb1/δc(s)) can
occur at times where

a new exponent reaches 1 change of resident trait

a new exponent reaches 0 extinction of the trait

The slope of an exponent which was driven by its fitness becomes driven
by its mutations



Dynamics of β0(s)

The function β0(s) is piecewise affine and the slopes are defined by their
values at points si =

iα
τ−δ , ( τ > δ).

β0

(
si

)
= 1− α(i − 1)

τ − δ

(
τ − i

2
δ
)

; minimal value for i∗ := d τ
δ
e, equal to

M0 = 1− α(i∗ − 1)
τ − δ

(
τ − i∗

2
δ

)
.

Theorem.
If M0 > 0 and i∗ < d 3

δ
e, There is resurgence of trait 0.

[ open question: is there a periodic solution?]

If M0 < 0 and i∗ < d 3
δ
e, trait 0 is lost and we have extinction.

If i∗ ≥ d 3
δ
e, Case not yet fully understood.

• It seems really difficult to go further with probabilistic tools.

• Alternative approach: to derive a Hamilton-Jacobi equation when δ → 0
and work with analytical tools.



A discrete model - Small discretization mesh and mutation steps

• C = τ = 0.

• For any K , the trait space is a discretization of the torus T :
XK :=

{
iδK : i ∈ {0, 1, · · · , b 1

δK
c}
}

.

• Birth rate : b(x) .

• Death rate : d(x).

b, d are Lipschitz continuous on T and ∀x ∈ T, b(x) > d(x).

• Small mutations: an individual with trait x ∈ XK gives birth to a mutant with
trait y ∈ XK at rate

p(x)δK logK G(logK (x − y)) with p positive and Lipschitz.

• Discretization mesh� mutation scale: hK := δK logK � 1.



• Mutation rate from an individual with trait xK = [x/δK ]δK of order O(1):

lim
K→+∞

p(xK )

1
δK
−1∑

j=0

hK G(hK ([x/δK ]− j)) = p(x)
∫
R

G(y) dy = p(x).

The different scalings:

Large population : K → +∞.

The individual mutations are not rare: individual mutation rate p(x).

The mutation steps are small: scale 1
log K .

Long time scale: logK .

Discretization mesh� mutation scale.



Convergence, as K → +∞, of the exponent processes
(βK

i (t), i ∈ {0, 1, · · · , b 1
δK
c})t≥0 , with

βK
i (t) =

log(NK
i (t logK ))

log(K )
.

For all x ∈ T and K ≥ 1, let i be such that x ∈ [iδK , (i + 1)δK ) and define

β̃K (t , x) = βK
i (t)(1−

x
δK

+ i) + βK
i+1(t)(

x
δK
− i).

Assumptions:

(i) ∃ a1 > 0 such that ∀K and ∀i ∈ {0, 1, · · · , 1
δK
− 1}: βK

i (0) ≥ a1.

(ii) ∃ A > 0, such that limK→∞ P
(
supi 6=j

|βK
i (0)−βK

j (0)|
ρ(jδK ,iδK )

> A
)

= 0.



A Hamilton-Jacobi equation from the individual-based model

Theorem

Assume that (β̃K (0, ·))K converges to a deterministic function β0(·) and
assumptions above. Then the processes β̃K converge in probability in
D([0,T ],C(T,R)) to the unique Lipschitz viscosity solution of the
Hamilton-Jacobi equation (HJ){

∂
∂t β(t , x) = b(x)− d(x) + p(x)

∫
R G(h)eh∂xβ(t,x)dh, (t , x) ∈ R+ × T

β(0, x) = β0(x), x ∈ T.

Steps of the proof: Compactness (tightness) - uniqueness argument.
β̃K (t , x) has a semi-martingale decomposition.

Control of the martingale increments.

Almost sure maximum principle on the increments of the finite variation part.

Almost sure identification of the limit as viscosity solution of (HJ).



Cher Denis,


