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I. INTRODUCTION

I Classical topic going back to Wishart (1928) for correlation
matrices and Wigner (1958) – Dyson (1962) for

DN =
1√
N

(WN + W T
N )

(Wishart : 1
N WN W T

N )

where WN = (Gij) Gij i.i.d Gaussian R.V.

I Let λ1 6 . . . 6 λN : 1
N

N∑
i=1

δλi → semi-circular distribution

(Wishart 1 < i 6 N, 1 6 j 6 M, MN → c > 0, limit is the
Marcenko-Pastur distribution)

I Books by A. Guionnet for the classical theory (IMU 2022)



I Typical examples of situations arising in many contexts (free
probability, statistics. . . )

I Main applications: Finance, Telecommunications (Mobile,
Networks)

I Dyson: AN + 1√
N

(WN(t) + WN(t)T )

where AN symmetric,

1
N

N∑
i=1

δλi0 → m0 ∈ P(R),WN = (Wij(t))1 6 i , j 6 N and Wij

indt Brownian motions.

dλi =
1

N

∑
j 6=i

1

λi − λj
dt +

√
2√
N

dB i

(M.F. Bru related equation for Wishart. . . )



I Formally 1
N

N∑
i=1

δλi → m ∈ P(R)

(D)
∂m

∂t
+

∂

∂x
(H(m)m) = 0 t > 0, x ∈ R

where H(m) = “
∫

1
x−y m(y)dy” = PV ( 1

x ) ∗m

I m0 = δ0 , m = 2
πt

√
(t − x2)+

I Many proofs exist (explicit, moments, gradient flows. . . ) but
none carry over to general/nonlinear models such as

dXN = σ(XN) dDN + dDNσ(XN) + b(XN)dt

or
dXN = σ(XN) dDNσ(XN) + b(XN)dt

I Uniqueness proofs for (D): Fourier, moments. . . !

I General approach possible!



II. SPECTRAL DOMINATION AND M.P.

I A,B symmetric A is spectrally dominated by B if

λi (A) 6 λi (B) ∀i (λ1 6 λ2 . . . 6 λN)

equivalent to m(A) = 1
N

N∑
i=1

δλi is stochastically dominated

by m(B) i.e. FA(x) =
∫

1(−∞,x] dmA > FB(x) ∀x

I If m solves (D), let F =
∫ x
−∞ dm

∂F

∂t
+
∂F

∂x
(H
∂m

∂x
) = 0



and H
∂m

∂x
= FP(

1

x2
) ∗ F =

∫
F (x)− F (y)

(x − y)2
dy = (− d2

dx2
)1/2F

or

∂F

∂t
+
∂F

∂x
A0F = 0 (1)

(with ∂F
∂x > 0, or ∂F

∂t + (∂F∂x )+ A0F = 0).

I Maximum Principle! Formally if F 1
0 6 F 2

0 at t = 0 then
F 1 6 F 2 for all (x , t)!

I Thus, Viscosity Solutions. . . !



I General nonlinear models lead to

∂F

∂t
+
∂F

∂x
(

∫
c(x , y)

F (x)− F (y)

(x − y)2
dy) + b(x)

∂F

∂x
= 0 (2)

with c(x , x) > 0, c(x , y) = c(x , x) + 0(x − y)2) i.e.

∂F

∂t
+ a(x)

∂F

∂x
A0F +

∂F

∂x
A1F + b(x)

∂F

∂x
= 0 (3)

A1F =
∫
d(x , y)F (y)dy “d smooth, nice at ∞”

(2) nice perturbation (A1) of MP equation

MP for (2) if c(x , y) > 0

I N (Dyson): λ0i 6 µ0i =⇒ λi (t) 6 µi (t) (classical)



III. VISCOSITY SOLUTIONS AND LIMIT THEOREMS

Extension of viscosity solutions theory allow

THEOREM 1 (D) : i) Let m0 ∈ P(R),F0 =
∫

1(−∞,x] dm then ∃!
viscosity solution of (1) (F usc, F∗ = F (x−))

ii) comparison principle

iii) F ∈ C if F0 ∈ C ,F Lip. if F0 Lip.

iv) F Lip. for t > 0 (reg. effect!)

v) N →∞ : m0
N → m0 (tightly) then mN → m = ∂F

∂x

Remarks : i) contraction for all Wasserstein distances ('
Crandall-Tartar, ↗, inv. by translation, conservation of center of
mass)



ii) simular for Wishart and for general models:

b(x)− b(y) > −C0(x − y) if x > y

c Lip., bded strictly positive

iii) N →∞ straightforward but with some technical difficulties due
to the singularity of the interaction ( 1

x )

iv) the general case is not covered by standard argument for
viscosity solutions “à la Barles-Imbert”, in fact new arguments
which can be used to make a complete theory for jump (diffusion)
process and viscosity solutions of integro-differential
operators. . . (Ch. Bertucci-PL2 in preparation)

v) Conjecture : F ∈ C 1,1/2 for t > 0 ?



IV. LARGE DEVIATIONS AND HJB IN W

I previous N →∞ akin to the law of large numbers

I large deviations: partial results by A. Guionnet and O.
Zeitouni, slightly extended by A. Guionnet with very delicate
proofs. . .

I N − SDE → N − FP: Log transform formally yields the
following optimal control problem given m0,m1 ∈ P2(R)

Inf

{∫ 1

0

∫
m α2ds dx/

∂m

∂t
+

∂

∂x

(
m(α + Hm)

)
= 0,

m|t=0 = m0,m|t=1 = m1

}
justified by A.G. if m0,m1 have five moments and finite
entropy E [m] = − (

∫
Log |x − y | dm(x) dm(y))



I Dynamic programming approach allows to justify LD for any
m0 ∈ P2,m1, with finite entropy.

(HJB)
∂V

∂t
+

1

2

∣∣∣∣∂V∂m
∣∣∣∣2 +

〈
∂V

∂m
, − ∂

∂x

(
(Hm)m

)〉
= 0

I Typical example of control problems for systems with large
random matrices (dyn. optim. of mobile networks: 6G, nG. . . )

I V |t=0 = V0 ∈ C (P2), or = 1{m1} (+∞ if m 6= m1, 0 at m1)



I Viscosity solutions approach combining i) the case of
Crandall-PL2 perturbed test functions by singular functions
± δE (m) which allow to have max/min points in L3, ii) Ch.
Bertucci adaptation to P of the Hilbert formulation for
non-singular HJB equation on P, and iii) Tataru’s method to
take advantage of the fact that ∂

∂x (m Hm) is a “monotone”
operator in Wasserstein space. . .

I Existence/uniqueness/N →∞ theorem whose (strategy of)
proof is transparent!



V. INTEGRO-DIFFERENTIAL OPERATORS AND
JUMP (DIFFUSION) PROCESSES

I Markov generator:
Au =

∫
{u(x) +∇u(x) · z X (z)− u(x + z)} dµx(z) X ∼

1|z|61 , µx weekly cont. > 0 meas. on Rd − {0}

sup
x

∫
|z |2Λ 1 dµx(z) (+ equiint.)

I Rks: µx ,t , +“elliptic op.” (−1
2Trσσ

T D2u − bDu, σ, b Lip.) if
non deg. C. Cancelier (“ADN”)

I Proba.: existence/uniq. law/path

PDE : ∂u
∂t + Au = 0 x ∈ Rd , t > 0; u|t=0 = u0 ∈ BUC (Lip

. . . ) existence/uniq ⇐⇒ existence/uniq. in law, pathwise
⇐⇒ “doubled equation”



I “classical” (and easy):

supx
∫
dµx(z) <∞,W1(µx , µy ) 6 C |x − y |

(and relatively easy):

supx
∫
|x |Λ 1)dµx(x) <∞,∃ δ > 0 W1(µx1|z|>δ, µy1|z|>δ) 6

C (|x − y |, ‖µx |z |1|z|6δ − µy |z |1|z|6δ‖ 6 C |x − y |)

I interesting case:∫
|z |1|z|61dµ = +∞ , ex. µ = 1

|z|d+α , 1 6 α < 2

Rk: µ indt of x is easy. . .



I Image measures (classical proba, Arisawa-Barles-Imbert)

Au =
∫
{u(x) +∇u(x) · T (x , z) X − u(x + T (x , z))dµ(z)

with |T (x , z)− T (y , z)| 6 C |x − y ||z |. . .

≈ Ito’s proof, visc. sol. doubling var. is clear

I but µx = c(x , z)µ with strong singularities was open (except
for a remark by Bass non-degenerate fractional Laplacian)

I why? singularity and how to double variables (coupling)

w(x , y)(= u(x)− v(y),E [|X x
t − X y

t |2] . . .)

image measure clear∫ {
w(x , y) +∇xwT (x , z)X +∇ywT (y , z)X

−w(x + T (x , z), y + T (y , z))

}
dµ



I answer (thanks S.) “maximal coupling”∫ {
w+(∇xw+∇yw)+zX−w(x+z , y+z)

}
c(x , z)Λc(y , z)dµ

+

∫
+

{
w +∇xw · X − w(x + z , y)

}
(c(x , z)− c(y , z))+dµ

+

∫
+

{
w +∇yw · X − w(x , y + z)

}
(c(y , z)− c(x , z))+dµ

I strategy: i) Lip estimate + adaptation of Bernstein’s method,

ii)

∫ {
u(x) +∇u(x) · z − u(x + z)

}
c(x)

dz

|z |d+α

=

∫
u(x) +∇u(x) · b(x)ζ − u(x + b(x)ζ} dζ

|ζ|d+α

with b(x) = c1/α,



iii) integration by parts: 1
|z|d+α = − 1

α div ( z
|z|d+α )

I leads to a collection of results (regularity of c(x , z),
cancellation of

∫
z · dµ)

I a few samples (OK with diffusion, µx ,t , more general µ than
dz
|z|d+α ,Aij(x)

zizj
|z|d+2+α dz , α(x). . . )

existence/uniqueness of viscosity solutions in BUC
(doubled equation OK ⇒ law and pathwise)

I some can be translated in proba. but all?



Sample 1: c(x , z) = c(x)d(x , z) + b(x , z), µ = 1
|z|d+α , c

1/α

Lip.(α→ 2, c1/2 Lip.!), |b(x , z) 6 C |z |2 . . .
d(x , z)“smooth”, d(x , 0) ≡ 1 (c(x) = c(x , 0))

Sample 2: c1/2 Lip. in x , ∂2x ,zc bded, µ = 1
|z|d+α

In all cases, one needs to know (for each x) the singularity at 0
of µx !


