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L Randomness

The neuronal activity in V1: from Ecker et al., Science 2010

» Recording neurons in V1
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The neuronal activity in V1: from Ecker et al., Science 2010

» [s this a network effect?

» [s this related to the stochastic nature of neuronal
computation?
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Networks of continuous spiking neurons
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LSpiking neurons

Networks of continuous spiking neurons

Joint work with M. Bossy and D. Talay

Hodgkin-Huxley model or one of its 2D reductions.
Chemical noisy synapses

Synaptic weights are dynamically changing over time.

vvyyy

Neurons belong to P different populations (e.g. E and I),
noted «, (3, ---. Population « contains N, neurons.

Population function p: {1,--- N} - P ={a,---}

v
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Fitzhugh Nagumo model

Stochastic Differential Equation (SDE):
avi = (Vi— Y5 — wi+ 19(t)) dt + oW}V =
CFalt, VI w)dt + oG dwY
% = aa (ba V{ — W)
p(i) =

Takes into account an external current noise.
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L Fitzhugh-Nagumo model

Synapses

Synaptic current from the jth to the ith neuron:

= —g(t)(V' — V&
Conductance:

rev

gi(t) = J(t)y' (1)

) p(i)=a, pj) =7
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Synapses

The function y/ denotes the fraction of open channels and satisfies
a SDE.

dyl = (a5, (VI)(1 — (1) — aly/(1)) dt + o (VI y)) dWE™

where (Langevin approximation of a PDMP, Wainrib 2010)

oo (V9 y7) = /1878, (VI)(L — i) + 2yl x(¥).
and the function S:

5 (Vi) = T
Y - 1_}_6_)\7(VJ—V.;Z)
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Maximum conductances

The maximum conductances (synaptic weights) are affected by
dynamical random variations:

J

Ja Oany j
Jin(t) = T: + N—Jf (1),

Advantage : simplicity
Disadvantage : an increase of the noise level increases the
probability that the sign of J;(t) is different from
that of J,,.
This can be fixed (Cox-Ingersoll-Ross model)
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Putting everything together

Each neuron i (p(i) = «) is represented by a state vector of
dimension 3:

dVj = F.(t, Vi, wi)dt
=5 ep(Vi = Vi) 5 (S1 1e() = 7)) de
(P) Z—yeP(VI VY%J)T;L (Z 1(p(j) = ))"’) B%
) +UextdW;,V
Wi = an (b Vi — w)) '
Ldy: = (aFSa(VE)(L = yi) — agys)dt + aa( VY, yi)dWi”
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L In the limit
:

The limit equations

aVe = Falt, Ve, W)t = (V- Vied) o Ely 1t
LY (Ve Vol
(M) dw? 7
aw b VC“
dt a(
dyy =

JEly1dBy + o dwiY

wi')
(a7 Sa (Vi) (1 -

i) — agyf)dt + oo (Ve v ) dWe
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Hypotheses

[) lon channels models:  is bounded Lipschitz continuous with
compact support included in (0, 1).

II) Chemical synapse model: S, is a sigmoid, a* and aj are
positive

[I1) Membrane model: The F,(t, v, w) are continuous, one-sided
Lipschitz wrt v and Lipschitz wrt w.

IV) Initial conditions: V{, y{, w§, Jy' are i.i.d. r.v. with the same
law as V', y&' w§', Jo ! when p(i) = a. V§* and Jy”
have moments of any order.
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Well-posedness of the N-neuron model

Proposition

Under Hypotheses I-IV, the system (P) has a unique pathwise
solution on all time intervals 0 < t < T. In addition the
components of the processes y; take values in (0, 1).
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Well-posedness of the mean-field limit models

Proposition

Under Hypotheses I-1V, the system (M) has a unique pathwise
solution on all time intervals 0 < t < T. In addition the
components of the processes y;* take values in (0,1).

Proof.
Slight extension of the fixed point method developed in Sznitman
1989 and arguments found in Lucon-Stannat 2014. Ol

Let P be the law of its solution.



Thermodynamic limits
LSpiking neurons
Lin the limit

Convergence and propagation of chaos

L (Re) = (R, a € P) = (V& (47,7 € P).yf, witia € P) the
solution to (M)

2. (R;’N,I.: 1’ 7N) = (th’(Jé’Y’,y € P)7yl{7wl{;i: 1a 7N)
the solution to (P)

3. The coupling (RD): all N, indices i such that p(i) = « are
such that (R!) are independent copies of (R?)
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Convergence and propagation of chaos

Proposition

Assume that for all v € P, the proportion N /N is nonzero and
independent of N. Then for all set of P indexes (i, € P) in
{1,---, N} with p(iy) = a. the vector process (RN — Rlx)
satisfies

swp 3 R R

0<t<T
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L In the limit
:

Convergence and propagation of chaos

The law of any subsystem of size k

(RFN aeP)--- (RN aeP)) plia) =«

converges to P®X when the N,s tend to infinity
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Convergence and propagation of chaos

Proof.
The proof follows and adapts Sznitman 1989 and Méléard 1996.

O
Difficulty: some of the coefficients are not globally Lipschitz

continuous. The drift f is of the form

N
1 . _
i=1

Thanks to
» F, is one-sided Lipschitz:

=

=
\<~.

N———

(Fa(t,v,w) — Fo(t, v, w))(v — V') <L(v = V')? = M(v,V')(v —V/)* L,
|F06(t7 v, W) - Fa(ta v, W/)| §L|W - W/|

» The processes J;'" are positive
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L In the limit
:

Convergence and propagation of chaos

» The processes y! are in (0,1)

» The term —j(v — V) (% Zf\lzl yi> stabilises the moments
of V4

M. Bossy, O.F., D. Talay, Journal Math. Neur., 2015.
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L Some numerics

A glimpse of the results

» The 10 millions equations are "summarized” by P describing
the stochastic time evolution of P "meta” neuron.
Left = (V,w) - Right = (V,y)

L :
b ! I [:

i
i.
i

Initial conditions - T = 30.0 T=500-T=x

J. Baladron, D. Fasoli, O.F., J. Touboul, Journal Math.Neur:, 20E2.

it

S
»
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L Some numerics

Some movies

J. Baladron, D. Fasoli, O.F., J. Touboul, Journal Math. Neur., 2012.
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The mathematical model

After Ben Arous and Guionnet, joint work with Etienne Tanré
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The mathematical model

> Ignore the spikes, consider only the "firing rates”

» Intrinsic dynamics:

a Law of Vo = Mo,

» There is a unique strong solution to S (Ornstein-Uhlenbeck
process):

» Note P its law on the set 7 := C([0, T]; R) of trajectories
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The mathematical model

» N neurons in a completely connected network

» Coupled dynamics

S(UN) =
dvj = (-Vi+ XN, JNF(VE))dt + dBi
ie{l,---,N}
Law of Vy(0) = (V& -+, V) = udV

ie{l,-- N
» f is bounded, Lipschitz continuous (usually a sigmoid),
defining the firing rate

» B': independent Brownians: intrinsic noise on the membrane
potentials
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The mathematical model

» There is a unique strong solution to S(JV)

> Note P(JN) its law on the set 7" of N-tuples of trajectories.
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Connection with Neural Networks

Hidden
Input

Source: Wikipedia
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L Model

Modeling the synaptic weights

» The Jéys are i.i.d. random synaptic weights \/LNN(O, 1)

> Even so, hard to guess the limit when N — oo of S(JV)!
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Consequences

» P(JV)is a random law on TN
» Consider the law P®N of N independent uncoupled neurons

» Girsanov theorem allows us to compare the law of the solution
to the coupled system, P(JV), with the law of the uncoupled
system, P®N;

dP(JM) { N /T
——~ = exp
dPeN ; o |4

JNE(VEY | dBi-

N
)

2

1 (T (N L
2/0 S IV dt
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L Strategy

Empirical measure

» Consider the empirical measure:

. 1

N(vw) = szsvf,
i€l,

VN:(VI’"' avN)

> It defines the mapping

~N
i

TN = P(T)
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Empirical measure

> We are interested in the law of iV under P(JV)
» Define

QN = /Q PN (W) duw,

the average of P(JV) w.r.t. to the "random medium”, i.e.
the synaptic weights.

> We study the law of 4N under QV: annealed results.
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The strategy

» Consider the law MY of iV under QV: it is a probability
measure on P(7):

nY(B) = (Q"o (a")71) (B) = @ (2" € B)

B measurable set of P(T)
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The strategy

>

>

Establish a Large Deviation Principle for the sequence of
probability measures (MY)y>1, i.e.

Design a rate function (non-negative lower semi-continuous)
Hon P(T)

The intuitive meaning of H is the following
QN(IaN ~ Q) ~ e—NH(Q)

The measures [i"V concentrate on the measures @ such that
H(Q) = 0.

If H reaches 0 at a single measure Q then MY converges
weakly toward the Dirac mass d¢
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Minimum of H

By adapting the results of Ben Arous and Guionnet (1995),
Guionnet (1997), and of Moynot and Samuelides (2002) one
obtains:

Theorem

H(p) = 1D (1; P) — T (1),

where 1) (y1; P) is the relative entropy of i w.r.t. P and T is
defined by

dQN _ eNr(ﬂN)

dP®N

H achieves its minimum at a unique point p of P(T).

Remark This result is universal as shown in Dembo, Lubetsky and
Zeitouni (2021)
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Minimum of H

Theorem
1 s the unique solution to the fixed point problem:

Zg /exp{/ Gt dBt——/ (GI)? dt} d,,

where, under ~y,, G}' is a centered Gaussian process with covariance

Ku(t,s) = /T F(ve)F (vs) du(v),
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Stochastic system

Theorem
1 is the law of the solution to a non-linear non-Markovian
stochastic system.

X: = Xo— Jo Xsds+ By

B: = W+ [y J5 Ku(s.u)dB,ds
Lawof X = p, pr = o

Ku(t;s) =[5 F(X)F(Xs) du(X)

» W, is a Brownian motion under p.
> Rﬁ(t,s) is a covariance function which depends nonlinearly
upon K,;:
K =K,o(Id+K,)™
» The proof requires a good deal of stochastic and Gaussian
calculus
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Stochastic system

» The second equation can be solved with respect to B using
the theory of Volterra equations:

t t s N
B; = Wt—i-/ W, ds+/ (/ HZ(S, u) W, du) ds,
0 0 0

where
—~ t ~
Wt = / Kﬁ(t,s) dWs
0

The function Hj is defined from Rﬁ by

ot _Fty-1 Tt - Rﬁ(s, u) fuss
H,={d—-L,)"", Ly(s,u)= { 0 otherwise,
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Stochastic system

» K, can be estimated by a fixed point procedure based on
Monte-Carlo simulations:

Proof.

The proof is through the use of the solution to the previous
Volterra equation. A good deal of stochastic and Gaussian calculus
is again needed. O
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Stochastic system

» Extensions to nonzero mean weights and several populations
of neurons are possible:

X = Xo— [y Xsds + [y cu(s) ds + B
By = Wi+ [, Js K(s.u)dBy ds
my(t) = ff(Xt)_d,U(IX)

cu(t) = (Jd+K,) " -my(t)

Ku(t,s) = [JH(X)F(X) du(X)

Law of X = p, pyr = Ho

Upcoming arxiv, O.F., Etienne Tanré, 2023+



Thermodynamic limits
- Rate neurons

LStrategy

Propagation of chaos

Theorem
QN is u-chaotic.
ie. forallm>2and ¢;, i=1,...,min Cy(T)

m
im_ [ 1)) QA ) =TT [ i) dutv)
N—oo [N i1 T

"In the thermodynamic limit (N — oo) and on average, the

neurons in any finite-size group become independent. One observes
the propagation of chaos. The neurons become asynchronous.”
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Quenched results

These results are marginally useful in practice because we have
averaged over the weights J but we also have:

Existence and uniqueness of a quenched limit

The law of the empirical measure of the quenched system
converges to 0, for almost all Js (Theorem 2.7 in Ben Arous and
Guionnet (95)).

This of course does not imply a quenched propagation of chaos
since the neurons are not exchangeable for almost all interaction
but we have
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Quenched results

Quenched propagation of chaos
If the initial law pg is symmetric, then for any set of m continuous
bounded functions (¢;)m=1,...m defined on C

m

/ T]2:0¢) dPY(0)(x) 5[] / i(X) dpu(X)
j=1 j=1

This means that for all e > 0

im (¢ | [ TLo0) PO -] [ ) dux)| > e | =0
j=1 '

N—oo
Jj=1
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Conclusion

> We did all this technical work because of this biological

observation:
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Advertising a new Journal: Mathematical Neuroscience
and Applications

» Focuses on using mathematics as the primary tool for
elucidating the fundamental mechanisms responsible for
experimentally observed behaviours in neuroscience.

» Publishes work that uses advanced mathematical techniques
to illuminate these questions.

» Papers that introduce and help develop those new pieces of
mathematical theory which are likely to be relevant to future
studies of the nervous system are welcome.

» Diamond Open Access model: free Open Access, thanks to
the support of episciences.org
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