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Randomness

The neuronal activity in V1: from Ecker et al., Science 2010

▶ Is this a network effect?

▶ Is this related to the stochastic nature of neuronal
computation?
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Spiking neurons

Networks of continuous spiking neurons

Joint work with M. Bossy and D. Talay

▶ Hodgkin-Huxley model or one of its 2D reductions.

▶ Chemical noisy synapses

▶ Synaptic weights are dynamically changing over time.

▶ Neurons belong to P different populations (e.g. E and I),
noted α, β, · · · . Population α contains Nα neurons.

▶ Population function p : {1, · · · ,N} → P = {α, · · · }
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Spiking neurons

Fitzhugh-Nagumo model

Fitzhugh Nagumo model

Stochastic Differential Equation (SDE):
dV i

t =
(
V i
t −

(V i
t )

3

3 − w i
t + I extα (t)

)
dt + σα

extdW
i ,V
t ≡

Fα(t,V
i ,w i

t )dt + σα
extdW

i ,V
t

dw i
t

dt = aα (bα V
i
t − w i

t )

p(i) = α

Takes into account an external current noise.
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Spiking neurons

Fitzhugh-Nagumo model

Synapses

Synaptic current from the jth to the ith neuron:

I synij = −gij(t)(V
i − V αγ

rev) p(i) = α, p(j) = γ

Conductance:
gij(t) = Jij(t)y

j(t)
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Spiking neurons

Fitzhugh-Nagumo model

Synapses

The function y j denotes the fraction of open channels and satisfies
a SDE.

dy jt =
(
aγr Sγ(V

j)(1− y j(t))− aγdy
j(t)
)
dt + σγ(V

j , y j) dW j ,y
t

where (Langevin approximation of a PDMP, Wainrib 2010)

σγ(V
j , y j) =

√
|aγr Sγ(V j)(1− y j) + aγdy

j |χ(y j),

and the function S :

Sγ(V
j) =

T γ
max

1 + e−λγ(V j−V γ
T )
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Spiking neurons

Fitzhugh-Nagumo model

Maximum conductances

The maximum conductances (synaptic weights) are affected by
dynamical random variations:

Jiγ(t) =
J̄αγ
Nγ

+
σJ
αγ

Nγ
ξi , γ(t),

Advantage : simplicity

Disadvantage : an increase of the noise level increases the
probability that the sign of Jij(t) is different from
that of J̄αγ .
This can be fixed (Cox-Ingersoll-Ross model)
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Spiking neurons

Fitzhugh-Nagumo model

Putting everything together

Each neuron i (p(i) = α) is represented by a state vector of
dimension 3:

(P)



dV i
t = Fα(t,V

i
t ,w

i
t )dt

−
∑

γ∈P(V
i
t − V αγ

rev)
J̄αγ

Nγ

(∑N
j=1 1(p(j) = γ)y jt

)
dt

−
∑

γ∈P(V
i
t − V αγ

rev)
σJ
αγ

Nγ

(∑N
j=1 1(p(j) = γ)y jt

)
dBγ,i

t

+σα
extdW

i ,V
t

dw i
t

dt = aα
(
bα V

i
t − w i

t

)
dy it = (aαr Sα(V

i
t )(1− y it )− aαd y

i
t )dt + σα(V

i
t , y

i
t )dW

i ,y
t
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Spiking neurons

In the limit

The limit equations

(M)


dV α

t = Fα(t,V
α
t ,w

α
t )dt −

∑
γ∈P(V

α
t − V αγ

rev)J̄αγE[yγt ]dt
−
∑

γ∈P(V
α
t − V αγ

rev)σJ
αγE[y

γ
t ]dB

γ,α
t + σα

extdW
α,V
t

dwα
t

dt = aα (bα V
α
t − wα

t )

dyαt = (aαr Sα(V
α
t )(1− yαt )− aαd y

α
t )dt + σα(V

α
t , y

α
t )dW

α,y
t
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Spiking neurons

In the limit

Hypotheses

I) Ion channels models: χ is bounded Lipschitz continuous with
compact support included in (0, 1).

II) Chemical synapse model: Sα is a sigmoid, aαr and aαd are
positive

III) Membrane model: The Fα(t, v ,w) are continuous, one-sided
Lipschitz wrt v and Lipschitz wrt w .

IV) Initial conditions: V i
0, y

i
0, w

i
0, J

iγ
0 are i.i.d. r.v. with the same

law as V α
0 , y

α
0 , w

α
0 , J

αγ
0 when p(i) = α. V α

0 and Jαγ0

have moments of any order.
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Spiking neurons

In the limit

Well-posedness of the N-neuron model

Proposition

Under Hypotheses I-IV, the system (P) has a unique pathwise
solution on all time intervals 0 ≤ t ≤ T . In addition the
components of the processes y it take values in (0, 1).
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Spiking neurons

In the limit

Well-posedness of the mean-field limit models

Proposition

Under Hypotheses I-IV, the system (M) has a unique pathwise
solution on all time intervals 0 ≤ t ≤ T . In addition the
components of the processes yαt take values in (0, 1).

Proof.
Slight extension of the fixed point method developed in Sznitman
1989 and arguments found in Luçon-Stannat 2014.

Let P be the law of its solution.
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Spiking neurons

In the limit

Convergence and propagation of chaos

1. (Rt) = (Rα
t , α ∈ P) = (V α

t , (J
αγ
t , γ ∈ P), yαt ,w

α
t ;α ∈ P) the

solution to (M)

2. (R i ,N
t , i = 1, · · · ,N) = (V i

t , (J
iγ
t , γ ∈ P), y it ,w

i
t ; i = 1, · · · ,N)

the solution to (P)

3. The coupling (R̃ i
t): all Nα indices i such that p(i) = α are

such that (R̃ i
t) are independent copies of (Rα

t )
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Spiking neurons

In the limit

Convergence and propagation of chaos

Proposition

Assume that for all γ ∈ P, the proportion Nγ/N is nonzero and
independent of N. Then for all set of P indexes (iα, α ∈ P) in
{1, · · · ,N} with p(iα) = α. the vector process (R iα,N − R̃ iα

t )
satisfies

√
NE

[
sup

0≤t≤T

∑
α∈P

|R iα,N − R̃ iα
t |2
]
≤ C
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Spiking neurons

In the limit

Convergence and propagation of chaos

The law of any subsystem of size k

((R1α,N
t , α ∈ P) · · · (Rkα,N

t , α ∈ P)) p(iα) = α

converges to P⊗k when the Nαs tend to infinity
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Spiking neurons

In the limit

Convergence and propagation of chaos

Proof.
The proof follows and adapts Sznitman 1989 and Méléard 1996.

Difficulty: some of the coefficients are not globally Lipschitz
continuous. The drift f is of the form

f

(
t, v ,w , j ,

1

N

N∑
i=1

y i

)
= Fα(t, v ,w)− j(v − V̄ αγ)

(
1

N

N∑
i=1

y i

)

Thanks to
▶ Fα is one-sided Lipschitz:

(Fα(t, v ,w)− Fα(t, v
′,w))(v − v ′) ≤L(v − v ′)2 −M(v , v ′)(v − v ′)2 L, M ≥ 0

|Fα(t, v ,w)− Fα(t, v ,w
′)| ≤L|w − w ′|

▶ The processes Jαγt are positive
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Spiking neurons

In the limit

Convergence and propagation of chaos

▶ The processes y it are in (0, 1)

▶ The term −j(v − V̄ αγ)
(

1
N

∑N
i=1 y

i
)
stabilises the moments

of Vt

M. Bossy, O.F., D. Talay, Journal Math. Neur., 2015.
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Spiking neurons

Some numerics

A glimpse of the results
▶ The 10 millions equations are ”summarized” by P describing

the stochastic time evolution of P ”meta” neuron.

Left = (V ,w) - Right = (V , y)

Initial conditions - T = 30.0 T = 50.0 - T = ∞

J. Baladron, D. Fasoli, O.F., J. Touboul, Journal Math. Neur., 2012.
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Spiking neurons

Some numerics

Some movies

J. Baladron, D. Fasoli, O.F., J. Touboul, Journal Math. Neur., 2012.

vw-I=0d7-sig=0d45.avi
vy-marginal-inp04-noise027.avi
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Rate neurons

Model

The mathematical model

After Ben Arous and Guionnet, joint work with Etienne Tanré
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Rate neurons

Model

The mathematical model

▶ Ignore the spikes, consider only the ”firing rates”

▶ Intrinsic dynamics:

S :=

{
dVt = −Vtdt + dBt , 0 ≤ t ≤ T
Law of V0 = µ0,

▶ There is a unique strong solution to S (Ornstein-Uhlenbeck
process):

▶ Note P its law on the set T := C([0,T ];R) of trajectories
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Rate neurons

Model

The mathematical model

▶ N neurons in a completely connected network

▶ Coupled dynamics

S(JN) :=
dV i

t = (−V i
t +

∑N
j=1 J

N
ij f (V

j
t ))dt + dB i

t

i ∈ {1, · · · ,N}
Law of VN(0) = (V 1

0 , · · · ,VN
0 ) = µ⊗N

0

i ∈ {1, · · · ,N}.
▶ f is bounded, Lipschitz continuous (usually a sigmoid),

defining the firing rate

▶ B i : independent Brownians: intrinsic noise on the membrane
potentials
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Rate neurons

Model

The mathematical model

▶ There is a unique strong solution to S(JN)

▶ Note P(JN) its law on the set T N of N-tuples of trajectories.
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Model

Connection with Neural Networks

Source: Wikipedia
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Rate neurons

Model

Modeling the synaptic weights

▶ The JNij s are i.i.d. random synaptic weights 1√
N
N (0, 1)

▶ Even so, hard to guess the limit when N → ∞ of S(JN)!
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Rate neurons

Model

Consequences

▶ P(JN) is a random law on T N

▶ Consider the law P⊗N of N independent uncoupled neurons

▶ Girsanov theorem allows us to compare the law of the solution
to the coupled system, P(JN), with the law of the uncoupled
system, P⊗N :

dP(JN)

dP⊗N
= exp

{
N∑
i=1

∫ T

0

 N∑
j=1

JNij f (V
j
t )

 dB i
t−

1

2

∫ T

0

 N∑
j=1

JNij f (V
j
t )

2

dt

}
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Rate neurons

Strategy

Empirical measure

▶ Consider the empirical measure:

µ̂N(VN) =
1

N

∑
i∈In

δV i ,

VN = (V 1, · · · ,VN)

▶ It defines the mapping

µ̂N : T N → P(T )
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Rate neurons

Strategy

Empirical measure

▶ We are interested in the law of µ̂N under P(JN)

▶ Define

QN =

∫
Ω
P(JN(ω)) dω,

the average of P(JN) w.r.t. to the ”random medium”, i.e.
the synaptic weights.

▶ We study the law of µ̂N under QN : annealed results.
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Strategy

The strategy

▶ Consider the law ΠN of µ̂N under QN : it is a probability
measure on P(T ):

ΠN(B) =
(
QN ◦ (µ̂N)−1

)
(B) = QN(µ̂N ∈ B),

B measurable set of P(T )
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Strategy

The strategy

▶ Establish a Large Deviation Principle for the sequence of
probability measures (ΠN)N≥1, i.e.

▶ Design a rate function (non-negative lower semi-continuous)
H on P(T )

▶ The intuitive meaning of H is the following

QN(µ̂N ≃ Q) ≃ e−NH(Q)

▶ The measures µ̂N concentrate on the measures Q such that
H(Q) = 0.

▶ If H reaches 0 at a single measure Q then ΠN converges
weakly toward the Dirac mass δQ
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Strategy

Minimum of H

By adapting the results of Ben Arous and Guionnet (1995),
Guionnet (1997), and of Moynot and Samuelides (2002) one
obtains:

Theorem

H(µ) = I (2)(µ;P)− Γ(µ),

where I (2)(µ;P) is the relative entropy of µ w.r.t. P and Γ is
defined by

dQN

dP⊗N
= eNΓ(µ̂N)

H achieves its minimum at a unique point µ of P(T ).

Remark This result is universal as shown in Dembo, Lubetsky and
Zeitouni (2021)
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Minimum of H

Theorem
µ is the unique solution to the fixed point problem:

dµ

dP
=

∫
exp

{∫ T

0
Gµ
t dBt −

1

2

∫ T

0
(Gµ

t )
2 dt

}
dγµ,

where, under γµ, G
µ
t is a centered Gaussian process with covariance

Kµ(t, s) =

∫
T
f (vt)f (vs) dµ(v),
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Strategy

Stochastic system

Theorem
µ is the law of the solution to a non-linear non-Markovian
stochastic system.

Xt = X0 −
∫ t
0 Xs ds + Bt

Bt = Wt +
∫ t
0

∫ s
0 K̃µ(s, u) dBu ds

Law of X = µ, µF0 = µ0

Kµ(t, s) =
∫
T f (Xt)f (Xs) dµ(X )

▶ Wt is a Brownian motion under µ.
▶ K̃ t

µ(t, s) is a covariance function which depends nonlinearly
upon Kµ:

K̃ t
µ = Kµ ◦ (Id+ Kµ)

−1

▶ The proof requires a good deal of stochastic and Gaussian
calculus
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Strategy

Stochastic system

▶ The second equation can be solved with respect to B using
the theory of Volterra equations:

Bt = Wt +

∫ t

0
W̃s ds +

∫ t

0

(∫ s

0
Hs
µ(s, u)W̃u du

)
ds,

where

W̃t =

∫ t

0
K̃ t
µ(t, s) dWs

The function Ht
µ is defined from K̃ t

µ by

H̄t
µ = (Id− ¯̃Ltµ)

−1, L̃tµ(s, u) =

{
K̃ t
µ(s, u) if u ≤ s

0 otherwise,
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Strategy

Stochastic system

▶ Kµ can be estimated by a fixed point procedure based on
Monte-Carlo simulations:

Proof.
The proof is through the use of the solution to the previous
Volterra equation. A good deal of stochastic and Gaussian calculus
is again needed.
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Stochastic system

▶ Extensions to nonzero mean weights and several populations
of neurons are possible:

Xt = X0 −
∫ t
0 Xs ds +

∫ t
0 cµ(s) ds + Bt

Bt = Wt +
∫ t
0

∫ s
0 K̃ s

µ(s, u) dBu ds
mµ(t) =

∫
f (Xt) dµ(X )

cµ(t) =
(
Id+ K̄µ

)−1 ·mµ(t)
Kµ(t, s) =

∫
f (Xt)f (Xs) dµ(X )

Law of X = µ, µ|F0
= µ0

Upcoming arxiv, O.F., Etienne Tanré, 2023+
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Propagation of chaos

Theorem
QN is µ-chaotic.

i.e. for all m ≥ 2 and φi , i = 1, . . . ,m in Cb(T )

lim
N→∞

∫
T N

φ1(v
1) · · ·φm(v

m) dQN(v1, · · · , vN) =
m∏
i=1

∫
T
φi (v) dµ(v)

”In the thermodynamic limit (N → ∞) and on average, the
neurons in any finite-size group become independent. One observes
the propagation of chaos. The neurons become asynchronous.”
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Strategy

Quenched results

These results are marginally useful in practice because we have
averaged over the weights J but we also have:

Existence and uniqueness of a quenched limit
The law of the empirical measure of the quenched system
converges to δµ for almost all Js (Theorem 2.7 in Ben Arous and
Guionnet (95)).

This of course does not imply a quenched propagation of chaos
since the neurons are not exchangeable for almost all interaction
but we have
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Quenched results

Quenched propagation of chaos
If the initial law µ0 is symmetric, then for any set of m continuous
bounded functions (φj)m=1,··· .m defined on C∫ m∏

j=1

φj(X
j) dPN(J)(X )

p→
m∏
j=1

∫
φj(X ) dµ(X )

This means that for all ε > 0

lim
N→∞

γ

ω :

∣∣∣∣∣∣
∫ m∏

j=1

φj(X
j) dPN(J)(X )−

m∏
j=1

∫
φj(X ) dµ(X )

∣∣∣∣∣∣ > ε

 = 0
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Strategy

Conclusion

▶ We did all this technical work because of this biological
observation:
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Advertising a new Journal: Mathematical Neuroscience
and Applications

▶ Focuses on using mathematics as the primary tool for
elucidating the fundamental mechanisms responsible for
experimentally observed behaviours in neuroscience.

▶ Publishes work that uses advanced mathematical techniques
to illuminate these questions.

▶ Papers that introduce and help develop those new pieces of
mathematical theory which are likely to be relevant to future
studies of the nervous system are welcome.

▶ Diamond Open Access model: free Open Access, thanks to
the support of episciences.org
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Advertising a new Journal: Mathematical Neuroscience
and Applications

https://mna.episciences.org/
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