Two examples of thermodynamic limits in neuroscience

A Random Walk in the Land of Stochastic Analysis and Numerical Probability

in honor of Denis Talay

Olivier Faugeras

INRIA

September 8th, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Randomness in the brain

Spiking neurons Fitzhugh-Nagumo model In the limit Some numerics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Rate neurons Model Strategy

- Randomness

Randomness in the brain

Spiking neurons

Fitzhugh-Nagumo model In the limit Some numerics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Rate neurons

Model Strategy

Recording neurons in V1

B

 shows that their activity is HIGHLY decorrelated for synthetic

イロト 不得 トイヨト イヨト

э

and natural images

イロト イボト イヨト イヨト 三日

900

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 as opposed to previous results.

- Is this a network effect?
- Is this related to the stochastic nature of neuronal computation?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Randomness in the brain

Spiking neurons

Fitzhugh-Nagumo model In the limit Some numerics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Rate neurons

Model Strategy

Networks of continuous spiking neurons

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Networks of continuous spiking neurons

Joint work with M. Bossy and D. Talay

- Hodgkin-Huxley model or one of its 2D reductions.
- Chemical noisy synapses
- Synaptic weights are dynamically changing over time.
- Neurons belong to P different populations (e.g. E and I), noted α, β,.... Population α contains N_α neurons.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

▶ Population function $p: \{1, \dots, N\} \rightarrow \mathcal{P} = \{\alpha, \dots\}$

└─ Fitzhugh-Nagumo model

Fitzhugh Nagumo model

Stochastic Differential Equation (SDE):

$$\begin{cases} dV_t^i = \left(V_t^i - \frac{(V_t^i)^3}{3} - w_t^i + I_\alpha^{\text{ext}}(t)\right) dt + \sigma_{\text{ext}}^\alpha dW_t^{i,V} \equiv \\ F_\alpha(t, V^i, w_t^i) dt + \sigma_{\text{ext}}^\alpha dW_t^{i,V} \\ \frac{dw_t^i}{dt} = a_\alpha \left(b_\alpha V_t^i - w_t^i\right) \\ p(i) = \alpha \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Takes into account an external current noise.

Spiking neurons

└─Fitzhugh-Nagumo model

Synapses

Synaptic current from the *j*th to the *i*th neuron:

$$I_{ij}^{\mathrm{syn}} = -g_{ij}(t)(V^i - V_{\mathrm{rev}}^{lpha\gamma}) \quad p(i) = lpha, \ p(j) = \gamma$$

Conductance:

$$g_{ij}(t) = J_{ij}(t) y^j(t)$$

Synapses

The function y^j denotes the fraction of open channels and satisfies a SDE.

$$dy_t^j = \left(a_r^\gamma S_\gamma(V^j)(1-y^j(t)) - a_d^\gamma y^j(t)
ight) dt + \sigma_\gamma(V^j,y^j) dW_t^{j,y}$$

where (Langevin approximation of a PDMP, Wainrib 2010)

$$\sigma_{\gamma}(V^{j}, y^{j}) = \sqrt{|a_{r}^{\gamma}S_{\gamma}(V^{j})(1-y^{j}) + a_{d}^{\gamma}y^{j}|}\chi(y^{j}),$$

and the function S:

$$\mathcal{S}_{\gamma}(\mathcal{V}^{j}) = rac{\mathcal{T}_{ ext{max}}^{\gamma}}{1+e^{-\lambda_{\gamma}(\mathcal{V}^{j}-\mathcal{V}_{\mathcal{T}}^{\gamma})}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spiking neurons

Fitzhugh-Nagumo model

Maximum conductances

The maximum conductances (synaptic weights) are affected by dynamical random variations:

$$J_{i\gamma}(t)=rac{ar{J}_{lpha\gamma}}{N_{\gamma}}+rac{\sigma^{J}_{lpha\gamma}}{N_{\gamma}}\xi^{i,\,\gamma}(t),$$

Advantage : simplicity

Disadvantage : an increase of the noise level increases the probability that the sign of $J_{ij}(t)$ is different from that of $\bar{J}_{\alpha\gamma}$. This can be fixed (Cox-Ingersoll-Ross model) └─Fitzhugh-Nagumo model

Putting everything together

Each neuron i ($p(i) = \alpha$) is represented by a state vector of dimension 3:

$$(P) \begin{cases} dV_t^i = F_{\alpha}(t, V_t^i, w_t^i) dt \\ -\sum_{\gamma \in \mathcal{P}} (V_t^i - V_{rev}^{\alpha\gamma}) \frac{J_{\alpha\gamma}}{N_{\gamma}} \left(\sum_{j=1}^N \mathbb{1}(p(j) = \gamma) y_t^j \right) dt \\ -\sum_{\gamma \in \mathcal{P}} (V_t^i - V_{rev}^{\alpha\gamma}) \frac{\sigma_{\alpha\gamma}}{N_{\gamma}} \left(\sum_{j=1}^N \mathbb{1}(p(j) = \gamma) y_t^j \right) dB_t^{\gamma,i} \\ +\sigma_{ext}^{\alpha} dW_t^{i,V} \\ \frac{dw_t^i}{dt} = a_{\alpha} \left(b_{\alpha} V_t^i - w_t^i \right) \\ dy_t^i = (a_r^{\alpha} S_{\alpha}(V_t^i)(1 - y_t^i) - a_d^{\alpha} y_t^i) dt + \sigma_{\alpha}(V_t^i, y_t^i) dW_t^{i,y} \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The limit equations

$$(M) \begin{cases} dV_t^{\alpha} = F_{\alpha}(t, V_t^{\alpha}, w_t^{\alpha})dt - \sum_{\gamma \in \mathcal{P}} (V_t^{\alpha} - V_{\text{rev}}^{\alpha\gamma}) \bar{J}_{\alpha\gamma} \mathbb{E}[y_t^{\gamma}] dt \\ - \sum_{\gamma \in \mathcal{P}} (V_t^{\alpha} - V_{\text{rev}}^{\alpha\gamma}) \sigma_{\alpha\gamma}^J \mathbb{E}[y_t^{\gamma}] dB_t^{\gamma,\alpha} + \sigma_{\text{ext}}^{\alpha} dW_t^{\alpha,V} \\ \frac{dw_t^{\alpha}}{dt} = a_{\alpha} (b_{\alpha} V_t^{\alpha} - w_t^{\alpha}) \\ dy_t^{\alpha} = (a_r^{\alpha} S_{\alpha}(V_t^{\alpha})(1 - y_t^{\alpha}) - a_d^{\alpha} y_t^{\alpha}) dt + \sigma_{\alpha}(V_t^{\alpha}, y_t^{\alpha}) dW_t^{\alpha,Y} \end{cases}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Hypotheses

- I) Ion channels models: χ is bounded Lipschitz continuous with compact support included in (0, 1).
- II) Chemical synapse model: S_{α} is a sigmoid, a_r^{α} and a_d^{α} are positive
- III) Membrane model: The $F_{\alpha}(t, v, w)$ are continuous, one-sided Lipschitz wrt v and Lipschitz wrt w.

IV) Initial conditions: V_0^i , y_0^i , w_0^i , $J_0^{i\gamma}$ are i.i.d. r.v. with the same law as V_0^{α} , y_0^{α} , w_0^{α} , $J_0^{\alpha\gamma}$ when $p(i) = \alpha$. V_0^{α} and $J_0^{\alpha\gamma}$ have moments of any order.

Well-posedness of the N-neuron model

Proposition

Under Hypotheses I-IV, the system (P) has a unique pathwise solution on all time intervals $0 \le t \le T$. In addition the components of the processes y_t^i take values in (0, 1).

Well-posedness of the mean-field limit models

Proposition

Under Hypotheses I-IV, the system (*M*) has a unique pathwise solution on all time intervals $0 \le t \le T$. In addition the components of the processes y_t^{α} take values in (0, 1).

Proof.

Slight extension of the fixed point method developed in Sznitman 1989 and arguments found in Luçon-Stannat 2014.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let \mathbb{P} be the law of its solution.

- 1. $(R_t) = (R_t^{\alpha}, \alpha \in \mathcal{P}) = (V_t^{\alpha}, (J_t^{\alpha\gamma}, \gamma \in \mathcal{P}), y_t^{\alpha}, w_t^{\alpha}; \alpha \in \mathcal{P})$ the solution to (M)
- 2. $(R_t^{i,N}, i = 1, \dots, N) = (V_t^i, (J_t^{i\gamma}, \gamma \in \mathcal{P}), y_t^i, w_t^i; i = 1, \dots, N)$ the solution to (P)

3. The coupling (\tilde{R}_t^i) : all N_{α} indices *i* such that $p(i) = \alpha$ are such that (\tilde{R}_t^i) are independent copies of (R_t^{α})

Proposition

Assume that for all $\gamma \in \mathcal{P}$, the proportion N_{γ}/N is nonzero and independent of N. Then for all set of P indexes $(i_{\alpha}, \alpha \in \mathcal{P})$ in $\{1, \dots, N\}$ with $p(i_{\alpha}) = \alpha$. the vector process $(R^{i_{\alpha},N} - \tilde{R}_{t}^{i_{\alpha}})$ satisfies

$$\sqrt{N}\mathbb{E}\left[\sup_{0\leq t\leq T}\sum_{\alpha\in\mathcal{P}}|R^{i_{\alpha},N}-\tilde{R}^{i_{\alpha}}_{t}|^{2}\right]\leq C$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The law of any subsystem of size k

$$((R_t^{1_{\alpha},N}, \alpha \in \mathcal{P}) \cdots (R_t^{k_{\alpha},N}, \alpha \in \mathcal{P})) \quad p(i_{\alpha}) = \alpha$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

converges to $\mathbb{P}^{\otimes k}$ when the N_{α} s tend to infinity

Proof.

The proof follows and adapts Sznitman 1989 and Méléard 1996.

Difficulty: some of the coefficients are not globally Lipschitz continuous. The drift f is of the form

$$f\left(t, v, w, j, \frac{1}{N}\sum_{i=1}^{N}y^{i}\right) = F_{\alpha}(t, v, w) - j(v - \bar{V}^{\alpha\gamma})\left(\frac{1}{N}\sum_{i=1}^{N}y^{i}\right)$$

Thanks to

• F_{α} is one-sided Lipschitz:

$$(F_{\alpha}(t,v,w) - F_{\alpha}(t,v',w))(v-v') \leq L(v-v')^2 - M(v,v')(v-v')^2 \quad L, \ |F_{\alpha}(t,v,w) - F_{\alpha}(t,v,w')| \leq L|w-w'|$$

• The processes $J_t^{\alpha\gamma}$ are positive

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M. Bossy, O.F., D. Talay, Journal Math. Neur., 2015.

A glimpse of the results

The 10 millions equations are "summarized" by P describing the stochastic time evolution of P "meta" neuron.

Left =
$$(V, w)$$
 - Right = (V, y)

J. Baladron, D. Fasoli, O.F., J. Touboul, Journal Math. Neura, 2012. 💿 🕫

Some movies

J. Baladron, D. Fasoli, O.F., J. Touboul, Journal Math. Neur., 2012.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ─ 目

Randomness in the brain

Spiking neurons

Fitzhugh-Nagumo model In the limit Some numerics

Rate neurons

Model Strategy

Model

The mathematical model

After Ben Arous and Guionnet, joint work with Etienne Tanré

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The mathematical model

Ignore the spikes, consider only the "firing rates"
Intrinsic dynamics:

$$\mathcal{S} := \left\{ \begin{array}{ll} dV_t &= -V_t dt + dB_t, \ 0 \leq t \leq T \\ \text{Law of } V_0 &= \mu_0, \end{array} \right.$$

- There is a unique strong solution to S (Ornstein-Uhlenbeck process):
- ▶ Note *P* its law on the set $\mathcal{T} := \mathcal{C}([0, T]; \mathbb{R})$ of trajectories

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The mathematical model

- ► *N* neurons in a completely connected network
- Coupled dynamics

$$\begin{split} \mathcal{S}(J^{N}) &:= \\ \left\{ \begin{array}{ll} dV_{t}^{i} &= (-V_{t}^{i} + \sum_{j=1}^{N} J_{ij}^{N} f(V_{t}^{j})) dt + dB_{t}^{i} \\ & i \in \{1, \cdots, N\} \\ \text{Law of } V_{N}(0) &= (V_{0}^{1}, \cdots, V_{0}^{N}) = \mu_{0}^{\otimes N} \end{array} \right. \end{split}$$

 $i \in \{1, \cdots, N\}.$

- f is bounded, Lipschitz continuous (usually a sigmoid), defining the firing rate
- Bⁱ: independent Brownians: intrinsic noise on the membrane potentials

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ Model

The mathematical model

• There is a unique strong solution to $\mathcal{S}(J^N)$

▶ Note $P(J^N)$ its law on the set \mathcal{T}^N of *N*-tuples of trajectories.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model

うしん 同一人用 人用 人口 マ

y_a

 $W_{hq}^{(2)}$

`b⁽²⁾

`b⁽¹⁾

Modeling the synaptic weights

The J^N_{ij}s are i.i.d. random synaptic weights ¹/_{√N} N(0,1)
 Even so, hard to guess the limit when N → ∞ of S(J^N)!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consequences

- $P(J^N)$ is a random law on \mathcal{T}^N
- Consider the law $P^{\otimes N}$ of N independent uncoupled neurons
- ► Girsanov theorem allows us to compare the law of the solution to the coupled system, P(J^N), with the law of the uncoupled system, P^{⊗N}:

$$\frac{dP(J^N)}{dP^{\otimes N}} = \exp\left\{\sum_{i=1}^N \int_0^T \left(\sum_{j=1}^N J_{ij}^N f(V_t^j)\right) dB_t^i - \frac{1}{2} \int_0^T \left(\sum_{j=1}^N J_{ij}^N f(V_t^j)\right)^2 dt\right\}$$

Strategy

Empirical measure

Consider the empirical measure:

$$\hat{\mu}^{N}(V_{N}) = \frac{1}{N} \sum_{i \in I_{n}} \delta_{V^{i}}$$

$$V_N = (V^1, \cdots, V^N)$$

It defines the mapping

$$\hat{\mu}^{N}:\mathcal{T}^{N}
ightarrow\mathbf{P}(\mathcal{T})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Strategy

Empirical measure

• We are interested in the law of $\hat{\mu}^N$ under $P(J^N)$

Define

$$Q^{\mathsf{N}} = \int_{\Omega} \mathsf{P}(J^{\mathsf{N}}(\omega)) \, d\omega,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

the average of $P(J^N)$ w.r.t. to the "random medium", i.e. the synaptic weights.

• We study the law of $\hat{\mu}^N$ under Q^N : annealed results.

Strategy

The strategy

Consider the law Π^N of μ̂^N under Q^N: it is a probability measure on P(T):

$$\Pi^N(B) = \left(Q^N \circ (\hat{\mu}^N)^{-1}\right)(B) = Q^N(\hat{\mu}^N \in B),$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

B measurable set of $\mathbf{P}(\mathcal{T})$

The strategy

- Establish a Large Deviation Principle for the sequence of probability measures (Π^N)_{N≥1}, i.e.
- Design a rate function (non-negative lower semi-continuous)
 H on P(T)
- The intuitive meaning of H is the following

$$Q^N(\hat{\mu}^N\simeq Q)\simeq e^{-NH(Q)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The measures $\hat{\mu}^N$ concentrate on the measures Q such that H(Q) = 0.
- If H reaches 0 at a single measure Q then Π^N converges weakly toward the Dirac mass δ_Q

Minimum of H

By adapting the results of Ben Arous and Guionnet (1995), Guionnet (1997), and of Moynot and Samuelides (2002) one obtains:

Theorem

$$H(\mu) = I^{(2)}(\mu; P) - \Gamma(\mu),$$

where $I^{(2)}(\mu; P)$ is the relative entropy of μ w.r.t. P and Γ is defined by

$$\frac{dQ^N}{dP^{\otimes N}} = e^{N\Gamma(\hat{\mu}^N)}$$

H achieves its minimum at a unique point μ of $\mathbf{P}(\mathcal{T})$.

Remark This result is universal as shown in Dembo, Lubetsky and Zeitouni (2021)

Strategy

Minimum of H

Theorem

 μ is the unique solution to the fixed point problem:

$$rac{d\mu}{dP} = \int \exp\left\{\int_0^T G_t^\mu \, dB_t - rac{1}{2}\int_0^T (G_t^\mu)^2 \, dt
ight\} \, d\gamma_\mu,$$

where, under γ_{μ} , G_t^{μ} is a centered Gaussian process with covariance

$$K_{\mu}(t,s) = \int_{\mathcal{T}} f(v_t) f(v_s) \, d\mu(v),$$

・ロト・西ト・山田・山田・山口・

Stochastic system

Theorem

 μ is the law of the solution to a non-linear non-Markovian stochastic system.

$$\begin{cases} X_t = X_0 - \int_0^t X_s \, ds + B_t \\ B_t = W_t + \int_0^t \int_0^s \tilde{K}_{\mu}(s, u) \, dB_u \, ds \\ Law \text{ of } X = \mu, \quad \mu_{\mathcal{F}_0} = \mu_0 \\ K_{\mu}(t, s) = \int_{\mathcal{T}} f(X_t) f(X_s) \, d\mu(X) \end{cases}$$

- W_t is a Brownian motion under μ .

$$ilde{K}^t_\mu = K_\mu \circ (\mathrm{Id} + K_\mu)^{-1}$$

The proof requires a good deal of stochastic and Gaussian calculus

Stochastic system

The second equation can be solved with respect to B using the theory of Volterra equations:

$$B_t = W_t + \int_0^t \widetilde{W}_s \, ds + \int_0^t \left(\int_0^s H^s_\mu(s, u) \widetilde{W}_u \, du \right) \, ds,$$

where

$$\widetilde{W}_t = \int_0^t \widetilde{K}^t_\mu(t,s) \, dW_s$$

The function H^t_{μ} is defined from \tilde{K}^t_{μ} by

$$ar{H}^t_\mu = (\mathrm{Id} - ar{ ilde{L}}^t_\mu)^{-1}, \quad ilde{L}^t_\mu(s, u) = \left\{ egin{array}{c} ilde{K}^t_\mu(s, u) & \mathrm{if} \ u \leq s \ 0 & \mathrm{otherwise}, \end{array}
ight.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

└─ Strategy

Stochastic system

K_µ can be estimated by a fixed point procedure based on Monte-Carlo simulations:

Proof.

The proof is through the use of the solution to the previous Volterra equation. A good deal of stochastic and Gaussian calculus is again needed. $\hfill \Box$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Strategy

Stochastic system

Extensions to nonzero mean weights and several populations of neurons are possible:

$$\begin{cases} X_t &= X_0 - \int_0^t X_s \, ds + \int_0^t c_{\mu}(s) \, ds + B_t \\ B_t &= W_t + \int_0^t \int_0^s \tilde{K}_{\mu}^s(s, u) \, dB_u \, ds \\ m_{\mu}(t) &= \int f(X_t) \, d\mu(X) \\ c_{\mu}(t) &= (\mathrm{Id} + \bar{K}_{\mu})^{-1} \cdot m_{\mu}(t) \\ K_{\mu}(t, s) &= \int f(X_t) f(X_s) \, d\mu(X) \\ \mathrm{Law of } X &= \mu, \quad \mu_{|\mathcal{F}_0} = \mu_0 \end{cases}$$

Upcoming arxiv, O.F., Etienne Tanré, 2023+

L_Strategy

Propagation of chaos

Theorem

$$Q^N$$
 is μ -chaotic.
i.e. for all $m \ge 2$ and φ_i , $i = 1, ..., m$ in $C_b(\mathcal{T})$

$$\lim_{N \to \infty} \int_{\mathcal{T}^N} \varphi_1(v^1) \cdots \varphi_m(v^m) \, dQ^N(v^1, \cdots, v^N) = \prod_{i=1}^m \int_{\mathcal{T}} \varphi_i(v) \, d\mu(v)$$

"In the thermodynamic limit $(N \to \infty)$ and on average, the neurons in any finite-size group become independent. One observes the propagation of chaos. The neurons become asynchronous."

Quenched results

These results are marginally useful in practice because we have averaged over the weights J but we also have:

Existence and uniqueness of a quenched limit

The law of the empirical measure of the quenched system converges to δ_{μ} for almost all Js (Theorem 2.7 in Ben Arous and Guionnet (95)).

This of course does not imply a quenched propagation of chaos since the neurons are not exchangeable for almost all interaction but we have

Quenched results

Quenched propagation of chaos

If the initial law μ_0 is symmetric, then for any set of *m* continuous bounded functions $(\varphi_j)_{m=1,\dots,m}$ defined on C

$$\int \prod_{j=1}^m \varphi_j(X^j) \, dP^N(\mathbf{J})(X) \xrightarrow{p} \prod_{j=1}^m \int \varphi_j(X) \, d\mu(X)$$

This means that for all $\varepsilon > 0$

$$\lim_{N\to\infty}\gamma\left(\omega:\left|\int\prod_{j=1}^m\varphi_j(X^j)\,d\mathcal{P}^N(\mathbf{J})(X)-\prod_{j=1}^m\int\varphi_j(X)\,d\mu(X)\right|>\varepsilon\right)=0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion

We did all this technical work because of this biological observation:

Advertising a new Journal: Mathematical Neuroscience and Applications

- Focuses on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience.
- Publishes work that uses advanced mathematical techniques to illuminate these questions.
- Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system are welcome.
- Diamond Open Access model: free Open Access, thanks to the support of episciences.org

└─ Strategy

Advertising a new Journal: Mathematical Neuroscience and Applications

ra 💐 anti-glisse 📩 recettes 💽 Ring 🥱 MNA 📩	sentiers 🔁 enedis 🛅 dicos 🛅 color illusions 🧟 Soutien scolaire en 🧟 Fiches Français - Or 🛅 stopcovid 🚨 MACIF 💽 Les Crises 🧕 QO 🙄 Iombrics 🕮 La Hulotte 💦 🚵 Mutres marque-pages
	Q + Create account +2 Sign in -
	Mathematical Neuroscience and Applications
Homepage	Нотелале
Browse all volume	
Articles	Mathematical Neuroscience and Applications is an international journal that publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary
About the journal	too for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous
News / blog	system in general and the human brain in particular are also welcome.
Help	b) It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged but any paper that will encourage exchange of ideas between mathematics and neuroscience applications will be considered.
My Account	The journal Mathematical Neurosciences and Applications uses a Barrand Open Access model. We provide fine Open Access, Inverte to the support of exploritionsciency. The manes three is immediate access to the finity planther, writing of acceptad articles, and or charge to readers, Unite Gold Open Access waited on not charge authors to publicit in the journal: there is no Author Processing Charges (APC), in this way was an address the needs and interest or isolations with immediated interdictions and it application, organized activity, and or clocking.
	The journal is in part a continuation of the Journal of Mathematical Neuroscience that started publishing articles in 2011 and will cease publication in December 2021. These articles can be freely accessed at the following address.
	Submit an article
	https://mna.episciences.org/