Optimal Revelated Utilities and Convex Pricing kernels:

A Forward Point of view of convexity propagation

N.El Karoui, M.Mrad

LPSM-Sorbonne-University, LAGA-Paris 13

CIRM, Conf Denis Talay, 7 Septembre 2023

N.El Karoui, M.M'rad

Conf Denis, 7 Sept 2023

Regular utility function u and its conjugate

A regular utility function u is a

- (concave, increasing, positive) function on $[0,\infty)$, with u(0) = 0.
- ▶ Inada condition on its derivative u_z : $u_z(+\infty) = 0$, $u_z(0) = \infty$.

- power utility
$$u(z) = rac{x^{1-lpha}}{1-lpha}, lpha < 1$$
 , with conjugate $- ilde{u}_y(y) = y^{-1/lpha}$

The convex decreasing conjugate utility \tilde{u} and Legendre inequalities

•
$$\tilde{u}(y) = \sup_{x>0} (u(x) - xy)$$
, with $u'_x(x^*) = y$,

$$\blacktriangleright \quad \tilde{u}(y) = u(-\tilde{u}_y(y)) + y\tilde{u}_y(y), \quad u(x) = x u_x(x) - \tilde{u}(u_x(x))$$

► Legendre inequality: $\tilde{u}(y) - u(x) - xy \ge 0 \ \forall (x, y) > 0$

A dynamic utility on $(\Omega, \mathbb{P}, (\mathcal{F}_t))$

- ▶ is a family of optional random field $U = \{U(t, z), z \in \mathbb{R}^+\}$
- such that $\forall t, (z \rightarrow U(t, z))$ is a standard utility function.
- ▶ Its conjugate is the field $\widetilde{U} = \{\widetilde{U}(t, y), y \in \mathbb{R}^+\}$

Gap function

Definition Gap function(G.Charlier)

- $\blacktriangleright\,$ Let (u, \tilde{u}) be a pair of conjugate utility functions $(\bar{R}^+ \to \bar{R}^+$
- ▶ The bivariate Gap function, $G_u(x, y) = \tilde{u}(y) u(x) + xy \ge 0$
- Fenchel: $G_u(x, u_x(x)) = 0, \forall x > 0$
- ► Convex in each argument (x, y) (separately), whith x-derivative -u_x(x) + y.

Integral Gap function and minimization

- Let µ be a probability measure and Z ≥ 0 a r.v. with finite mean (or barycentre) b_µ = E_µ(Z) < +∞.</p>
- $\blacktriangleright \mathbb{E}_{\mu}(G_u(Z, y)) = G_u(b_{\mu}, y)) + \mathbb{E}_{\mu}(u(Z)) u(\mathbb{E}_{\mu}(Z))$
- The maximum in y is $\mathbb{E}_{\mu}(u(Z)) u(\mathbb{E}_{\mu}(z))$, attained at $u_{x}(b_{\mu})$).

イロト 不得下 イヨト イヨト 二日

Decision making in economics and finance

Decision making under uncertainty

- Most of decision making focuses on the selection of optimal sequence of actions given preferencies criterium
- In economy and finance the preferences are based on expected utility (concave criterium) of some terminal value, or its robust extension.
- Backward point of view

Decision making in e-commerce

- Learning based on observed data, over the time.
- Preferencies of the agent are "estimated" in view to propose an optimal offer
- Forward point of view

イロト イポト イヨト イヨト

Decision making in economics and finance

Samuelson (1930) C.P. Chambers

- Samuelson (1930) "Theory of revealed preference"
- Chambers : "We can never see a utility function, but what we might be able to see are demand observations at a finite list of prices.

Forward stochatic utilities (2002-2009) Musiela, Zariphopoulou

- Preferences are defined in isolation to the investment universe
- How use intertemporal diversification, (short, medium, long term strategies). With which utility function ?
- At the optimum the investor should become indifferent to the investment horizon.

(4 何) ト 4 日 ト 4 日 ト

Concave optimization with constraint

A backward toy model with conjugacy

- ▶ Data: utility concave function u, its conjugate \tilde{u} , a horizon T, \mathscr{X} a convex family of r.v. X_T ,
- ▶ $\{Y_t \ge 0\}$ a state price process with $\mathbb{E}(X_T Y_T) \le X_0 Y_0, \forall X_T \in \mathscr{X}\}.$
- Optimization problem $\max\{\mathbb{E}(u(X_T))|X_T \in \mathscr{X}\}\)$, with budget constraint $\mathbb{E}(Y_T X_T) \leq x$.

Solution of the problem via Lagrange multiplier and conjugate

- Equivalent Pb: $\max\{\mathbb{E}(u(X_T) + y(x Y_TX_T) | X_T \in \mathscr{X}\} = U_0(x, y)$
- ▶ If $-\tilde{u}_y(yY_T) \in \mathscr{X}$, then optimum is $X_T^* = -\tilde{u}_y(yY_T)$
- y is selected by $\mathbb{E}[-\tilde{u}_y(yY_T)Y_T] = x$
- $\tilde{U}_0(y) = \mathbb{E}[\tilde{u}(yY_T] \text{ decreasing convex conjugate utility in } y.$
- lts conjugate at 0, $U_0(x)$ is an increasing concave function.

Forward recovery bi-revealed utility problem

without optimization and control problem

Observed process and Choice of an adjoint process

To recover $\{U(t,z)\}$, the observable also must depend on z The data

- An initial condition U(0, z) = u(z) a given utility function
- An observed (data) positive adapted random field, $X = \{X_t(x)\},\$
- ► The optimal adequation between {U(t, z)} and {X_t(x)} is the requirement that {U(t, X_t(x))} is a martingale for any x.

To limit the size of family of dynamic utilities coherent with the data X, we add constraints on the conjugate utility $\{\tilde{u}(t, y)\}$ via an other family.

- $Y = \{Y_t(y)\}$ of positive adjoint process,
- Orthogonal to $\{X_t(x)\}$ s.t $X_t(x)Y_t(y)$ is a supermartingale $\forall (x, y)$
- Coherent-optimal to $\tilde{u}(t, y)$, that is $\tilde{u}(t, Y_t(y))$ is a martingale.

3

ヘロト 人間 トイヨト 人用ト

Examples of bi-revealed problems

The constant case $X_t(x) = x$

- $\{U(t,x)\}$ is a revealed utility "if and only" if
- its marginal utility $\{U_z(t,x)\}$ is a martingale.
- ▶ Then, *U* is bi-revealed, by two constant process

Linear characteristic process $X_t(x) := xX_t(1) = x X_t$

► Use X_t as numeraire and define U^X(t, z) = U(t, zX_t), a martingale with characteristic process x

▶ Then "
$$U_z^X(t,z) = X_t U_z(t,zX_t) = X_t Y_t(u_z(z))$$
 is a martingale"

U is a bi-revealed utility

Power utility: $u(z) = z^{1-\alpha}/(1-\alpha)$

► Then, $U'_z(t,z) = Y_t(u_z(z/X_t))$, and if u is a power utility, then U is a power utility, if and only if Y is linear

Bi-revealed utility problem

How to express on $(X_t(x), Y_t(y))$ and the previous (sur)-martingales conditions, that \tilde{u} is the conjugate of U.

 $\tilde{u}(y) - u(x) + xy \ge 0$, with equality for $y = u_x(x)$

Pathwise First order condition

A system is bi-revealed system, iff

- A Pathwise first order condition holds $Y_t(u_z(x)) = U_z(t, X_t(x))$
- $\{X_t(x)Y_t(u_x(x))\}$ is a martingale
- Sketch of the proof: Thanks to martingale-surmartingales conditions, and Legendre inequalitites
 - $0 \leq \mathbb{E}[\tilde{u}(\tau, Y_{\tau}(y)) U(\tau, X_{\tau}(x) + Y_{\tau}(y)X_{\tau}(x)] \leq \tilde{u}(y) u(x) + xy$
 - For y = u_x(x), by Fenchel, the left and right sides are 0, as the non negative function on the expectation are 0

• By strict monotony, first order condition: $Y_t(u_x(x)) = U_z(t, X_t(x))$

Bi-revealed utility and Intrinsic Universe. ++

The utility U is bi-revealed by the triplet (u, X, Y) iff (approx)

- $\forall (x, y), \{X_t(x)Y_t(y)\}$ is a supermartingale
- $\{X_t(x)Y_t(u_z(x))\}$ is a martingale
- First order $U_x(X_t(x)) = Y_t(u_x)$

Asymptotic behavior and intrinsic behavior

- Limit Conditions
 - $\lim_{x\to 0} \frac{X_t(x)}{x} = \Lambda_t^X > 0$ and $\lim_{y\to\infty} \frac{Y_t(y)}{y} = H_t^Y > 0$,
 - $L_t^{\text{int}} = \Lambda_t^X H_t^Y$, $L_0^{\text{int}} = 1$ is a \mathbb{P} -martingale.
- The intrinsic universe:
 - Change of proba : $d\mathbb{Q}^{\text{int}} = L_T^{\text{int}}.d\mathbb{P}$,
 - Change of numeraire $X_t^{\text{int}}(x) = X_t(x)/\Lambda_t^X$, $Y_t^{\text{int}}(y) = Y_t(y)/H_t^Y$
- ▶ \mathbb{Q}^{int} Supermartingale properties
 - $\{X_t^{int}(x)\}$, $\{Y_t^{int}(y)\}$, $\{X_t^{int}(x) Y_t^{int}(y)\}$ are \mathbb{Q}^{int} -supermartingales.
 - Preference for the present with $\{U(t,z)\}$ $\mathbb{Q}^{\mathrm{int}}_{-}$ -supermartingale

Algebraic Construction of bi-revealed utilities

Pathwise Utility construction

Hyp $x \to X_t(x)$ is strictly increasing in x with range $[0,\infty)$,

- $U_z(t,z) = Y_t(u_z(X_t^{-1}(z))), \quad U(t,x) = \int_0^x Y_t(u_z(X_t^{-1}(z))) dz$
- Why $U(t, X_t(x)) = \int_0^x Y_t(u_x(z)) d_z X_t(z)$ is a "martingale" ?
 - $\bullet\,$ This last integral is a Stieljes integral, with explosion near to z=0
 - One to one algebraic bijection between (u, X, U) and (u, X, Y)

Exemple of Differentiable characteristic process

- Assume $x \mapsto X_t(x)$ to be x-differentiable with differential $X_x(t,x)$.
- $U(t, X_t(x))$ is given by $U(t, X_t(x)) = \int_{(0,x]} Y_t(u_x(z)) X_x(t, z) dz$
- Under some "regularity", the *U*-martingale condition is equivalent to $\{Y_t(u_x(x))X_x(t,x)\}$ is martingale
- ► In the bi-revealed case, {Y_t(u_x(x))X_x(t, x)}, {Y_t(u_x(x))X_t(x)} are martingales

In the general case, similar argument from $\mathsf{Darboux}_\mathsf{sums}$, we have

э

Application to Itô's framework

N.El Karoui, M.M'rad

Conf Denis, 7 Sept 2023

イロト イロト イヨト イヨ

Generalities on the Itô's framework

 $(\Omega, (\mathcal{F}_t), \mathbb{P})$ is equipped with a *d*-dimensional Brownian motion (W_t) Random field SDEs $(\mu_t(z), \sigma_t(z))$,

SDE form: $dX_t(x) = \mu_t^X(X_t(x))dt + \sigma_t^X(X_t(x)).dW_t$, $X_0 = x$ Random Field $dX_t(x) = \beta^X(t,x)dt + \gamma^X(t,x).dW_t$, $X_0 = x$ Parameter/Coeff $\gamma^X(t,x) = \sigma_t(X_t(x))$ $\beta^X(t,x) = \mu_t(X_t(x))$

Comments

- The SDE point of view is better suited for problem related to comparison
- RF Point of view is better suited to differentiability issues.
- All results are based on a strong differential regularity of coefficients or parameters, detailed in SIAM paper(2013)

SPDE's for compound SDE's

Itô Ventzel Formula for semimartingale Z

• A \mathcal{K}^2_{loc} -Itô semimartingale RF F(t, z), (β^F, γ^F) .

•
$$dF(t, Z_t) = \beta^F(t, Z_t)dt + \gamma^F(t, Z_t).dW_t$$

 $\blacktriangleright +F_{z}(t, Z_{t})dZ_{t} + \frac{1}{2}F_{zz}(t, Z_{t})\langle dZ_{t}\rangle + \langle \gamma_{z}^{F}(t, Z_{t}).dW_{t}, dZ_{t}\rangle$

Second formulation

$$b \quad dF(t,z) = \beta^F(t,z)dt + \gamma^F(t,z).dW_t = d_tF(t,z)|_{z=Z_t} dF_z(t,z) = \beta^F_z(t,z)dt + \gamma^F_z(t,z).dW_t.$$

► Then,
$$dF(t, Z_t) = d_t F(t, z)|_{z=Z_t} - \frac{1}{2}F_{zz}(t, Z_t)\langle dZ_t \rangle + d(F_z(t, Z_t)Z_t) - Z_t dF_z(t, Z_t)$$

Bi-revealed utilities

$$\blacktriangleright dU(t, X_t(x)) = \gamma^U(t, X_t(x)) \cdot dW_t + d(U_z(t, X_t(x)) \cdot X_t(x))$$

 $\blacktriangleright +\beta^{U}(t,X_{t}(x))dt - \frac{1}{2}U_{zz}(t,X_{t}(x)\langle dX_{t}(x)\rangle - X_{t}(x)dY_{t}(u_{z}(x))$

Utility issued from SDEs

- X regular solution of SDE (μ^X, σ^X) with inverse flow $\{\xi(t, z)\}$
- Y regular solution of SDE (μ^{Y}, σ^{Y}) decoupled of X
- ► suborthogonality : $z\mu_t^Y(y) + y\mu_t^X(x) + \langle \sigma_t^X(x), \sigma_t^Y(y) \rangle \le 0$,

U differential coefficients

$$\begin{split} \gamma_{z}^{U}(t,z) &= \sigma_{t}^{Y}(U_{z}(t,z)) - U_{zz}(t,z)\sigma_{t}^{X}(z).\\ \beta^{U}(t,z) &= \frac{1}{2}U_{zz}(t,z)||\sigma_{t}^{X}(z)||^{2} + z\,\mu_{t}^{Y}(U_{z}(t,z)) \quad \text{or}\\ \beta^{U}(t,z) &+ \langle \gamma_{z}^{U}(t,z), \sigma_{t}^{X}(z) \rangle = -[\frac{1}{2}U_{zz}(t,z)||\sigma_{t}^{X}(z)||^{2} + U_{z}(t,z)\mu_{t}^{X}(z)]. \end{split}$$

In the intrinsic case, $\mu_t^Y(y) \le 0$, $\beta^U(t,z) \le 0$ and U(t,z) is a supermartingale

イロト イポト イヨト イヨト

Revealed utility and optimization

Generally utility criteria are associated with optimization problem; General utility of test process: $dZ_t = \phi_t^Z dt + \psi_t^Z . dW_t$

►
$$dU(t, Z_t) = \frac{1}{2}U_{zz}(t, Z_t)||\sigma_t^X(Z_t) - \psi_t^Z||^2 dt + \gamma^U(t, Z_t) + U_z(t, Z_t)\psi_t^Z.dW_t + [Z_t \mu_t^Y(U_z(t, Z_t)) + U_z(t, Z_t)\phi_t^Z + \langle \sigma_t^Y(U_z(t, Z_t)), \psi_t^Z \rangle]dt$$

► The last term is the drift of the product $\{Z_t Y_t(y)\}$ taken at $y = U_z(t, Z_t)$, negatif for $\{Z_t Y_t(y)\}$ supermartingale

Controlled processes

- ► A controlled process Z is suborthogonal to {Y_t(y), ∀y}, that is Z_tY_t(y) is supermartingale (ex X_t(x))
- ► A controlled process Z is suboptimal
 - $U(t, Z_t)$ is a supermartingale.
 - $U(t, Z_t)$ is a martingale iff Z is a solution of the SDE (μ, σ) .

Applications to convex pricing forward dynamics

Work in progress

< □ > < 同 >

Stephane Comment

- OK, it is interesting, but utility framework is not so useful in pratice, in mathematical finance
- Pricing problems are more challenging, even the more classical with convex pay-off h.
- In particular, given a price derivative today how simulate coherent price in the future
- Very similar to utility problem where concave is replaced by convex
- But, only if the price today of convex derivative is a convex function.

A old question studied with S.Shreve and M.Jeanblanc in 1995

イロト イボト イヨト イヨト

Robustness of Black-Scholes formula

Classical BS Formula

- $X_t(x)$ =Geometric Brownian motion= $xX_t(1)$
- Option pay-off= Target = $h(T, X_T(x))$
- h convex option, positive, (nondecreasing)
- Intrinsic universe: $(\Omega, (\mathcal{F}_t), \mathbb{Q})$

BS Formula

▶ By change of numeraire, and probability measure, X_t(x) can be assumed to be Q martingale

$$X_t = x \exp(\sigma W_t^Q - \frac{1}{2}\sigma^2 t) = xL_T$$

The pricing rule is risk-neutral, that is

$$BS(h)(x,T) = \mathbb{E}_Q(h(xL_T)) = \Phi_h(0,x) = \Phi_h(x)$$

• BS(h)(x) is a convex function $\Phi_h(x)$ with $\Phi_h(T, x) = h(x)$

Robustness: Main theorem EJS

Model with local volatility in risk neutral universe

$$dX_t = X_t(\sigma(t, X_t) dW_t^Q), \quad X_0 = x$$

- $\blacktriangleright \gamma(t,x) = x\sigma(t,x)$
- $\sigma(t, x)$ continuous and bounded above
- ∂_x γ(t, x) is continuous in (t, x) and Lipschitz continuous and bounded in x uniformly in t

Theorem The Euopean price $\Phi_h(0, x) = \mathbb{E}_Q(h(X_T(x)))$ is a convex function, with bounded derivatives

Then, it is possible to adapt the "machinery" of concave utility.

イロト 不得下 イヨト イヨト

Que Sau, God of health and longevity

Te garde sous son regard bienveillant Merci pour tout, Denis...

N.El Karoui, M.M'rad