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Population dynamics with extinction:
Stationary behavior ~» usually extinction
Observed populations often exhibit a stationary behavior
Quasi-stationary distributions (QSD) are stationary distributions
conditionally on non-extinction (Seneta and Vere-Jones, 1966)

Other applications:

Metastable dynamics (Bovier, den Hollander 2015)

Molecular simulation: parallel replica algorithm (Le Bris,
Lelievre, Luskin, Perez, 2012)
Mortality plateau (Carey et al., 1992)
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Large time convergence in total variation of absorbed Markov
processes conditioned to non-extinction:

Birkhoff (1957); van Doorn (1991); Del Moral (2004); C. and
Villemonais (2016, 2023); Bansaye, Cloez and Gabriel (2020); Guillin,
Nectoux and Wu (2020); Ferré, Rousset and Stoltz (2021); Benaim,
C., Ogafrain and Villemonais (2022), Bansaye, Cloez, Garbiel and
Marguet (2022)...

In Wasserstein distance:

Villemonais (2020); Ocafrain (2020, 2021); Del Moral and Horton
(2021); Journel and Monmarché (2022).
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Killed Markov process (discrete time)

(Y.)nen a Markov chain with values in a measurable space (E,£).
0 ¢ E a cemetery point, p : F +— [0,1] a survival function

We define the killed chain X evolving in F U {0} as:
o If X,, € E, then

X Yn4+1 with probability p(X,)
"0 with probability 1 — p(X,,)

o if X, =0, then X,,1; =0

Under good assumptions on p;

To:=inf{n >0: X, =0} < +0
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Killed Markov process (continuous time)

(Y:)i>0 a Markov process with values in a measurable space (E,E).
0 ¢ E a cemetery point, p : F +— Ry a killing rate

We define the killed process X evolving in F U {9}:

Yt if t< T
X = .
0 otherwise

where .
Ty :=inf{t20 :/ p(Ys)d8>0}
0

with 6 a random variable with exponential law of parameter 1,
independent of (Y});>o0.
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Quasi-stationary distributions (QSD)

The only stationary state of X is the cemetery point 0.
How to describe X before extinction?

Definition

A probability measure o on E is a Quasi-Stationary Distribution if

Xo~a = PXie-|t<m)=a, Vi

Note: if Xy ~ p, we write

]P)[L (Xt , 1< Ta

]P)”(Xte'lt<7'a): ]P(t<7‘a
m

# [P e |t < ro)dufa)

Questions : existence, uniqueness, convergence of P,,(X; € -|t < Tp)
towards a 7
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Convergence in total variation

Theorem (C. and Villemonais, 2016)

In the general framework of absorbed process, the conditions

@ (conditional Doeblin) there exist #1, ¢; > 0 and a distribution v
such that for all z € F,

]Pz (th c - | < Ta) > Cll/(-)

@ (Harnack inequality) there exists ¢; > 0 such that for all z € F
and ¢t > 0,
P,(t < 19) > caP,(t < 79)

are equivalent to the existence of C,~v > 0 and a unique QSD « such
that for all initial distribution u

IPu(X: €|t <T9) —alry < Ce™ 7t
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What about Bernoulli convolutions?

We consider the chain Y;, on E = [-2,2] defined by

1

9 Yn + 0n+1

Yn+1 =
where (0,,),>0 is a sequence of i.i.d. variables such that

1
PO, =1)=P0, =-1) = 3
Let X,, be the killed chain. Then;

P, (X, € Q| n < 719) =1g(x)

~~ convergence in total variation is not possible
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However...

For z € [—2,2],
$+1 = %er + Ont1
YOI =T

For all z and y € [-2, 2],

Yy = Yl =2""z —y|

~ gives hope for convergence towards a QSD
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(E, d) a Polish space. The Wasserstein distance between two

distributions p and v on F is

Wai(p,v) = inf E(d(U,V))= sup
Urcp, Vrov fELip, (d)

[ran-[1av).

~~ Super easy:
Wa (P (Y €:), Pu(Yy €)) <27"Wy(u,v).
~> less easy:

Wy (Py(Xn [S |n < Ty), P,(X, € n< Ty)) <77
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Death Valley Y, 11 = Y,/2+ 60,41 and p(z) = |z|/2
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Death Valley: impassable

1
Yn—i—l = 5 Y, + 0n+1

Let X,, the chain Y, killed, survival probability: p(z) = |z|/2.

We can show that for all z,y € [-2,2]\ {0} and n > 1,
1
Wa (Pe(X,, €| n<719), Py(Xy €| n<71p)) > §|x —y|

~~ no contraction for the conditioned chain!
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Recall the settings

e I=Nor R4

® (Y¢)ter a Markov process on (F, d)

¢ p: E — Ry measurable

If I =Ry, p is the killing rate

if I =N, p = e™? is the survival function

It is more convenient to work in the setting of penalized Markov
processes (Del Moral, 2004):

IE.’E [Zt]]' YteA]

Pm(Xt€A|t<Ta): E [Z] s
x| 4T

where

Zy =2 (Y) = p(Yo)p(Y1) ... p(Yi1 —exp< Zp >f0r1=Na

i=

or

¢
Zy = 7Zy(Y) =exp (—/ p(Xs)ds> for I =R,
0
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Assumption (A)

d is bounded and p: E — R, is Lipschitz,

There exists Cy,~y > 0 such that, for all £ € I and z,y € E, there

exists a Markov coupling of Y* and Y'Y such that

]E[Zt(Y“”)d( tzv Yty)]
E.Z;

= ]E(d(Ytz, Yty) | t < T;) < CAe_vtd(xa y)

Theorem (with E. Strickler and D. Villemonais, 2023)

Under Assumption (A), there exist Cy and § > 0 such that
Wi (Pu(X; €]t <79), Pu(X; €|t <Tp)) < Coe P Wy(u,v)
Moreover, there exists a unique QSD « and

Wy (Pu(X; €|t < 7p), @) < Coe P Wy(u, )

Note: in the previous example, p(z) = —log(|z|/2) is not Lipschitz
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|deas of the proof

Define for all s < ¢t < T

—s EzZT—sf(Y—s)
Rg:tf(x) = ROT,t—s (z) = IEQ:Z—T—:

This is a time-inhomogeneous semigroup: forall r < s <t < T
T pT T
Rr,sRs,t = Rr,t'

Note that
Ex[f(Xt) |t < 7'3] = 5wR(t),tf

but
Eu[f(Xt) |t < 7o) # NRé,tf
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|deas of the proof

Key property: (A) implies that
(H) There exist Cy > 0 such that, for all z,y € F and t € I,
E.(Z;) < CuEy(Z).

First consequence: for all z,y € F and t < T,

E[Ze(Y*)d(YE, Y1) E[Z(Y")d(V7, Y)E vs Zr-i]
EyZr B Ey (Z:Ey, Z1—4)
E[Z,(Y")d(Y{, Y]
E,Z

< CyCge "d(z,y).

< Cu
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Second consequence:

21207 - 2| <[ (o ([ or20as) e ([ ptvsas) )

[ o= oroa]

< ||,0||Lip/0 E[(Z(Y") + Z,(Y")) d(YS, Y] ds

X

¢
< llpllLip(a) CACH/ e Wds(EyZy + EyZy) d(z,y)
0

CaCh

< lpllLip(a) (1+ Cr)EyZid(z,y),
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For all Lipschitz ¢,
0. R1,0— 8, RI,0|

< |]EZT—S( Yz)d)( Ytz—s)_EZT—s( Yz)¢( Yty—s)| |E1ZT—5 _EyZT—s|

EZZT s +||¢||OO EZ‘ZT—S
E([Zr_s(Y*)d(YE ,, YY) |EyZr_y — EyZr_|
< Nolhspio - T I ER VED g [EaZres s
T —s T —s

< € (I9lloe + € 6luipga) ) Ao, v).
Introducing the equivalent distance on £

dﬂ($7 y) = (Hd(xa y)) Al

with well-chosen x and ty, we deduce that there exists § < 1 such
that, for all ¢ € Lip,(d,) and all &,

Oz Rkto (k+1)te® — 0 Rkto (1)t ?| < Bl (2, y).

Iterating with the semigroup property allows to conclude.
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Consequence on the survival probability

Corollary
Assume (A). Then, there exists a d-Lipschitz function
n: E — (0,400) such that

n(z) = lim eM'E,Z,

t——+o0

where )\ is the absorption rate of the QSD « and the convergence
holds exponentially fast for the uniform norm.
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Consequence on the ()-process

Corollary

Assume (A). There exists a Markov family (Q,),cr such that

E;(1aZ:)
E:th

_ Qm(A)‘ < Ce—B(t=s)

for all F-measurable set A for all s <t € I and the probability
measure

vq(dz) = n(z)a(dr)

is the unique invariant distribution of (Y3):e; under (Qy)zep-
In addition, for any initial distributions p and v on F,

Wd(QM(Yt € ')7QV(Yt € )) < Ce_ﬂs Wd('u')l/)'
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Consequence on quasi-ergodicity

For all z € E and t > 0, define

E, [Zt (% Iy, ds)]

E, Z

ui = if 1 = [0, +00)

or

T _ Ez [Zt (% Zs<t 6Y5)]
Ky = E:I:Zt

We obtain the following quasi-ergodic (sensu Breyer and Roberts,
1999) result:

if I =N.

Corollary

Assume (A). Then

Wa (i ve) = sup E [Zt (% Jo F(¥)ds - VQ(f))]

C
< —.
F€Lip, (d) E.Z; t



Applications

When coupling is faster than killing (1)

As expected from Cloez and Thai (2016) and Journel and Monmarché
(2022):

Proposition

Assume that, for all z,y € F,
E[d(Y/, YY) < Ce " d(z,y), V¢ >0

with v > osc(p). Then Condition (A) holds true.
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When coupling is faster than killing (2)

We can also obtain a local version, which improves Villemonais
(2020), by observing that

9L [Z(Y)
ot | E.Z
E [em i A8 (< p(YE)d(YVE, YP)+Lod(YE, Y+ pllood(VE, YE))]

Ez |:€_ fot P( Ys) ds]

d(Yg, Yty)]

<

where L¢ is the generator of the coupling of Y* and Y.
Hence, assuming that

Led

= p(@) + llpll <0,
T#Y d(xvy)

(A) is satisfied with C4 =1 and v = —0.
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Back to Bernoulli convolutions

For the chain )
Yn+1 = 5 Yo + 0n+1

on F = [-2,2], since

Yy = Y[ =27"z -y
(A) is clear (provided p is Lipschitz).
More generally, for the chain

Y1 = f9n+1 ( Y’n)a

where (6,,) are i.i.d. and (fy)e is a family of Lipschitz functions such
that, for all 0, ¢y := || fo|lLip < 1.
Proposition

If p = e~” with p Lipschitz and P(lp, = 1) < ¢=°%() then (A) holds
true.
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Switched dynamical systems

We consider the PDMP (X;, I;)icr, , where the environment ; is an
irreducible Markov chain on a finite state space S and

Xt = FIt (Xt) in ]Rk
where, for all 1 € §,
(Fi(z) = Fi(y),z — y) < =z — y|?

for some constant y > 0.
For R large enough, the ball ||z|| < R is invariant for all F;.
We define the distance

Iz =yl
2R

We assume that the killing rate p(z, ) is Lipschitz.

d((z,4), (y,5)) = Lizj + Lizy » Vel < B, llyll < R, i,j € 5.

Proposition

Using the classical independent Markov coupling, Condition (A) holds
true.
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