Propagation of chaos for stochastic particle systems in interaction of $L^{q}-L^{p}$ type

Milica Tomašević
CNRS - CMAP Ecole polytechnique

A Random Walk in the Land of Stochastic Analysis and Numerical Probability
Marseille, Sep 2023

Pour commencer...

... une photo de Denis:

Overview

Introduction

Main results

Proofs

Propagation of chaos

- Consider the following particle system (PS) in \mathbb{R}^{d}

$$
\left\{\begin{array}{l}
d X_{t}^{i, N}=\frac{1}{N} \sum_{j=1}^{N} b\left(t, X_{t}^{i, N}, X_{t}^{j, N}\right) d t+d W_{t}^{i}, \quad t>0, i \leq N \tag{1}\\
X_{0}^{i, N} \text { i.i.d. and independent of } W:=\left(W^{i}, 1 \leq i \leq N\right),
\end{array}\right.
$$

where $b: \mathbb{R}^{+} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a Borel measurable function.

Of course, $\left(\mu_{t}^{N}\right)_{t \geq 0}$ converges to the corresponding Fokker Planck PDE. Long history in the literature (from Kac, McKean to today...)

Propagation of chaos

- Consider the following particle system (PS) in \mathbb{R}^{d}

$$
\left\{\begin{array}{l}
d X_{t}^{i, N}=\frac{1}{N} \sum_{j=1}^{N} b\left(t, X_{t}^{i, N}, X_{t}^{j, N}\right) d t+d W_{t}^{i}, \quad t>0, i \leq N \tag{1}\\
X_{0}^{i, N} \text { i.i.d. and independent of } W:=\left(W^{i}, 1 \leq i \leq N\right),
\end{array}\right.
$$

where $b: \mathbb{R}^{+} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a Borel measurable function.

- When b is "nice": $\mu^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{i}}$ converges, as $N \rightarrow \infty$, towards the law of the non-linear stochastic process given by

$$
\left\{\begin{array}{l}
d X_{t}=\int b\left(t, X_{t}, y\right) \rho_{t}(y) d y d t+d W_{t}, \quad t>0 \tag{2}\\
\rho_{t}(y) d y:=\mathcal{L}\left(X_{t}\right), \quad X_{0} \sim \rho_{0}(x) d x
\end{array}\right.
$$

Of course, $\left(\mu_{t}^{N}\right)_{t \geq 0}$ converges to the corresponding Fokker Planck PDE. Long history in the literature (from Kac, McKean to today...)

Singular interactions: Physical examples

Probabilistic approach to singular non-linear FP equations such as:

- Boltzmann, Burgers, Navier-Stokes, Keller-Segel equations, ... studied by many authors:
- Bossy, Calderoni, Fournier, Graham, Guérin, Hauray, Jabir, Jourdain, Méléard, Osada, Pulvirenti, Roelly, Sznitman, Talay, ...

Singular interactions: Physical examples

Probabilistic approach to singular non-linear FP equations such as:

- Boltzmann, Burgers, Navier-Stokes, Keller-Segel equations, ... studied by many authors:
- Bossy, Calderoni, Fournier, Graham, Guérin, Hauray, Jabir, Jourdain, Méléard, Osada, Pulvirenti, Roelly, Sznitman, Talay, ...

First main challenge: singular nature of coefficients \rightarrow wellposedness of the PS, NLSDE and the propagation of chaos?

Our motivations: Krylov-Rockner condition

In [K-R, PTRF 05] the following linear SDEs are studied (among other)

$$
X_{t}=x+\int_{0}^{t} b\left(r, x_{r}\right) d r+d W_{t}, \quad t \geq 0
$$

where $x \in \mathbb{R}^{d}$ and b satisfies for any $t>0$

$$
\int_{0}^{t}\|b(r, \cdot)\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{q} d r<\infty \quad \text { with } \quad \frac{d}{p}+\frac{2}{q}<1, p \geq 2, q>2 .
$$

Strong well posedness is obtained. (General condition, not necessarily Lipschitz continuos coefficient, can be singular..)

...for NLSDEs

Then, [Rockner-Zhang, Bernoulli 21] proved strong well posedness of the NLSDE

$$
\left\{\begin{array}{l}
d X_{t}=\int b\left(t, X_{t}, y\right) \rho_{t}(y) d y d t+d W_{t}, \quad t>0 \tag{3}\\
\rho_{t}(y) d y:=\mathcal{L}\left(X_{t}\right), \quad X_{0} \sim \rho_{0}(x) d x
\end{array}\right.
$$

under the following assumption:

Assumption

For $x, y \in \mathbb{R}^{d}$ and $t>0$, one has $|b(t, x, y)| \leq h_{t}(x-y)$ for some $h \in L_{\text {loc }}^{q}\left(\mathbb{R}_{+} ; L^{p}\left(\mathbb{R}^{d}\right)\right)$, where $p, q \in(2, \infty)$ satisfy $\frac{d}{p}+\frac{2}{q}<1$.
and supposing $\int|x|^{\beta} \rho_{0}(d x)<\infty$ for some $\beta>2$. (can also be localised L^{p} in space: no need for integrability at infinity.)

...for NLSDEs

Then, [Rockner-Zhang, Bernoulli 21] proved strong well posedness of the NLSDE

$$
\left\{\begin{array}{l}
d X_{t}=\int b\left(t, X_{t}, y\right) \rho_{t}(y) d y d t+d W_{t}, \quad t>0 \tag{3}\\
\rho_{t}(y) d y:=\mathcal{L}\left(X_{t}\right), \quad X_{0} \sim \rho_{0}(x) d x
\end{array}\right.
$$

under the following assumption:

Assumption

For $x, y \in \mathbb{R}^{d}$ and $t>0$, one has $|b(t, x, y)| \leq h_{t}(x-y)$ for some $h \in L_{\text {loc }}^{q}\left(\mathbb{R}_{+} ; L^{p}\left(\mathbb{R}^{d}\right)\right)$, where $p, q \in(2, \infty)$ satisfy $\frac{d}{p}+\frac{2}{q}<1$.
and supposing $\int|x|^{\beta} \rho_{0}(d x)<\infty$ for some $\beta>2$. (can also be localised L^{p} in space: no need for integrability at infinity.)

Our goal: Prove well-posedness and propagation of chaos for the corresponding PS.

Overview

Introduction

Main results

Proofs

Main result I

Define for $t>0$

$$
\begin{aligned}
\mathcal{N}_{b}(t)=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}:\right. & \lim _{\left(x^{\prime}, y^{\prime}\right) \rightarrow(x, y)}\left|b\left(t, x^{\prime}, y^{\prime}\right)\right|=\infty \\
& \left.\quad \text { or } \lim _{\left(x^{\prime}, y^{\prime}\right) \rightarrow(x, y)}\left|b\left(t, x^{\prime}, y^{\prime}\right)\right| \text { does not exist }\right\} .
\end{aligned}
$$

As $|b(t, x, y)| \leq h_{t}(x-y)$ and $h_{t} \in L^{p}\left(\mathbb{R}^{d}\right)$, the set $\mathcal{N}_{b}(t)$ is of Lebesgue's measure zero in $\mathbb{R}^{d} \times \mathbb{R}^{d}$.

PS now reads:

No self interaction, no interaction when $\mathcal{N}_{b}(t)$ is visited.

Main result I

Define for $t>0$

$$
\begin{aligned}
\mathcal{N}_{b}(t)=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}:\right. & \lim _{\left(x^{\prime}, y^{\prime}\right) \rightarrow(x, y)}\left|b\left(t, x^{\prime}, y^{\prime}\right)\right|=\infty \\
& \left.\quad \text { or } \lim _{\left(x^{\prime}, y^{\prime}\right) \rightarrow(x, y)}\left|b\left(t, x^{\prime}, y^{\prime}\right)\right| \text { does not exist }\right\} .
\end{aligned}
$$

As $|b(t, x, y)| \leq h_{t}(x-y)$ and $h_{t} \in L^{p}\left(\mathbb{R}^{d}\right)$, the set $\mathcal{N}_{b}(t)$ is of Lebesgue's measure zero in $\mathbb{R}^{d} \times \mathbb{R}^{d}$.

PS now reads:
$\left\{d X_{t}^{i, N}=\frac{1}{N} \sum_{j=1, j \neq i}^{N} b\left(t, X_{t}^{i, N}, X_{t}^{j, N}\right) \mathbb{1}_{\left\{\left(X_{t}^{i, N}, X_{t}^{j, N}\right) \notin \mathcal{N}_{b}(t)\right\}} d t+\sqrt{2} d W_{t}^{i}\right.$, $X_{0}^{i, N}$ i.i.d. and independent of $W:=\left(W^{i}, 1 \leq i \leq N\right)$.

No self interaction, no interaction when $\mathcal{N}_{b}(t)$ is visited.

Theorem ([T, ECP 23])
Let Assumption 1 hold. Given $0<T<\infty$ and $N \in \mathbb{N}$, there exists a weak solution $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t} ; 0 \leq t \leq T\right), \mathbb{Q}^{N}, W, X^{N}\right)$ to the N-interacting particle system (4) that satisfies, for any $1 \leq i \leq N$,

$$
\begin{gathered}
\mathbb{Q}^{N}\left(\int_{0}^{T}\left(\frac{1}{N} \sum_{j=1, j \neq i}^{N} b\left(t, X_{t}^{i, N}, X_{t}^{j, N}\right) \mathbb{1}_{\left\{\left(X_{t}^{i, N}, X_{t}^{j, N}\right) \notin \mathcal{N}_{b}(t)\right\}}\right)^{2} d t<\infty\right) \\
=1
\end{gathered}
$$

Uniqueness in law holds in the class of solutions satisfying above equality.

Theorem ([T, ECP 23])

Let Assumption 1 hold. Given $0<T<\infty$ and $N \in \mathbb{N}$, there exists a weak solution $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t} ; 0 \leq t \leq T\right), \mathbb{Q}^{N}, W, X^{N}\right)$ to the N-interacting particle system (4) that satisfies, for any $1 \leq i \leq N$,

$$
\begin{gathered}
\mathbb{Q}^{N}\left(\int_{0}^{T}\left(\frac{1}{N} \sum_{j=1, j \neq i}^{N} b\left(t, X_{t}^{i, N}, X_{t}^{j, N}\right) \mathbb{1}_{\left\{\left(X_{t}^{i, N}, X_{t}^{j, N}\right) \notin \mathcal{N}_{b}(t)\right\}}\right)^{2} d t<\infty\right) \\
=1
\end{gathered}
$$

Uniqueness in law holds in the class of solutions satisfying above equality.

Girsanov transform \rightarrow Lebesgue measure of the set $i \neq j$, $\left\{t>0,\left(X_{t}^{i, N}, X_{t}^{j, N}\right) \in \mathcal{N}_{b}(t)\right\}$ will thus be a.s. zero. Hence, the dynamics (1) and (4) are essentially the same.

Martingale problem

$\mathbb{Q} \in \mathcal{P}\left(C[0, T] ; \mathbb{R}^{d}\right)$ is a solution to (MP) if:
(i) $\mathbb{Q}_{0}=\mu_{0}$;
(ii) For any $t \in(0, T]$ and any $r>1$, the one dimensional time marginal \mathbb{Q}_{t} of \mathbb{Q} has a density ρ_{t} w.r.t. Lebesgue measure on \mathbb{R}^{d} which belongs to $L^{r}\left(\mathbb{R}^{d}\right)$ and satisfies

$$
\exists C_{T}, \quad \forall 0<t \leq T, \quad\left\|\rho_{t}\right\|_{L^{r}\left(\mathbb{R}^{d}\right)} \leq \frac{C_{T}}{t^{\frac{d}{2}\left(1-\frac{1}{r}\right)}}
$$

(iii) Denoting by $(x(t) ; t \leq T)$ the canonical process of $C\left([0, T] ; \mathbb{R}^{d}\right)$, we have: For any $f \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$, the process defined by

$$
\begin{aligned}
M_{t}:=f(x(t))-f(x(0))-\int_{0}^{t} & \left(\nabla f(x(s)) \cdot\left(\int b(s, x(s), y) \rho_{s}(y) d y\right)\right. \\
& +\triangle f(x(s))) d s
\end{aligned}
$$

is a \mathbb{Q}-martingale w.r.t. the canonical filtration.

Martingale problem

$\mathbb{Q} \in \mathcal{P}\left(C[0, T] ; \mathbb{R}^{d}\right)$ is a solution to (MP) if:
(ii) For any $t \in(0, T]$ and any $r>1$, the one dimensional time marginal \mathbb{Q}_{t} of \mathbb{Q} has a density ρ_{t} w.r.t. Lebesgue measure on \mathbb{R}^{d} which belongs to $L^{r}\left(\mathbb{R}^{d}\right)$ and satisfies

$$
\exists C_{T}, \quad \forall 0<t \leq T, \quad\left\|\rho_{t}\right\|_{L^{r}\left(\mathbb{R}^{d}\right)} \leq \frac{C_{T}}{t^{\frac{d}{2}\left(1-\frac{1}{r}\right)}} ;
$$

(iii) Denoting by $(x(t) ; t \leq T)$ the canonical process of $C\left([0, T] ; \mathbb{R}^{d}\right)$, we have: For any $f \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$, the process defined by

is a Q-martingale w.r.t. the canonical filtration.

Remark

1. Under Assumption $1+\int|x|{ }^{\beta} \mu_{0}(d x)<\infty$ for some $\beta>2$, (MP) admits a unique solution according to Thm. 1.1 [Rockner-Zhang, 21].
2. Marginal densities satisfy some Gaussian estimates punctually. In our (MP), L^{r}-estimates + Assumption $1 \rightarrow$ all the terms in (M) are well defined.

Remark

1. Under Assumption $1+\int|x|{ }^{\beta} \mu_{0}(d x)<\infty$ for some $\beta>2$, (MP) admits a unique solution according to Thm. 1.1 [Rockner-Zhang, 21].
2. Marginal densities satisfy some Gaussian estimates punctually. In our (MP), L^{r}-estimates + Assumption $1 \rightarrow$ all the terms in (M) are well defined.

$$
\left|\int_{0}^{t} \nabla f(x(s)) \cdot \int b(s, x(s), y) \rho_{s}(y) d y d s\right| \leq c_{f, t}\left(\int_{0}^{t} \int h_{s}^{2}(x(s)-y) \rho_{s}(y) d y d s\right)^{1 / 2}
$$

Remark

1. Under Assumption $1+\int|x|{ }^{\beta} \mu_{0}(d x)<\infty$ for some $\beta>2$, (MP) admits a unique solution according to Thm. 1.1 [Rockner-Zhang, 21].
2. Marginal densities satisfy some Gaussian estimates punctually. In our (MP), L^{r}-estimates + Assumption $1 \rightarrow$ all the terms in (M) are well defined.

$$
\begin{aligned}
\mid \int_{0}^{t} \nabla f(x(s)) \cdot & \int b(s, x(s), y) \rho_{s}(y) d y d s \mid \leq c_{f, t}\left(\int_{0}^{t} \int h_{s}^{2}(x(s)-y) \rho_{s}(y) d y d s\right)^{1 / 2} \\
\leq & c_{f, t}\|h\|_{L^{q}\left((0, t) ; L^{p}\left(\mathbb{R}^{d}\right)\right)}\left(\int_{0}^{t} s^{-\frac{d q}{p(q-2)}} d s\right)^{1 / 2-1 / q}
\end{aligned}
$$

Finite if $d / p+2 / q<1$.

Main result II

Theorem ([T, ECP 23])
In addition to Assumption 1, assume that for any $t>0, b(t, \cdot, \cdot)$ is continuous outside of the set $\mathcal{N}_{b}(t)$. Assume that the $X_{0}^{i, N}$'s are i.i.d. and that the initial distribution of $X_{0}^{1, N}$ is the measure μ_{0} that for some $\beta>2$ has finite β-order moment.
Then, the empirical measure of (4) converges in the weak sense, when $N \rightarrow \infty$, to the unique weak solution of (3).

In practice, interaction kernels are convolutions well defined and continuos almost everywhere (like $\pm \frac{x}{|x|^{r}}$). Hence, it is not unreasonable to assume that $b(t, \cdot, \cdot)$ is continuous outside of $\mathcal{N}_{b}(t)$

Main result II

Theorem ([T, ECP 23])

In addition to Assumption 1, assume that for any $t>0, b(t, \cdot, \cdot)$ is continuous outside of the set $\mathcal{N}_{b}(t)$. Assume that the $X_{0}^{i, N}$'s are i.i.d. and that the initial distribution of $X_{0}^{1, N}$ is the measure μ_{0} that for some $\beta>2$ has finite β-order moment.
Then, the empirical measure of (4) converges in the weak sense, when $N \rightarrow \infty$, to the unique weak solution of (3).

In practice, interaction kernels are convolutions well defined and continuos almost everywhere (like $\pm \frac{x}{|x|^{r}}$). Hence, it is not unreasonable to assume that $b(t, \cdot, \cdot)$ is continuous outside of $\mathcal{N}_{b}(t)$.

Alternative hypothesis

Local integrability and boundedness at infinity

$$
h \in L_{l o c}^{q}\left(\mathbb{R}_{+} ; L_{l o c}^{p}\left(\mathbb{R}^{d}\right)\right), \quad p, q \in(2, \infty): \frac{d}{p}+\frac{2}{q}<1
$$

and the function $H(T):=\int_{0}^{T} \sup _{|x|>1}\left|h_{t}(x)\right|^{2} d t$ is an increasing function from \mathbb{R}_{+}to \mathbb{R}_{+}.

Typical example for $d=2$

Can't work for Keller-Segel or Navier-Stokes in $\mathbb{R}^{2}: \pm \frac{x}{|x|^{2}}$ (Normal: does not exploit sign for NS; particles collide more than BMs for KS.)

Alternative hypothesis

Local integrability and boundedness at infinity

$$
h \in L_{l o c}^{q}\left(\mathbb{R}_{+} ; L_{l o c}^{p}\left(\mathbb{R}^{d}\right)\right), \quad p, q \in(2, \infty): \frac{d}{p}+\frac{2}{q}<1
$$

and the function $H(T):=\int_{0}^{T} \sup _{|x|>1}\left|h_{t}(x)\right|^{2} d t$ is an increasing function from \mathbb{R}_{+}to \mathbb{R}_{+}.

Typical example for $d=2$

$$
b_{t}(x, y)=\frac{a_{t}(x, y)}{|x-y|^{\alpha}}, \quad\left|a_{t}(x, y)\right| \leq \kappa|x-y|, \quad \alpha \in[1,2), \kappa>0 .
$$

Can't work for Keller-Segel or Navier-Stokes in $\mathbb{R}^{2}: \pm \frac{x}{|x|^{2}}$ (Normal: does not exploit sign for NS; particles collide more than BMs for KS.)

Alternative hypothesis

Local integrability and boundedness at infinity

$$
h \in L_{l o c}^{q}\left(\mathbb{R}_{+} ; L_{l o c}^{p}\left(\mathbb{R}^{d}\right)\right), \quad p, q \in(2, \infty): \frac{d}{p}+\frac{2}{q}<1
$$

and the function $H(T):=\int_{0}^{T} \sup _{|x|>1}\left|h_{t}(x)\right|^{2} d t$ is an increasing function from \mathbb{R}_{+}to \mathbb{R}_{+}.

Typical example for $d=2$

$$
b_{t}(x, y)=\frac{a_{t}(x, y)}{|x-y|^{\alpha}}, \quad\left|a_{t}(x, y)\right| \leq \kappa|x-y|, \quad \alpha \in[1,2), \kappa>0
$$

Can't work for Keller-Segel or Navier-Stokes in $\mathbb{R}^{2}: \pm \frac{x}{|x|^{2}}$
(Normal: does not exploit sign for NS; particles collide more than BMs for KS.)

Related works

- In [Hoeksema-Holding-Maurelli-Tse, Large deviations for singularly interacting diffusions, to appear in Annals IHP]: LDP for $L_{t}^{q}-L_{x}^{p}$ interactions. Byproduct: propagation of chaos.
- In [Jabir-Talay-T., ECP (2018)]: wellposedness and propagation of chaos for PS with both non-Markovian and singular interaction related to the parabolic-parabolic $1 d$ Keller-Segel model.

with $K(t, x)=\frac{\partial}{\partial x} g_{t}(x)$

Related works

- In [Hoeksema-Holding-Maurelli-Tse, Large deviations for singularly interacting diffusions, to appear in Annals IHP]: LDP for $L_{t}^{q}-L_{x}^{p}$ interactions. Byproduct: propagation of chaos.
- In [Jabir-Talay-T., ECP (2018)]: wellposedness and propagation of chaos for PS with both non-Markovian and singular interaction related to the parabolic-parabolic $1 d$ Keller-Segel model.

$$
\frac{1}{N} \sum_{j=1}^{N} b\left(t, X_{t}^{i, N}, X_{t}^{j, N}\right) \rightarrow \frac{1}{N} \sum_{j=1}^{N} \int_{0}^{t} K\left(t-s, X_{t}^{i, N}-X_{s}^{j, N}\right) d s
$$

with $K(t, x)=\frac{\partial}{\partial x} g_{t}(x)$.

Overview

Introduction

Main results

Proofs

Existence: Girsanov theorem

Start from

$$
\bar{X}_{t}^{i, N}:=X_{0}^{i, N}+W_{t}^{i}(t \leq T)
$$

and $\bar{X}:=\left(\bar{X}^{i, N}, 1 \leq i \leq N\right)$.
Denote the drift of X^{i} by $b_{t}^{2, N}(x), x \in C\left([0, T] ; \mathbb{R}^{d}\right)^{N}$, and

$$
B_{t}^{N}(x)=\left(b_{t}^{1, N}(x), \ldots, b_{t}^{N, N}(x)\right) .
$$

For a fixed $N \in \mathbb{N}$, consider

Check the following Novikov condition: For any $T>0, N \geq 1, \kappa>0$, there exists $C(T, N, \kappa)$ such that

Existence: Girsanov theorem

Start from

Denote the drift of X^{i} by $b_{t}^{i, N}(x), x \in C\left([0, T] ; \mathbb{R}^{d}\right)^{N}$, and

$$
B_{t}^{N}(x)=\left(b_{t}^{1, N}(x), \ldots, b_{t}^{N, N}(x)\right) .
$$

For a fixed $N \in \mathbb{N}$, consider

$$
Z_{T}^{N}:=\exp \left\{\int_{0}^{T} B_{t}^{N}(\bar{X}) \cdot d W_{t}-\frac{1}{2} \int_{0}^{T}\left|B_{t}^{N}(\bar{X})\right|^{2} d t\right\} .
$$

Check the following Novikov condition: For any $T>0, N \geq 1, \kappa>0$, there exists $C(T, N, \kappa)$ such that

Existence: Girsanov theorem

Start from

Denote the drift of X^{i} by $b_{t}^{i, N}(x), x \in C\left([0, T] ; \mathbb{R}^{d}\right)^{N}$, and

For a fixed $N \in \mathbb{N}$, consider

Check the following Novikov condition: For any $T>0, N \geq 1, \kappa>0$, there exists $C(T, N, \kappa)$ such that

$$
\mathbb{E}_{\mathbb{W}}\left(\exp \left\{\kappa \int_{0}^{T}\left|B_{t}^{N}(\bar{X})\right|^{2} d t\right\}\right) \leq C(T, N, \kappa) .
$$

Jensen's inequality leads to

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{W}}\left[\exp \left\{\kappa \int_{0}^{T}\left|B_{t}^{N}(\bar{X})\right|^{2} d t\right\}\right] \leq \\
& \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{j=1, j \neq i}^{N} \mathbb{E}_{\mathbb{W}}\left[\exp \left\{\kappa \boldsymbol{N} \int_{0}^{T}\left|b\left(t, \bar{X}_{t}{ }^{i}, \bar{X}_{t}{ }^{j}\right)\right|^{2} d t\right\}\right]
\end{aligned}
$$

For $i, j \leq N$ such that $j \neq i$ we can get

$$
\mathbb{E}_{\mathbb{W}}\left[\exp \left\{\boldsymbol{\kappa} \boldsymbol{N} \int_{0}^{T}\left|b\left(t, \bar{X}_{t}^{i}, \bar{X}_{t}^{j}\right)\right|^{2} d t\right\}\right] \leq C(T, \boldsymbol{N})
$$

developing the exponential and controlling for any $k \geq 1$

Iterate the integral and use the BMs and their independence.
For example, $k=1$:

$\leq C_{T}\|h\|_{L^{q}\left((0, t) ; L^{p}\left(\mathbb{R}^{d}\right)\right)}^{2}$.

Jensen's inequality leads to

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{W}}\left[\exp \left\{\kappa \int_{0}^{T}\left|B_{t}^{N}(\bar{X})\right|^{2} d t\right\}\right] \leq \\
& \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{j=1, j \neq i}^{N} \mathbb{E}_{\mathbb{W}}\left[\exp \left\{\kappa \boldsymbol{N} \int_{0}^{T}\left|b\left(t, \bar{X}_{t}{ }^{i}, \bar{X}_{t}{ }^{j}\right)\right|^{2} d t\right\}\right]
\end{aligned}
$$

For $i, j \leq N$ such that $j \neq i$ we can get

$$
\mathbb{E}_{\mathbb{W}}\left[\exp \left\{\boldsymbol{\kappa} \boldsymbol{N} \int_{0}^{T}\left|b\left(t, \bar{X}_{t}^{i}, \bar{X}_{t}^{j}\right)\right|^{2} d t\right\}\right] \leq C(T, \boldsymbol{N})
$$

developing the exponential and controlling for any $k \geq 1$

$$
\frac{(\kappa N)^{k}}{k!} \mathbb{E}_{\mathbb{W}}\left(\int_{0}^{T}\left|b\left(t, \bar{X}_{t}^{i}, \bar{X}_{t}^{j}\right)\right|^{2} d t\right)^{k}
$$

Iterate the integral and use the BMs and their independence.
For example, $k=1$:

Jensen's inequality leads to

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{W}}\left[\exp \left\{\kappa \int_{0}^{T}\left|B_{t}^{N}(\bar{X})\right|^{2} d t\right\}\right] \leq \\
& \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{j=1, j \neq i}^{N} \mathbb{E}_{\mathbb{W}}\left[\exp \left\{\kappa \boldsymbol{N} \int_{0}^{T}\left|b\left(t, \bar{X}_{t}{ }^{i}, \bar{X}_{t}{ }^{j}\right)\right|^{2} d t\right\}\right]
\end{aligned}
$$

For $i, j \leq N$ such that $j \neq i$ we can get

$$
\mathbb{E}_{\mathbb{W}}\left[\exp \left\{\boldsymbol{\kappa} \boldsymbol{N} \int_{0}^{T}\left|b\left(t, \bar{X}_{t}{ }^{i}, \bar{X}_{t}{ }^{j}\right)\right|^{2} d t\right\}\right] \leq C(T, \boldsymbol{N})
$$

developing the exponential and controlling for any $k \geq 1$

$$
\frac{(\kappa N)^{k}}{k!} \mathbb{E}_{\mathbb{W}}\left(\int_{0}^{T}\left|b\left(t, \bar{X}_{t}^{i}, \bar{X}_{t}^{j}\right)\right|^{2} d t\right)^{k} .
$$

Iterate the integral and use the BMs and their independence.
For example, $k=1$:

$$
\begin{aligned}
\mathbb{E}_{W}\left(\int_{0}^{T}\left|b\left(t, \bar{X}_{t}{ }^{i}, \bar{X}_{t}^{j}\right)\right|^{2} d t\right) & \leq \mathbb{E}_{\bar{X}^{j}} \int_{0}^{T} \int h_{t}^{2}\left(x-\bar{X}_{t}^{j}\right) g_{t}(x) d x d t \\
& \leq C_{T}\|h\|_{L^{q}\left((0, t) ; L^{p}\left(\mathbb{R}^{d}\right)\right)}^{2} .
\end{aligned}
$$

Partial transforms

Above transforms are not useful for proving tightness of the empirical measure as for any $\alpha \in \mathbb{R}$

$$
\mathbb{E}\left(Z_{T}^{N}\right)^{\alpha} \leq C(T, N, \alpha) \text { and } C(T, N, \alpha) \rightarrow \infty, N \rightarrow \infty .
$$

For example, for $m \geq 1$

$$
\mathbb{E}_{\mathbb{Q}^{N}}\left|X_{t}^{1}-X_{s}^{1}\right|^{2 m}=\mathbb{E}_{\mathbb{W}}\left[Z_{T}^{N}\left|X_{t}^{1}-X_{s}^{1}\right|^{2 m}\right] \leq C \underbrace{\left(\mathbb{E}_{\mathbb{W}}\left[\left(Z_{T}^{N}\right)^{2}\right]\right)^{1 / 2}}_{\rightarrow \infty, \text { as } N \rightarrow \infty}(t-s)^{m} .
$$

A way out: Partial transforms! Fix $1 \leq r_{0}<N$ and control the exponential martingale between (PS) and

Partial transforms

Above transforms are not useful for proving tightness of the empirical measure as for any $\alpha \in \mathbb{R}$

$$
\mathbb{E}\left(Z_{T}^{N}\right)^{\alpha} \leq C(T, N, \alpha) \text { and } C(T, N, \alpha) \rightarrow \infty, N \rightarrow \infty .
$$

For example, for $m \geq 1$

$$
\mathbb{E}_{\mathbb{Q}^{N}}\left|X_{t}^{1}-X_{s}^{1}\right|^{2 m}=\mathbb{E}_{\mathbb{W}}\left[Z_{T}^{N}\left|X_{t}^{1}-X_{s}^{1}\right|^{2 m}\right] \leq C \underbrace{\left(\mathbb{E}_{\mathbb{W}}\left[\left(Z_{T}^{N}\right)^{2}\right]\right)^{1 / 2}}_{\rightarrow \infty, \text { as } N \rightarrow \infty}(t-s)^{m} .
$$

A way out: Partial transforms! Fix $1 \leq r_{0}<N$ and control the exponential martingale between (PS) and

$$
\left\{\begin{array}{l}
d \widehat{X}_{t}^{l, N}=d W_{t}^{l}, \quad 1 \leq l \leq r_{0}, \\
d \widehat{X}_{t}^{i, N}=\left\{\frac{1}{N} \sum_{j=r_{0}+1}^{N} b\left(t, \widehat{X}_{t}^{i, N}, \widehat{X}_{t}^{j, N}\right)\right\} d t+d W_{t}^{i}, \quad r_{0}+1 \leq i \leq N, \\
\widehat{X}_{0}^{i, N} \text { i.i.d. and independent of }(W):=\left(W^{i}, 1 \leq i \leq N\right) .
\end{array}\right.
$$

Partial transforms

Above transforms are not useful for proving tightness of the empirical measure as for any $\alpha \in \mathbb{R}$

$$
\mathbb{E}\left(Z_{T}^{N}\right)^{\alpha} \leq C(T, N, \alpha) \text { and } C(T, N, \alpha) \rightarrow \infty, N \rightarrow \infty .
$$

For example, for $m \geq 1$

$$
\mathbb{E}_{\mathbb{Q}^{N}}\left|X_{t}^{1}-X_{s}^{1}\right|^{2 m}=\mathbb{E}_{\mathbb{W}}\left[Z_{T}^{N}\left|X_{t}^{1}-X_{s}^{1}\right|^{2 m}\right] \leq C \underbrace{\left(\mathbb{E}_{\mathbb{W}}\left[\left(Z_{T}^{N}\right)^{2}\right]\right)^{1 / 2}}_{\rightarrow \infty, \text { as } N \rightarrow \infty}(t-s)^{m} .
$$

A way out: Partial transforms! Fix $1 \leq r_{0}<N$ and control the exponential martingale between (PS) and

$$
\begin{aligned}
& \left\{\begin{array}{l}
d \widehat{X}_{t}^{l, N}=d W_{t}^{l}, \quad 1 \leq l \leq r_{0}, \\
d \widehat{X}_{t}^{i, N}=\left\{\frac{1}{N} \sum_{j=r_{0}+1}^{N} b\left(t, \widehat{X}_{t}^{i, N}, \widehat{X}_{t}^{j, N}\right)\right\} d t+d W_{t}^{i}, \quad r_{0}+1 \leq i \leq N, \\
\widehat{X}_{0}^{i, N} \text { i.i.d. and independent of }(W):=\left(W^{i}, 1 \leq i \leq N\right) .
\end{array}\right. \\
& \left(\widehat{X}^{l, N}, 1 \leq l \leq r_{0}\right) \text { are BM independent of }\left(\widehat{X}^{i, N}, r_{0}+1 \leq i \leq N\right)
\end{aligned}
$$

For $x \in C\left([0, T] ; \mathbb{R}^{d}\right)^{N}$ the change of drift is given by
$\beta_{t}^{\left(r_{0}\right)}(x):=\left(b_{t}^{1, N}(x), \ldots, b_{t}^{r_{0}, N}(x), \frac{1}{N} \sum_{i=1}^{r_{0}} b\left(t, x_{t}^{r_{0}+1}, x_{t}^{i}\right), \ldots, \frac{1}{N} \sum_{i=1}^{r_{0}} b\left(t, x_{t}^{N}, x_{t}^{i}\right)\right)$.
and denote the corresponding space by $\mathbb{Q}^{r_{0}, N}$.

For $x \in C\left([0, T] ; \mathbb{R}^{d}\right)^{N}$ the change of drift is given by

$$
\beta_{t}^{\left(r_{0}\right)}(x):=\left(b_{t}^{1, N}(x), \ldots, b_{t}^{r_{0}, N}(x), \frac{1}{N} \sum_{i=1}^{r_{0}} b\left(t, x_{t}^{r_{0}+1}, x_{t}^{i}\right), \ldots, \frac{1}{N} \sum_{i=1}^{r_{0}} b\left(t, x_{t}^{N}, x_{t}^{i}\right)\right) .
$$

and denote the corresponding space by $\mathbb{Q}^{r_{0}, N}$.

Proposition

For any $\gamma>0$ and $1 \leq r_{0}<N$ there exists $N_{0} \geq r_{0}$ and $C\left(T, \gamma, r_{0}\right)$ s.t.

$$
\forall N \geq N_{0}, \quad \mathbb{E}_{\mathbb{Q}^{r_{0}}, N} \exp \left\{\gamma \int_{0}^{T}\left|\beta_{t}^{\left(r_{0}\right)}(\widehat{X})\right|^{2} d t\right\} \leq C\left(T, \gamma, r_{0}\right)
$$

For $x \in C\left([0, T] ; \mathbb{R}^{d}\right)^{N}$ the change of drift is given by

$$
\beta_{t}^{\left(r_{0}\right)}(x):=\left(b_{t}^{1, N}(x), \ldots, b_{t}^{r_{0}, N}(x), \frac{1}{N} \sum_{i=1}^{r_{0}} b\left(t, x_{t}^{r_{0}+1}, x_{t}^{i}\right), \ldots, \frac{1}{N} \sum_{i=1}^{r_{0}} b\left(t, x_{t}^{N}, x_{t}^{i}\right)\right) .
$$

and denote the corresponding space by $\mathbb{Q}^{r_{0}, N}$.

$$
\begin{aligned}
\left|\beta_{t}^{\left(r_{0}\right)}(x)\right|^{2} & =\sum_{i=1}^{r_{0}}\left(\frac{1}{N} \sum_{j=1}^{N} b\left(t, x_{t}^{i}, x_{t}^{j}\right)\right)^{2}+\frac{1}{N^{2}} \sum_{j=1}^{N-r_{0}}\left(\sum_{i=1}^{r_{0}} b\left(t, x_{t}^{r_{0}+j}, x_{t}^{i}\right)\right)^{2} \\
& \leq \frac{1}{N} \sum_{i=1}^{r_{0}} \sum_{j=1}^{N}\left|b\left(t, x_{t}^{i}, x_{t}^{j}\right)\right|^{2}+\frac{r_{0}}{N^{2}} \sum_{j=1}^{N-r_{0}} \sum_{i=1}^{r_{0}}\left|b\left(t, x_{t}^{r_{0}+j}, x_{t}^{i}\right)\right|^{2}
\end{aligned}
$$

Cauchy Schwarz, multiple Holder and $\frac{N-r_{0}}{N}<1$, lead to

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{Q}^{r_{0}, N}} \exp \left\{\gamma \int_{0}^{T}\left|\beta_{t}^{\left(r_{0}\right)}(\widehat{X})\right|^{2} d t\right\} \\
& \leq\left(\mathbb{E}_{\mathbb{Q}^{r_{0}}, N} \exp \left\{\sum_{i=1}^{r_{0}} \frac{2 \gamma}{N} \sum_{j=1}^{N} \int_{0}^{T}\left|b\left(t, \widehat{X}_{t}^{i}, \widehat{X}_{t}^{j}\right)\right|^{2} d t\right\}\right)^{1 / 2} \\
& \times\left(\mathbb{E}_{\mathbb{Q}^{r_{0}, N}} \exp \left\{\frac{2 \gamma r_{0}}{N^{2}} \sum_{j=1}^{N-r_{0}} \sum_{i=1}^{r_{0}} \int_{0}^{T}\left|b\left(t, \widehat{X}_{t}^{r_{0}+j}, \widehat{X}_{t}^{i}\right)\right|^{2} d t\right\}\right)^{1 / 2} \\
& \leq\left(\prod_{i=1}^{r_{0}} \frac{1}{N} \sum_{j=1}^{N} \mathbb{E} \exp \left\{2 \gamma r_{0} \int_{0}^{T}\left|b\left(t, \widehat{X}_{t}^{i}, \widehat{X}_{t}^{j}\right)\right|^{2} d t\right\}\right)^{\frac{1}{2 r_{0}}} \\
& \times\left(\prod_{j=1}^{N-r_{0}} \frac{1}{r_{0}} \sum_{i=1}^{r_{0}} \mathbb{E} \exp \left\{\left.\frac{2 \gamma r_{0}^{2}}{N} \int_{0}^{T} \right\rvert\, b\left(t, \widehat{X}_{t}^{r_{0}+j}, \widehat{X}_{t}^{i}\right) d t\right\}\right)^{\frac{1}{2\left(N-r_{0}\right)}} .
\end{aligned}
$$

Cauchy Schwarz, multiple Holder and $\frac{N-r_{0}}{N}<1$, lead to

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{Q}^{r_{0}}, N} \exp \left\{\gamma \int_{0}^{T}\left|\beta_{t}^{\left(r_{0}\right)}(\widehat{X})\right|^{2} d t\right\} \\
& \leq\left(\mathbb{E}_{\mathbb{Q}^{r_{0}}, N} \exp \left\{\sum_{i=1}^{r_{0}} \frac{2 \gamma}{N} \sum_{j=1}^{N} \int_{0}^{T}\left|b\left(t, \widehat{X}_{t}^{i}, \widehat{X}_{t}^{j}\right)\right|^{2} d t\right\}\right)^{1 / 2} \\
& \times\left(\mathbb{E}_{\mathbb{Q}^{r_{0}}, N} \exp \left\{\frac{2 \gamma r_{0}}{N^{2}} \sum_{j=1}^{N-r_{0}} \sum_{i=1}^{r_{0}} \int_{0}^{T}\left|b\left(t, \widehat{X}_{t}^{r_{0}+j}, \widehat{X}_{t}^{i}\right)\right|^{2} d t\right\}\right)^{1 / 2} \\
& \leq\left(\prod_{i=1}^{r_{0}} \frac{1}{N} \sum_{j=1}^{N} \mathbb{E} \exp \left\{2 \gamma r_{0} \int_{0}^{T}\left|b\left(t, \widehat{X}_{t}^{i}, \widehat{X}_{t}^{j}\right)\right|^{2} d t\right\}\right)^{\frac{1}{2 r_{0}}} \\
& \times\left(\prod_{j=1}^{N-r_{0}} \frac{1}{r_{0}} \sum_{i=1}^{r_{0}} \mathbb{E} \exp \left\{\left.\frac{2 \gamma r_{0}^{2}}{N} \int_{0}^{T} \right\rvert\, b\left(t, \widehat{X}_{t}^{r_{0}+j}, \widehat{X}_{t}^{i}\right) d t\right\}\right)^{\frac{1}{2\left(N^{\left.-r_{0}\right)}\right.}}
\end{aligned}
$$

As above you have b evaluated in a BM and an independent process, so you control the expectation. Advantage: no N in the exponential.

Some concluding remarks

- For tightness $r_{0}=1$, for passage to the limit $r_{0}=1,2,3,4$.
- To get (MP)-(ii) we also use the partial transforms. Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ and fix $r>1$. Let $\alpha \in\left(1, r^{\prime}\right)$ where r^{\prime} is the conjugate of r.

All in all

- $L^{p}-L^{q}$ is a general formulation which is a limit for Girsanov to work.
- It works for singular convolution kernels of order $\frac{1}{|x|^{\beta}}, \beta<1$.
- Question: Is time integration beneficial $\int_{0}^{t} K\left(X_{t}^{1}-X_{s}^{2}\right) d s$?

Some concluding remarks

\Rightarrow For tightness $r_{0}=1$, for passage to the limit $r_{0}=1,2,3,4$.

- To get (MP)-(ii) we also use the partial transforms.

Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ and fix $r>1$. Let $\alpha \in\left(1, r^{\prime}\right)$ where r^{\prime} is the conjugate of r.

$$
\begin{aligned}
& <\nu_{t}^{1}, \varphi>=\lim _{N \rightarrow \infty} \mathbb{E}_{\mathbb{Q}^{N}}<\mu_{t}^{N}, \varphi>=\lim _{N \rightarrow \infty} \mathbb{E}_{\mathbb{Q}^{N}}\left(\varphi\left(X_{t}^{1, N}\right)\right) \\
& =\lim _{N \rightarrow \infty} \mathbb{E}_{\mathbb{Q}^{1, N}}\left(Z_{T}^{(1)} \varphi\left(W_{t}^{1, N}\right)\right) \leq C\left(\mathbb{E}_{\mathbb{Q}^{1, N}}\left(Z_{T}^{(1)}\right)^{\alpha^{\prime}}\right)^{\frac{1}{\alpha^{\prime}}}\left(\mathbb{E}_{\mathbb{Q}^{1, N}}\left(\varphi\left(X_{t}^{1, N}\right)\right)^{\alpha}\right)^{\frac{1}{\alpha}} \\
& \leq C\|\varphi\|_{L^{r^{\prime}}\left(\mathbb{R}^{d}\right)}\left\|g_{t}\right\|_{L^{\left(r^{\prime} / \alpha\right)^{\prime}}}^{\frac{1}{\alpha}} \leq C\|\varphi\|_{L^{r^{\prime}}\left(\mathbb{R}^{d}\right)} \frac{1}{t^{\frac{d}{2} \frac{1}{r^{\prime}}}}
\end{aligned}
$$

$>L^{p}-L^{q}$ is a general formulation which is a limit for Girsanov to work.
$>$ It works for singular convolution kernels of order $\frac{1}{|x|^{\beta}}, \beta<1$.

- Question: Is time integration beneficial $\int_{0}^{t} K\left(X_{t}^{1}-X_{s}^{2}\right) d s$?

Some concluding remarks

\rightarrow For tightness $r_{0}=1$, for passage to the limit $r_{0}=1,2,3,4$.

- To get (MP)-(ii) we also use the partial transforms. Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ and fix $r>1$. Let $\alpha \in\left(1, r^{\prime}\right)$ where r^{\prime} is the conjugate of r $\left.\left\langle\nu_{t}^{1}, \varphi\right\rangle=\lim _{N \rightarrow \infty} \mathbb{E}_{Q^{N}}<\mu_{t}^{N}, \varphi\right\rangle=\lim _{N \rightarrow \infty} \mathbb{E}_{Q^{N}}\left(\varphi\left(X_{t}^{1, N}\right)\right)$

All in all

- $L^{p}-L^{q}$ is a general formulation which is a limit for Girsanov to work.
- It works for singular convolution kernels of order $\frac{1}{|x|^{\beta}}, \beta<1$.
- Question: Is time integration beneficial $\int_{0}^{t} K\left(X_{t}^{1}-X_{s}^{2}\right) d s$?

