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Overview

Introduction



Propagation of chaos

- Consider the following particle system (PS) in R?

{ ax;™N = LN o, XN XYY dt+dwi, 6> 0,i <N O

XN ii.d. and independent of W := (Wi, 1 <i < N),

where b : RT x R? x R? — R4 a Borel measurable function.
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Propagation of chaos

- Consider the following particle system (PS) in R?

dxpN = L5 b, XpN XPNY dt+dWE, 6> 0,i <N )
XN ii.d. and independent of W := (W% 1 <i < N),
where b : RT x R? x R? — R4 a Borel measurable function.
- When b is "nice": pN = % Zf\;l §X7, converges, as N — oo, towards
the law of the non-linear stochastic process given by
dXt = fb(ta Xtvy)pt(y) dy dt + tha t> Oa (2)
pe(y)dy := L(Xy), KXo ~ po(x)da.

Of course, (u¥)¢>0 converges to the corresponding Fokker Planck PDE.
Long history in the literature (from Kac, McKean to today...)
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Singular interactions: Physical examples

Probabilistic approach to singular non-linear FP equations such as:
» Boltzmann, Burgers, Navier-Stokes, Keller-Segel equations, ...
studied by many authors:

» Bossy, Calderoni, Fournier, Graham, Guérin, Hauray, Jabir, Jourdain,
Méléard, Osada, Pulvirenti, Roelly, Sznitman, Talay, ...
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Singular interactions: Physical examples

Probabilistic approach to singular non-linear FP equations such as:
» Boltzmann, Burgers, Navier-Stokes, Keller-Segel equations, ...
studied by many authors:

» Bossy, Calderoni, Fournier, Graham, Guérin, Hauray, Jabir, Jourdain,
Méléard, Osada, Pulvirenti, Roelly, Sznitman, Talay, ...

First main challenge: singular nature of coefficients — wellposedness
of the PS, NLSDE and the propagation of chaos?
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Our motivations: Krylov-Rockner condition

In [K-R, PTRF 05] the following linear SDEs are studied (among other)
t
Xi==x —|—/0 b(r,x,)dr +dWy, t >0,
where 2 € R? and b satisfies for any t > 0
K d 2
/O b0 oy dr < o0 with 542 < Lp 2,052

Strong well posedness is obtained. (General condition, not necessarily
Lipschitz continuos coefficient, can be singular..)
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...for NLSDEs

Then, [Rockner-Zhang, Bernoulli 21] proved strong well posedness of the
NLSDE

{ dXt = fb(ta Xtay)pt(y) dy dt + tha t> Oa (3)

pe(y)dy == L(Xy), Xo ~ po(z)dz,
under the following assumption:
Assumption

For z,y € R% and t > 0, one has |b(t,z,y)| < hi(z —y) for some
h € Li, (Ry; LP(RY)), where p,q € (2,00) satisfy & +2 < 1.

loc

and supposing [ |z|#po(dz) < oo for some 3 > 2.
(can also be localised L? in space: no need for integrability at infinity.)

6/19



...for NLSDEs

Then, [Rockner-Zhang, Bernoulli 21] proved strong well posedness of the
NLSDE

{ dXt = fb(ta Xtay)pt(y) dy dt + tha t> Oa (3)

pe(y)dy == L(Xy), Xo ~ po(z)dz,
under the following assumption:
Assumption

For z,y € R% and t > 0, one has |b(t,z,y)| < hi(z —y) for some
h € Li, (Ry; LP(RY)), where p,q € (2,00) satisfy & +2 < 1.

loc

and supposing [ |z|#po(dz) < oo for some 3 > 2.
(can also be localised L? in space: no need for integrability at infinity.)

Our goal: Prove well-posedness and propagation of chaos for the
corresponding PS.
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Overview

Main results



Main result |

Define for t > 0
No(t) = {(:c,y) eRYxRY:  lim |b(t,2’,y')| = oo
(z",y") = (z,y)

or lim  |b(t,z',y")| does not exist}.
(@ y") = (2,y)

As |b(t,z,y)| < hi(z —y) and hy € LP(R?), the set N (t) is of
Lebesgue’'s measure zero in R% x R9.
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Main result |

Define for t > 0
No(t) = {(x,y) eRYxR?:  lim  |b(t,2,y)| = oo
(z",y") = (z,y)

or lim  |b(t,z',y")| does not exist}.
(@ y") = (2,y)

As |b(t,z,y)| < hi(z —y) and hy € LP(R?), the set N (t) is of
Lebesgue’'s measure zero in R% x R9.

PS now reads:

i\N _ 1 N N 33N i

AX{ = 3 S bl XEY XEVL i g oy VAW,
XN iid. and independent of W := (W1 <i < N).

(4)

No self interaction, no interaction when N () is visited.
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Theorem ([T, ECP 23))

Let Assumption 1 hold. Given 0 < T < oo and N € N, there exists a
weak solution (Q, F,(Fy; 0 <t <T),QN, W, XN) to the N-interacting
particle system (4) that satisfies, for any 1 <i < N,

T (4 N :
N N 35, N ' )
Q /0 w E b(t, X, ", X )]].{(XZ,NYXZ,N)ng(t)} dt < oo

j=1,#i

=1.

V.

Uniqueness in law holds in the class of solutions satisfying above equality.
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Theorem ([T, ECP 23))

Let Assumption 1 hold. Given 0 < T < oo and N € N, there exists a
weak solution (Q, F,(Fy; 0 <t <T),QN, W, XN) to the N-interacting
particle system (4) that satisfies, for any 1 <i < N,

T 1 N 2
N i, N 7, N ) .
Q /0 N E b(t,Xt , X )]]'{(XZ”NYX'Z'N)¢Nb(t)} dt < oo

j=1,#i

=1.

V.

Uniqueness in law holds in the class of solutions satisfying above equality.

Girsanov transform — Lebesgue measure of the set i # j,
{t >0, (XN, X7N) € Ny(t)} will thus be a.s. zero. Hence, the
dynamics (1) and (4) are essentially the same.
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Martingale problem

Q € P(C[0,T);R?) is a solution to (MP) if:
(i) Qo = po;
(ii) For any t € (0,T] and any r > 1, the one dimensional time

marginal Q; of Q has a density p; w.r.t. Lebesgue measure on R¢
which belongs to L"(R?) and satisfies

C
Cr, YVO<t<T, |pellor@e) < i
t2(1=3)

(iii) Denoting by (x(t); t < TC) the canonical process of C([0,T];RY), we
have: For any f € CZ(R?), the process defined by

My = [(x(t) — [((0)) - / 0+ ([ bls. 5100001y
+ Af(a(s )))

is a Q-martingale w.r.t. the canonical filtration.
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Martingale problem
Q € P(C[0,T);RY) is a solution to (MP) if:

(ii) For any t € (0,T] and any r > 1, the one dimensional time
marginal Q; of Q has a density p; w.r.t. Lebesgue measure on R¢
which belongs to L"(R?) and satisfies

Cr

ACr, VO<t<T, Hpt”Lr(Rd) < 4 e
t2(1_7~)
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Remark
1. Under Assumption 1 + [ |z|Ppo(dx) < oo for some 3 > 2, (MP)
admits a unique solution according to Thm. 1.1 [Rockner-Zhang, 21].
2. Marginal densities satisfy some Gaussian estimates punctually. In
our (MP), L"-estimates + Assumption 1 — all the terms in (M) are
well defined. )
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| [ vt [ otsatopatidis| < e [ [ 1206) - vpewavas)
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Remark
1. Under Assumption 1 + [ |z|Ppo(dx) < oo for some 3 > 2, (MP)
admits a unique solution according to Thm. 1.1 [Rockner-Zhang, 21].
2. Marginal densities satisfy some Gaussian estimates punctually. In
our (MP), L"-estimates + Assumption 1 — all the terms in (M) are
well defined. )

| [ vt [ otsatopatidis| < e [ [ 1206) - vpewavas)

t _ dg 1/2-1/q
<crellhllLago,e)Le@ay) (/0 s p(q—2>ds>

Finite if d/p+2/q < 1.
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Main result Il

Theorem ([T, ECP 23))

In addition to Assumption 1, assume that for any t > 0, b(t, -, -) is
continuous outside of the set N, (t). Assume that the Xé"N 's are i.i.d.
and that the initial distribution ofXé’N is the measure o that for some
B > 2 has finite B-order moment .

Then, the empirical measure of (4) converges in the weak sense,
when N — oo, to the unique weak solution of (3).
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Main result Il

Theorem ([T, ECP 23))

In addition to Assumption 1, assume that for any t > 0, b(t,-,-) is
continuous outside of the set N, (t). Assume that the Xé"N 's are i.i.d.
and that the initial distribution ofXé’N is the measure o that for some
B > 2 has finite B-order moment .

Then, the empirical measure of (4) converges in the weak sense,
when N — oo, to the unique weak solution of (3).

In practice, interaction kernels are convolutions well defined and
continuos almost everywhere (like :tﬁ) Hence, it is not

unreasonable to assume that b(¢, -, -) is continuous outside of A} (1).
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Alternative hypothesis

Local integrability and boundedness at infinity

helL?

loc

d 2
(RﬂL;Lfoc(Rd))a D, q € (2a OO) : 5 +6 <1

and the function H(T) := fOT SUD| 51 |7 (@) [*dt is an increasing
function from R, to R,.
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Alternative hypothesis

Local integrability and boundedness at infinity

helL?

loc

d 2
(RﬂL;Lfoc(Rd))a D, q € (2a OO) : 5 +6 <1

and the function H(T) := fOT SUD| 51 |7 (@) [*dt is an increasing
function from R, to R,.

Typical example for d = 2

at(xvy)
|z —y[*

be(z,y) =

) |at(xvy)| SK"’Iiyh 046[1,2)7I£>0.
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Alternative hypothesis

Local integrability and boundedness at infinity

d 2
he Ll Ry LE (RY), pge€(2,0): ’ + p <1

and the function H(T) := fOT SUD| 51 |7 (@) [*dt is an increasing
function from R, to R,.

Typical example for d = 2

at(xvy)
|z —y[*

be(z,y) =

) ‘at(gjvy” SK"’Iiyh 046[1,2)7I£>0.

Can't work for Keller-Segel or Navier-Stokes in R?: iﬁ
(Normal: does not exploit sign for NS; particles collide more than BMs

for KS.)
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Related works

» In [Hoeksema-Holding-Maurelli-Tse, Large deviations for singularly interacting
diffusions, to appear in Annals IHP]: LDP for Lg — LP? interactions.
Byproduct: propagation of chaos.
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Related works

» In [Hoeksema-Holding-Maurelli-Tse, Large deviations for singularly interacting
diffusions, to appear in Annals IHP]: LDP for Lg — LP? interactions.
Byproduct: propagation of chaos.

» In [Jabir-Talay-T., ECP (2018)]: wellposedness and propagation of chaos
for PS with both non-Markovian and singular interaction related to
the parabolic-parabolic 1d Keller-Segel model.

N N t

1 . ) 1 . )

v § b(t, XN, XN v § / K(t—s, XN — XN ds,
j=1"0

Jj=1

with K(t,z) = Zgi(z).
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Overview

Proofs



Existence: Girsanov theorem

Start from B ‘ ‘
XN = XN Wi (< T)

and X := (X*N 1<i < N).
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Existence: Girsanov theorem

Denote the drift of X by b2 (2), € C([0,T); R4)Y, and
B (@) = (b (@), by " ().

For a fixed N € N, consider

ZTJY::eXp{/O BN(X)- th—2/T\B,§V(X)|2dt}.
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Existence: Girsanov theorem

Check the following Novikov condition: For any T'> 0, N > 1, k > 0,
there exists C(T, N, k) such that

Ew <exp {KJ/OT |Bi7v()_()|2dt}> < C(T,N,K).
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Jensen’s inequality leads to

T _ 2
Ew [exp{fe/ ‘BtN(X)‘ dtHg
0
11 Y T Do
i N E N b(t, X", X2)|Pde b .
N;sz%iw[exp{n e xp ]

For i, < N such that j # i we can get

T S
Ew [exp {K,N/ |b(t,X/,Xﬂ)|thH < C(T,N)
0
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Jensen’s inequality leads to

T _ 2
Ew [exp{fe/ ‘BtN(X)‘ dtHg
0
11 Y T Do
i N E N b(t, X", X2)|Pde b .
N;sz%iw[exp{n e xp ]

For i, < N such that j # i we can get
T o
Ew [exp {K,N/ |b(t,X/,Xﬂ)|thH < C(T, N)
0
developing the exponential and controlling for any k£ > 1

Nk T R k
(’ik') Evy (/ |b(t7XtZ,XtJ)|2dt) :
! 0

Iterate the integral and use the BMs and their independence.
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Jensen’s inequality leads to

T _ 2
Ew [exp{fe/ ‘BtN(X)‘ dtHg
0
11 Y T Do
i N E N b(t, X", X2)|Pde b .
N;sz%iw[exp{n e xp ]

For i, < N such that j # i we can get
T o
Ew [exp {K,N/ |b(t,X/,Xﬂ)|thH < C(T, N)
0
developing the exponential and controlling for any k£ > 1

Nk T R k
(’ik') Evy (/ |b(t7XtZ,XtJ)|2dt) :
! 0

Iterate the integral and use the BMs and their independence.

For example, k = 1:

T L T .
Ew (/ |b(t,X’tl,XtJ)|2dt) gJEXj/ /hf(x—xtf)gt(x)dxdt
0 0
< CrlIhlLa (0,670 )
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Partial transforms

Above transforms are not useful for proving tightness of the empirical
measure as for any o € R

E(Z¥)* < C(T,N,a) and C(T, N, a) — 0o, N — cc.
For example, for m > 1

Eqv| X} — X; ™ = Ew[Z7| X} — X; 7] < O (Ewl(Z2)*)'/(t — )™
—_— ——

—00,as N—o0
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Partial transforms

Above transforms are not useful for proving tightness of the empirical
measure as for any o € R

E(Z¥)* < C(T,N,a) and C(T, N,a) — oo, N — oo.
For example, for m > 1
Eqn | X} — X}|*™ = Ew([Z7 | X} — X}1P™) < C (Bw([(Z7 )"/t —s)™.
—_—
—00,as N—o0

A way out: Partial transforms! Fix 1 < rq < N and control the
exponential martingale between (PS) and

dXN = awl, 1<1<r,
dXPN = {% >N b(t,)?Z’N,)?tj’N)} dt +dWi, ro+1<i<N,
XN iid. and independent of (W) := (Wi 1< i< N).
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Partial transforms

Above transforms are not useful for proving tightness of the empirical
measure as for any o € R

E(Z¥)* < C(T,N,a) and C(T, N,a) — oo, N — oo.
For example, for m > 1
Eqn | X} — X}|*™ = Ew([Z7 | X} — X}1P™) < C (Bw([(Z7 )"/t —s)™.
—_—
—00,as N—o0

A way out: Partial transforms! Fix 1 < rq < N and control the
exponential martingale between (PS) and
AXPN =awl, 1< <,
AR = {% Yo b(t,)?Z’N,)?tj’N)} dt +dWi, ro+1<i<N,
XN iid. and independent of (W) := (Wi 1< i< N).

()A(Z’N, 1 <1< rpy) are BM independent of (Xi’N,ro +1<i<N)
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For z € C([0,T);R%)" the change of drift is given by
t(m)(:c) = (b%’N(z),.. by ( Zb (t, x0Tz, Zb (t, Y,z )

and denote the corresponding space by Qv
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For z € C([0,T);R%)" the change of drift is given by
(r0) () = (b%’N(x),.. by ( Zb (t, x0Tz, Zb (AN )

and denote the corresponding space by Qv

Proposition
Foranyy >0 and 1 < ry < N there exists Ng > ro and C(T,~,7¢) s.t.

T
VN > No, Egro.n exp {7/ |5§*0>(X>|2dt} < C(T,7,70).
0
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For z € C([0,T);R%)" the change of drift is given by

70

1 )
t(m)(:c) = (b%’N(x), o Zb (x0T 2l N Zb(t, xiv,:cff))
=1

and denote the corresponding space by Qv

0 1 N ) ) 2 1 N—rqg 0 ) ) 2

B @P =30 | 5 bt | +am D <Zb<tv$?0“’”””>
i=1 Jj=1 j= i=1
1 ro N ) N—rg 79 " -
= > lb(t, 2,27 t Nz > It ot ).
i=1j5=1 j=1 i=1
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Cauchy Schwarz, multiple Holder and N;/"O <1, lead to

S e

0 N T o 1/2
< (IEQTU,N exp{;%;/o \b(t,X;xg)Pdt})

70 To

x (EQTO,N exp{2’ym Z Z/ b(t, X[ K9] dt})

=1 i=1

. ( N%Eexp {wo /OT |b(1t,)?;‘,)?Z)th})ﬁ
(

0

T o sl
]Eexp{%%/ \b(t,X{Oﬂ,Xf)dt})’z(N 0)
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Cauchy Schwarz, multiple Holder and N;/"O <1, lead to

S e

< (IEQT(,,N exp { ;ZO 2% g/OT b, 25,)?{)\20115})1/2
. 29ro / AT +., i 1/2
Comeon 55 )
< (ﬁ;jﬁlﬂﬂexp {Q'yro /DT |b(t, )?2'7_)’5{”2(#})%

71 2m8 [T Sroti wiy L) TSR0
T — T
><< || E ]Eexp{T/O |b(t, X[° ],Xf)dt}) 0)
i —

As above you have b evaluated in a BM and an independent process,

so you control the expectation. Advantage: no N in the exponential.
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Some concluding remarks

» For tightness o = 1, for passage to the limit ro = 1,2, 3,4.
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Some concluding remarks

> To get (MP)-(ii) we also use the partial transforms.
Let ¢ € C.(R?) and fix r > 1. Let « € (1,7) where 7' is the
conjugate of r.

. . 1,N
<I/tl7<p >= NIEHOOEQN <Mé\77(p>: N]erLOEQN((p(Xt ))
1
7

= lim Eqin (2070w Y) < € (Equn (Z8)) " (Eguw (p(X ™))

1
o

ES 1
< C”‘)OHLW (R4) Ilgt”z(,.//ay < C”LIOHLTI (R4) t% I

7
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Some concluding remarks

All in all

» [P — L9 is a general formulation which is a limit for Girsanov to
work.

» It works for singular convolution kernels of order ﬁ,ﬁ < 1.

> Question: Is time integration beneficial [J K (X} — X2)ds ?
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