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Introduction

Definitions

Definition (Convex order, peacock)

(a) Two R9-valued random vectors U, V € L}(IP) are ordered w.r.t. convex order,
denoted
U jCVX V

if, for every Rd — R, CONVEX, [ Lipschitz is enough (Jourdain-P. 2023) by an inf convolution argument],
Ep(U) <Ep(V) € (—o0,+o0].

(b) A stochastic process (X,)u>0 is a p.c.o.c. (for “processus croissant pour |'ordre
convexe”) if

u — X, is non-decreasing for the convex order.

@ Then EU = E V [p(x) = +x] and, if both lie in L? [p(x) = x]

Var(U) < Var(V).
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Introduction
Examples and motivation

@ If (Xt)¢>0 is a martingale, then (X;)¢>o is a p.c.o.c./peacock: let 0 < s < t,
Ep(Xs) = E (p(E(X:|X:))) < E(E(p(X:)|Xs)) = Ep(Xe).

Jensen

@ Example: Gaussian distributions (centered): Let Z ~ A(0, /;) on R? and let
A, Be M(d, q) be d x g matrices

(A=< B ie. BB*—AA* € §7(d)) = AZ <o« BZ
i.e. N(0,AA*) Zax N(0, BB*) [still true if Z is radial: Z ~ 02,V O € O(d), Jourdain-P. 2022].
@ Proof: Let Z;,Z> ~ N(0; Ig) be independent and set
X1 =AZ1, Xo =X+ (BB* — AA*)Y/2Z7,.
Then (X1, X2) is an R%-valued martingale and X; ~ N(0, BB*).
@ Scalar case d = g = 1: |o| < |9 = N(0,0?) = N(0,9?).
@ 1D-proof: ¢ : R — R convex and Z€ L}, Z L _z Then, by Jensen’s <,

u— Ep(uZ) is even, convex and attains its minimum ¢(0) at v = 0.

Hence u +— E p(uZ) is non-decreasing on R, and non-increasing on R_.
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Introduction

About the converse of “martingale = p.c.o.c.”

@ Strassen’s Theorem (1965): u <qx v <= 3 transition P(x, dy) s.
v=pP and VxeRY, /yP(X,dy):X
o Kellerer's Theorem (1972): X is a p.c.o.c <=
There exists a martingale (M;):>0 such that Xt M, t >0,
i.,e. X isa "“l-martingale”.
@ Both proofs are unfortunately non-constructive.
@ In Hirsch, Roynette, Profeta & Yor's monography, many (many...)

explicit “representations” of p.c.o.c. by true martingales.
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Introduction

A revival motivated by Finance. ..

O'Wtf

. 2t .
@ A starter! t being fixed, o+ e "2 is a p.c.0.c. since

O'Wt— o'2t i

W 2
T 2~

Vo>0, e eWore %z (— o-martingale).

oW;—

2
@ Application to Black-Scholes model 57 = spe” 2. For every

convex payoff function ¢ : Ry — R4
0<o <o = Ep(S7) <Ee(S7).

e Vanilla options: Call and Put options: ¢(S;) = (S, — K)™,
p(57) = (K= 5;)", etc.
o Path-dependent options (Asian payoffs). Let ¢ : Ry — R4 convex

o — Premium(o) = E["O('}'/Tiﬂv;—Z/dt)} !
0

- <t
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Introduction

@ P. Carr et al. (2008): Non-decreasing in o when (x) = (x — K)* (Asian
Call).

1 EN
@ M. Yor (2010): ¢ — 7/ s0e”We= dt is a p.c.o.c.
0
(Hint: Representation using a a Brownian sheet).
@ Yields bounds on the option prices of vanilla options.

@ Extensions to American options (optimal stopping, P. 2016).
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Introduction

> This suggests many other (new or not so new) questions !

Monotone (non-decreasing) convex order : 3 drif b! [Hajek, 1985].

Functional convex order I: switch from BS to local volatility models
ieoc=o0(x): c—E f( ) [see e.g. El Karoui-Jeanblanc-Schreve, 1998].

m-marginal path-dependent convex order: e.g. E f(X(T?),X-(,-Z)) if
m = 2. [see e.g.Brown, Rogers, Hobson 2001, Riischendorf et al. 2008]

“Functional” convex order II: from E f(Xg-U)) to E F(X()
path-dependent convex order [P.2016].

Bermuda options [Pham 2005, Riischendorf 2008], American options [P. 2016].

Jump (risky asset) dynamics for (Xt(a)) ? [Riischendorf-Bergenthum 2007,
P. 2016]

P.c.o.c. trough Martingale Optimal Transport.
[Beigelbock,Henry-Labordere et al, 2013, Tan, Touzi, Henry-Labordére 2015,
Jourdain-P. 2022].
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Introduction
Aims and methods

@ Unify and generalize these results with of focus on functional aspects
(path-dependent payoffs) (like Asian options) i.e. both functional
convex order | and Il.

@ Constraint: provide a constructive method of proof

e based on time discretization of continuous time martingale dynamics
(risky assets in Finance) .

e using numerical schemes that preserve the functional convex order
satisfied by the process under consideration. ..

e e.g. to avoid “convexity arbitrages” in Finance.

© Apply the paradigm to various frameworks:
e American style options, jump diffusions, stochastic integrals,
o McKean-Vlasov diffusions, MFG [Liu-P. 2022, SPA] and [Liu-P. 2023,
AAP],
Volterra equations [Jourdain-P. 2022],
o etc.
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Martingale (and scaled) Brownian diffusions

Martingale (and scaled) Brownian diffusions

@ Pre-order < on M(d, q,R): let A, B€ My 4.
A=<B if BB*—AA*e S*(d,R).
>Ifd=qg=1,a=biff a> < b iff [a| < |b]]
@ < -Convexity: o : R — My 4 is <-convex if
Vx, y€RY, A€ [0,1], there exists Oy x, Ox,, € O(d) such that
a(Ax+ (1= A)y) 2 Ao(x)Oxx + (1 = A)a(y) O,y
i.e.
oo (Ax+(1=N)y) < (Aa(x)Orx+ (1 =A)a(y)Ory) (Ad(x)Orx + (1 = A)a(y)Oxr,y)"
> d = g =1 with O« = sign(o(x)) this simply reads

|o| convex.
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Martingale (and scaled) Brownian diffusions

Theorem (martingale case , P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

Leta, 8 € Cin, ([0, T] x R,Mg,g).
axD = o(t, X)dw, XD e p>0

dX{? = o(t, XawW'?, XD e 171 both (W')eo.71 standard B.M.
(a) 1 XS < X$P and
(Yo o(t,.): RY — My 4 is <-convex for every t€ [0, T],
or
(Yo 0O(t,.): RY — My 4 is <-convex for every t€ [0, T],

and
(i) o(t,:) 2 0(t,) for every te [0, T]

then, for every functional F : C([0, T],RY) — R, Ls.c. convex,

(i) The function x — E F(X(?)*) is convex from R? to (—o0, +oc],
(i) Convex ordering holds: EF(X@)) <EF(X®)e (—o0, +].

® By a functional inf-convolution argument, it suffices to consider || - ||sup-Lipschitz functionals.
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Martingale (and scaled) Brownian diffusions

Theorem (martingale case , P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

Leto,0€ Lip, ([0, T] x R,My4), W q-S.B.M.. Let X(©) and X®) be the unique
strong solutions to
dx(?) = o(t, X(U))th7 (@) 11 (no more n!)
dx® = o(t, x'dw,, ég)e L', (W4)eep, 7] standard B.M.
(a) 1 XS < X$P and
(Yo o(t,.) : RY — My 4 is <-convex for every t€ [0, T],
or
(Yo 0O(t,.): RY — My 4 is <-convex for every t€ [0, T],

and
(i) o(t,:) 2 0(t,-) for every te [0, T]

then, for every F : C([0, T],R?Y) — R, Ls.c. convex,

(i) The function x — E F(X(?)*) is convex from R? to (—o0, +oc],

(i) Convex ordering holds: EF(X@)) <EF(X®)e (—o0, +o].

® By a functional inf-convolution argument, it suffices to consider || - ||sup-Lipschitz functionals.
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Martingale (and scaled) Brownian diffusions

Scaled/drifted martingale diffusions (extension to)

@ The former theorems still hold true for
dX(7) = a(t) (X7 + (1)) dt + (£, X{7)d WL,
dX{ = a(t) (X + B(t)) dt + 6(t, XDy aW?),

where a(t) € My 4(R) and 3(t)€ RY are continuous.
@ Change of variable:

X = e o et9)ds () 4 ().

e Finance: spot interest rate a(t) = r(t)1 and §(t) = 0 since typical
(risk-neutral) dynamics of traded assets read
d5t = r(t)Stdt + StO'(St,LU)th

e For more general drifts b(t, x) when d = g = 1: functional version of
Hajek's theorem: monotone functional convex order holds true if

Vte [0, T], b(t,.)is convex.
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Martingale (and scaled) Brownian diffusions

Strategy (constructive)

e Time discretization (preferably) accessible to simulation: typically the
Euler scheme.

e Propagate convexity (marginal or pathwise)
@ Propagate comparison (marginal or pathwise)

@ Transfer by functional limit theorems “a la Jacod-Shiryaev”.

G. Pagés (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 13 /41



Martingale (and scaled) Brownian diffusions
Step 1: discrete time ARCH models

e ARCH dynamics: Let (Zx)1<k<n be a sequence of independent,
symmetric r.v. on (2, 4,P). Two ARCH models: Xp, Yo € L}(P),

Xir1 = Xi+ 0k(Xk) Zig1,
Yie1r = Y+ 60k(Yk) Zks1, k=0:n-1,

where gy, 0 : R — R, k =0: n— 1 have linear growth.

Proposition (Propagation result)

If o, k =0=n—1 are <-convex with linear growth,
Xo=x and Vke{0,...,n—1}, ok =<b,
then, for every convex funtion F : (R9)"*1 — R convex with linear growth

x— EF(x,X{..., X)) s convex.

v
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Martingale (and scaled) Brownian diffusions

Partial proof (marginal) with Gaussian white noise

o Z ~N(0,15), 1<k <n.
@ Let f: RY — R be a convex function. Let

P f(x) :=Ef(x+0x(x)Z) = [Ef(x + AZ)] |A=cy(x)"

Set Ac My 4 — Qf(A) :=Ef(x+ AZ) is right O(d)-invariant,
convex and =-non-decreasing by the starting example.
Then P/ f is convex since Vx, y € R? and Y A€ [0, 1]

PEf(Ax+ (1= N)y) = Qf (o (Mx + (1= A)y))
<Qf(Aak(x) + (1 = N)ok(y))
g)\Qf(ak(X)) 1—)\)Qf(ak )
= APJf(x)+ (1 = N)PIF(y).

@ Hence
x— Ef(XY) =Py f(x):=P{o---0PJf(x) is convex
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Martingale (and scaled) Brownian diffusions

Theorem (Discrete time comparison result)

Ifallox, k=0=n—1orall 0y, k=0:n—1 are <-convex with linear
growth,

Xo Z<awx Yo and Vke {0,...,[7—1}, oK = O,

then

(X0 - -+ Xn) Zewx (Yo, .., V).
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Martingale (and scaled) Brownian diffusions

Partial proof (marginal) with Gaussian white noise

@ Backward induction on k.
@ For k =n. Let f : RY — R be a (Lipschitz) convex function.
0n= 0y = PIF(x) = QF (9a(x)) < QF(00(x)) = PUF(x)
by non-decreasing <-monotony of Q.
® Assume Pl ., f < P] . f.

A€ My,q— Q(PZi1.nf)(A) is =-non-decreasing

so that Pinf(x) = PE(Piian)f(x) = Q('Dl{:—vl:nf) (Uk(x)) % Q(P,f+1:nf) (6k(x))
< Q(Pii1af) (0x(x))
= P{ f(x).
@ Hence

Ef(X]) =EP,f(X) < EPL,f(Yo) < EPL,f(Yo) = Ef(X,).
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Martingale (and scaled) Brownian diffusions

Functional approach

@ By “functional” we mean here : F(Xy,...,X,) with F: (RY)"1 = R
convex.

@ Same strategy by induction

@ But entirely backward.
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Martingale (and scaled) Brownian diffusions
Step 2 of the proof: Back to continuous time

> Euler scheme(s): Discrete time Euler scheme with step % starting at x
is an ARCH model. For X(@): for k =0,...,n—1,

KM = KO 4 o(e KO (Weg,, - W), X" = x

n
ter1

Set
Zk:Wtk_Wt;’(,,]_’ k:].,...,n

4

‘discrete time setting applies‘

Remark. Linear growth of ¢ and 6, implies

Vp>0, sup
n>1

sup | X
te[0,T]

sup ])_(t(g)’"|H + sup
t€[0,T] P n>1

< +00.
P
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Martingale (and scaled) Brownian diffusions
From discrete to continuous time

> Interpolation (n > 1)
@ Piecewise affine interpolator defined by

Vxon € R™ Vk=0,....n—1, Vte [t t,4],
) n
in(x0:n)(t) = 7((tl’<7+1 — t)xk + (t — tl’:)XkH)
o X@hn.— i (()_(t(g)m)k:o:n) = piecewise affine Euler scheme.

i P
Phen  <xx «

n (('tL)L.,,_J A~

24 Ay

LT
»

Figura: Interpolator
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Martingale (and scaled) Brownian diffusions

> Let F: C([0, T],R) — R be a convex functional (with r-poly. growth).

Yn>1, Fo: R™ 2 xg.0 — Fo(X0:n) == F (in(X0:n))-

@ Step 1 (Discrete time): F()N((")v") = Fn(()?t(;)’")k:&,, and
F convex = F,, convex, n > 1.
Discrete time result implies since o(t},.) < 6(t/,.).

EF(XI0) =B F (X mon) < E Fa (X ko) = EF(XO).

@ Step 2 (Transfer): See e.g. [Jacod-Shiryaev's book, 2™ edition,
Theorem 3.39, p.551].

X @ Alllen) x(@) 35 5 o0,

EF(X@) =lmEF(X@")  (idem for X©).
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Martingale (and scaled) Brownian diffusions

The Euler scheme provides a simulable approximation

which preserves convex order.
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. '23)

Is convexity necessary ? o(t,x) =o(x), d =1

o Note that when ¢ = o, a posteriori (ii) = (i) since
5)\x+(17)\)y =evx )\5x + (1 - >\)5y
so that, as o(:) < o(+) (sic!),
E F(XMHA=2Y) < AR F(XX) + (1 — M)E F(XY).

@ One shows [Jourdain-P '23] that (when d = 1)

\/f 7] = lim = EIX; —x| = lim —-B|X—XF| = lim —EF(X")
with F(a) = |a(t) — «(0)| an (only) 2-marginal functional convex
functional.

@ If convexity propagation for 2-marginal functional holds true then |o|
is convex !!

@ The convexity assumption on ¢ or 1) is mandatory ...except maybe
for 1-marginal convex order when d = g = 1.
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. '23)

For the 1D diffusion (after [El Karoui et al.])

o Let p(x) = Ef(X¥) with f : R — R convex with right derivative /.

@ One has

(x) = E[f(X5)ele o/ 0@)aws—3 [ (7 P0x)as]

= Eqf/(Y¥) Girsanov !

@ x — Y7 is non-decreasing (cf. [Revuz-Yor])

o Finally
¢’ x — Eq f}(X7) is non-decreasing

so that (almost ...) whatever o is
¢ x — E f(X7) is convex.

@ So 1D setting for 1-marginal functionals is special !
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. '23)

Smooth o & d = g = 1: get rid of convexity (with B.

Jourdain '22)

@ Assume o : R — Ry C?, Lipschitz (||o"]|oo < +00).
@ True Euler operator, Z ~ N (0, 1):

Pf(x) = Ef(x + vVho(x)Z).
@ Assume w.l.g. f:R? - R C? and convex
(PF)"(x) = E[f"(x + Vho(x)Z) (1 + Vho'(x)Z)’]
+ \/Ecr'(x) [ "(x + \[a(x) ) ]
E[f"(x#—ﬁa(x)Z)(l—F\[a x)Z 2]
+ hoo” (X)E[f"(x + Vho(x)Z )| Stein L.P.
- E[f"(x +Vho(x)Z) (1 + Vho'(x)Z)? + haa"(x))]

always >0V Z(w)??

o No ! But...If we truncate : Z ~» Z' = Z1lz1<a- -
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. '23)

@ ... Then, the same Stein-I.P. transform yields
(P"f)"(x)
=E [f”(x +Vho(x)Z") (1 + Vho'(x)Z")? + h(1 — e W= @)1 gy 00" (%)) ]

always >0V ZM(w)??

o YES Il If A, = A/ﬁ with A < m for h small enough, provided

1M\ —
(%) sup J(U/|) < 400 (= Ok if o convex since = 0!1)
xeR o

@ Hence truncated Euler scheme propagates convexity, — comparison, etc !

@ Truncated Euler scheme with time step h = T /n does converge (almost) “as
usual” toward the diffusion as n — oo.

@ Smoothness of o and (*) can be relaxed into o%(x) + ax? convex for some
a > 0 (semi-convexity).

Theorem (Jourdain-P. 2023)

Under this semi-convexity assumption on o both propagation & comparison theorems
hold for 1-marginal convex ordering.
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. '23)

@ Similar results for monotone convex ordering for diffusions sharing the
same convex drift.

@ Applications to local volatility models (like CEV) extending results by
El Karoui-Jeanblanc-Shreve to continuous time path-dependent
options.

e Extension to m-marginal directionally convex functionals F (see also
Rishendorf & Bergenthum but ... with restrictions).
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Martingale (and scaled) Brownian diffusions Directionally convex functionals

Directionally convex functionals

@ A function f : R™ — R is directionally convex if

o Vi, xj— f(X1,...,Xj,...Xm) IS convex
o Vj, xj > Oxf(x1,...,Xi,...Xm) is non-decreasing.

@ Functional version (smooth directionally convex functionals):
f:C(0, TL,R) =R

Vx,u, ve C([0, T],R), wu,v>0= DF(x).(u,v)>0

The 1D version of both functional comparison-propagation theorems
remains true under the assumption that o2 (or 9¥2) is semi-convex, for the
class of continuous directionally convex functionals on C([0, T],R) with

r-polynomial growth ifXéU) and Xéﬁ) e L"(P).

LPSM-Sorbonne Univ. 28 /41
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Martingale (and scaled) Brownian diffusions Directionally convex functionals

Examples
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Martingale (and scaled) Brownian diffusions  Directionally convex functionals

Examples

o Let

F(x) = o ( /0 ! <p(x(s))ds> .

@ F is convex iff ¢ is convex and @ is non-decreasing convex.

@ F is directionally convex iff both ¢ and ® are non-decreasing convex.
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Martingale (and scaled) Brownian diffusions  Directionally convex functionals

Extensions

This provides as systematic approach which successfully works with

Jump diffusion models,

Path-dependent American style options,

e BSDE (without “Z" in the driver),
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McKean-Vlasov diffusions McKean-Vlasov equations

McKean-Vlasov diffusions:

@ The MKV dynamics
(E) = dX¢ = b(t, X, pue)dWe + o(t, Xe, ue)dWe,  t€ [0, T
with pp = L(Xt), W = (W;)¢epo, 1] @ standard B.M. and
b, : [0, T] x R x P,(R) = R are continuous satisfying
(Lip) = b(t,-,-), o(t,-,-) is (|-|, Wp)-Lipschitz, uniformly in t€ [0, T].

Wasserstein distance: Wg(p, v) = inf { / |x — y|Pm(dx, dy), m(dx, Rd) =, m(]Rd7 dy) = V}.

( = sup { / fdp — / fdv, [flLip < 1} when p = 1).
@ Under this assumption a strong solution exists for this equation.
@ “Scaled” Martingality “requires” a drift term
b(t, Xt, /,Lt) = O[(t)(Xt + /B(t7 ]EXt))

a(t), B(t, &) Holder continuous in t, 8 Lipschitz in &, uniformly in t.
(From now on all zero for convenience. . .)
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McKean-Vlasov diffusions McKean-Vlasov equations

Understanding MKV

@ Vlasov framework (p = 1). If o has the following linear representation
in i
o) = [ o E)ulde).

@ Non linear framework. E.g.

o) =, ( [ atxua9)).
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Convex order for McKean-Vlasov diffusions (with Y. Liu, '20)

McKean-Vlasov diffusions

MKV propagates convex order

Theorem (Liu-P., AAP 2023)
Let 0,0€ Lip([0, T] x R x Po(R),R?), p > 2. Let X(©) and X be the unique

solutions to
dXt = O'(t, Xt7 /Jt)th, XO € LP

dYy = 0(t, Ye,ve)dWe, Yo€ LP with (W) 0,77 standard B.M.
(o o(t,x, p) is x-=-convex and -1, for every te [0, T|,

or
If (e 6(t,x, p) is x-=-convex and u-1., for every t€ [0, T],

and
(i) o(t,x,pm) 20(t,x, 1)  lott.x,w| < [0t x, )| if d=1]

and Xo <., Yo, then, for every F : C([0, T],R) — R, convex with
| - |lsup-polynomial growth,
x = E F(XX) is convex (if Xo = x and (i), holds) and E F(X) <EF(Y).
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McKean-Vlasov diffusions Convex order for McKean-Vlasov diffusions (with Y. Liu, '20)

Specificty of the proof

@ The “regular” Euler scheme is again the main tool ... although not
simulatable.
@ Specificity for convexity propagation: two steps

e Forward “marginal " approach necessary
prior to

e a backward “functional” approach.
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Volterra equations

Stochastic Volterra equation (for Xp€ L}(IP))

@ Let (X;)tejo, 7] be a solution to the scaled stochastic Volterra equation

t

X, = Xo+ /O K (£ ) (a(s) + A(s)X:) ds + /0 K(t,5)o(s, X.)dW,, te [0, T]

where the non-negative kernel (K(t,s)),. <, is measurable and

integrable, o : [0, T] x RY — Mg q and (W;);c[o, 7] is a standard
g-dimensional Brownian motion on (9,4, P).

Theorem (Strong solution, Zhang (2005), Joudain-P'22)

t
If If sup / K?F(t,s)ds < +oo for some p > 1,
te[0,T] /o

1
t 7
(K§™) Ik < 400, V6 € (0, T), sup {/ |K((t+6)AT,s) — Ki(t,s)|'ds| < K 6°
tefo,7] LJo

and b(t,.) and o(t,.) are Lipschitz uniformly in t€ [0, T| then, for any
Xo€ LY(P), Xo LL W, the equation has a unique F*W -adapted pathwise

continuous strong solution.
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Volterra equations
Non-Markovian dynamics

@ Main features:

Such a process is centered, (F}V)-adapted but, in general,

it is not a martingale (not even a semi-martingale),

nor a Markov process.

Used to mimick Fractional Brownian motion driven SDEs when
K(t,s) = (t — s)"~2 (Rough stochastic volatility models  Ia
Gatheral-Rosenbaum).

Theorem (convex propagation, (Jourdain-P. '22))
Assume Xo € LP(P), pe 51, 4+00) and

Vtel0, T], x~— o(t,x) is=<-convex
then, for every convex functional F : C([0, T],R?) — R with || . ||sup-p-pol.growth

x — EF(XX) s convex.

v
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Volterra equations
Functional convex ordering

o Let

t

Y: = Yo—|—/0t K(t,s)(a(s)+[3(s)Ys)ds+/() K(t,s)0(s, Ys)dWs, t€ [0, T]

Theorem (convex ordering (Jourdain-P. '22))

(e o(t,x) is x-=-convex for every te [0, T],
(e 0(t,x) is x-=-convex for every t€ [0, T],

(i) o(t,x) 2 0(t,x)  fo@ ) <ot if d=1]

and Xo <., Yo, then, for every F : C([0, T],R) — R, convex (with
I| - llsup-polynomial growth),

EF(X) <EF(Y).
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Volterra equations
Methods of proof

(a = B = 0 for simplicity).

£T).

@ We consider its Euler scheme with time step % (e =5

k-1 tes1 _
Xo+ Y o(te, Xe,) / K(tx,s)dWs, Xo = Xo.
=0

te

@ Not enough due to lack of Markovianity since Xj, is not (in general ) a

function of (X, (Ws — Wy _)sefte_1,u1)-
@ Markovianization: introduce for k € {1,---, n}, (X})o<s< starting from

X¥ = Xp and evolving inductively according to

_ ter1
Xe, =Xk + a(rf,xtg)/ K(tk,s)dWs, 0<(<k-1,
ty

so that X, = X[ for k€ {1,--- ,n} and X" = X.

@ “Extend” the backward propagation proof to functionals

F((XD)e=0:ns - - > (XE)e=0tks - - -+ (Xi) )e=0:1)-
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Volterra equations

@ Transfer to continuous time by letting n — oo (using e.g. Richard et al.
'20). O

@ Extension to (one-dimensional) non-decreasing convex ordering when the
drift b is <-convex.
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Volterra equations

Applications to Vix options in rough Heston model

@ Let us consider the auxiliary variance process in the quadratic rough Heston
model (see Gatheral-Jusselin-Rosenbaum '20):

Vi=a(Z—b)>+c with a, b, c>0
and, for He (0,1/2),

t t
zt:zo+/ (t—s)"=2N\(f(s)— Z)ds+a/ —s)H=3\/a(Z, — b)? + cdW..
0 0
@ z+— +/a(z — b)? + c is convex and Lipschitz.

@ Let (Z7)¢>0 be its unique strong solution and V7 the resulting squared
volatility.

@ For o€ (0,5], one has (Z7)eepo, 1] Zewx (Z7)tep, 7)-

@ Convexity of L?(dt) norm and (again) of z — /a(z — b)? + c imply that

1 /7 1 /7
E — Vedt | <E — VZdt
P ovear| <e ()5 [ v
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