Functional convex ordering for stochastic processes: a constructive (and simulable) approach

Gilles Pagès (with B. Jourdain & Y. Liu)

LPSM-Sorbonne-Université

A Random Walk in the Land of Stochastic Analysis and Numerical Probability (in honour of Denis Talay)

CIRM Luminy

6th September 2023

G. Pagès (LPSM)

Functional Convex Ordering of Processes

Definitions

Definition (Convex order, peacock)

(a) Two \mathbb{R}^d -valued random vectors $U, V \in L^1(\mathbb{P})$ are ordered w.r.t. convex order, denoted

 $U \preceq_{cvx} V$

if, for every $\varphi : \mathbb{R}^d \to \mathbb{R}$, CONVEX, [φ Lipschitz is enough (Jourdain-P. 2023) by an inf convolution argument],

 $\mathbb{E} \varphi(U) \leq \mathbb{E} \varphi(V) \in (-\infty, +\infty].$

(b) A stochastic process $(X_u)_{u\geq 0}$ is a p.c.o.c. (for "processus croissant pour l'ordre convexe") if

 $u \mapsto X_u$ is non-decreasing for the convex order.

• Then $\mathbb{E} U = \mathbb{E} V [\varphi(x) = \pm x]$ and, if both lie in $L^2 [\varphi(x) = x^2]$

 $Var(U) \leq Var(V).$

Introduction

Examples and motivation

- If $(X_t)_{t\geq 0}$ is a martingale, then $(X_t)_{t\geq 0}$ is a p.c.o.c./peacock: let $0 \leq s \leq t$, $\mathbb{E} \varphi(X_s) = \mathbb{E} \left(\varphi(\mathbb{E}(X_t|X_s)) \right) \leq \mathbb{E} \left(\mathbb{E}(\varphi(X_t)|X_s) \right) = \mathbb{E} \varphi(X_t).$ Jensen
- Example: Gaussian distributions (centered): Let Z ~ N(0, I_q) on ℝ^q and let A, B∈ M(d, q) be d × q matrices

 $(A \preceq B \text{ i.e. } BB^* - AA^* \in S^+(d)) \Longrightarrow AZ \preceq_{cvx} BZ$

i.e. $\mathcal{N}(0, AA^*) \preceq_{cvx} \mathcal{N}(0, BB^*)$ [Still true if Z is radial: $Z \sim OZ, \forall O \in O(d)$, Jourdain-P. 2022].

• Proof: Let $Z_1, Z_2 \sim \mathcal{N}(0; I_q)$ be independent and set

$$X_1 = AZ_1, \quad X_2 = X_1 + (BB^* - AA^*)^{1/2}Z_2.$$

Then (X_1, X_2) is an \mathbb{R}^d -valued martingale and $X_2 \sim \mathcal{N}(0, BB^*)$.

- Scalar case d = q = 1: $|\sigma| \le |\vartheta| \Longrightarrow \mathcal{N}(0, \sigma^2) \preceq_{cvx} \mathcal{N}(0, \vartheta^2)$.
- 1D-proof: $\varphi : \mathbb{R} \to \mathbb{R}$ convex and $Z \in L^1$, $Z \stackrel{d}{=} -Z$. Then, by Jensen's \leq ,

 $u \mapsto \mathbb{E} \varphi(uZ)$ is even, convex and attains its minimum $\varphi(0)$ at u = 0. Hence $u \mapsto \mathbb{E} \varphi(uZ)$ is non-decreasing on \mathbb{R}_+ and non-increasing on \mathbb{R}_- . G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ.

3/41

Introduction

About the converse of "martingale \Rightarrow p.c.o.c."

• Strassen's Theorem (1965): $\mu \preceq_{cvx} \nu \iff \exists \text{ transition } P(x, dy) \text{ s.t.}$

$$u = \mu P \quad \text{and} \quad \forall x \in \mathbb{R}^d, \quad \int y P(x, dy) = x$$

• Kellerer's Theorem (1972): X is a p.c.o.c \iff

There exists a martingale $(M_t)_{t\geq 0}$ such that $X_t \stackrel{d}{=} M_t$, $t \geq 0$,

- i.e. X is a "1-martingale".
- Both proofs are unfortunately non-constructive.
- In Hirsch, Roynette, Profeta & Yor's monography, many (many...) explicit "representations" of p.c.o.c. by true martingales.

Introduction

A revival motivated by Finance...

• A starter! t being fixed, $\sigma \mapsto e^{\sigma W_t - \frac{\sigma^2 t}{2}}$ is a p.c.o.c. since

$$\forall \, \sigma > \mathsf{0}, \quad e^{\sigma W_t - \frac{\sigma^2 t}{2}} \stackrel{d}{=} e^{W_{\sigma^2 t} - \frac{\sigma^2 t}{2}} \; (\rightarrow \sigma \text{-martingale}).$$

• Application to Black-Scholes model $S_t^{\sigma} = s_0 e^{\sigma W_t - \frac{\sigma^2 t}{2}}$. For every convex payoff function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$

$$0 \leq \sigma \leq \sigma' \Longrightarrow \mathbb{E} \, \varphi(S_t^{\sigma}) \leq \mathbb{E} \, \varphi(S_t^{\sigma'}).$$

- Vanilla options: Call and Put options: $\varphi(S_{\tau}) = (S_{\tau} K)^+$, $\varphi(S_{\tau}) = (K S_{\tau})^+$, etc.
- Path-dependent options (Asian payoffs). Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ convex

$$\sigma \longmapsto \operatorname{Premium}(\sigma) = \mathbb{E}\left[\varphi\left(\frac{1}{T}\int_0^T \underbrace{s_0 e^{\sigma W_t - \frac{\sigma^2 t}{2}}}_{=S_t^{\sigma}} dt\right)\right]?$$

- P. Carr et al. (2008): Non-decreasing in σ when $\varphi(x) = (x K)^+$ (Asian Call).
- M. Yor (2010): $\sigma \mapsto \frac{1}{T} \int_0^T s_0 e^{\sigma W_t \frac{\sigma^2 t}{2}} dt$ is a p.c.o.c. (Hint: Representation using a a Brownian sheet).
- Yields bounds on the option prices of vanilla options.
- Extensions to American options (optimal stopping, P. 2016).

- ▷ This suggests many other (new or not so new) questions !
 - Monotone (non-decreasing) convex order : \exists drif b! [Hajek, 1985].
 - Functional convex order I: switch from BS to local volatility models *i.e* $\sigma = \sigma(x)$: $\sigma \mapsto \mathbb{E} f(X_T^{(\sigma)})$ [see e.g. El Karoui-Jeanblanc-Schreve, 1998].
 - *m*-marginal path-dependent convex order: e.g. E f(X^(σ)_{T1}, X^(σ)_{T2}) if m = 2. [see e.g.Brown, Rogers, Hobson 2001, Rüschendorf et al. 2008]
 - "Functional" convex order II: from $\mathbb{E} f(X_T^{(\sigma)})$ to $\mathbb{E} F(X^{(\sigma)})$ path-dependent convex order [P.2016].
 - Bermuda options [Pham 2005, Rüschendorf 2008], American options [P. 2016].
 - Jump (risky asset) dynamics for $(X_t^{(\sigma)})$? [Rüschendorf-Bergenthum 2007, P. 2016]
 - P.c.o.c. trough Martingale Optimal Transport. [Beïgelbock,Henry-Labordère et al, 2013, Tan, Touzi, Henry-Labordère 2015, Jourdain-P. 2022].

G. Pagès (LPSM)

LPSM-Sorbonne Univ. 7 / 41

Aims and methods

- Unify and generalize these results with of focus on functional aspects (path-dependent payoffs) (like Asian options) i.e. both functional convex order I and II.
- ② Constraint: provide a constructive method of proof
 - based on time discretization of continuous time martingale dynamics (risky assets in Finance) .
 - using numerical schemes that preserve the functional convex order satisfied by the process under consideration...
 - e.g. to avoid "convexity arbitrages" in Finance.
- Apply the paradigm to various frameworks:
 - American style options, jump diffusions, stochastic integrals,
 - McKean-Vlasov diffusions, MFG [Liu-P. 2022, SPA] and [Liu-P. 2023, AAP],
 - Volterra equations [Jourdain-P. 2022],
 - etc.

Martingale (and scaled) Brownian diffusions

 $\forall x, y \in \mathbb{R}^d$, $\lambda \in [0, 1]$, there exists $O_{\lambda, x}$, $O_{\lambda, y} \in O(d)$ such that $\sigma(\lambda x + (1 - \lambda)y) \preceq \lambda \sigma(x) O_{\lambda, x} + (1 - \lambda)\sigma(y) O_{\lambda, y}$

i.e.

$$\sigma \sigma^* (\lambda x + (1 - \lambda)y) \le (\lambda \sigma(x) O_{\lambda,x} + (1 - \lambda)\sigma(y) O_{\lambda,y}) (\lambda \sigma(x) O_{\lambda,x} + (1 - \lambda)\sigma(y) O_{\lambda,y})^*$$

$$\triangleright \ d = q = 1 \text{ with } O_{\lambda,x} = \operatorname{sign}(\sigma(x)) \text{ this simply reads}$$

$$|\sigma| \text{ convex.}$$

Theorem (martingale case (weak), P. 2016, Fadili-P. 2017, Jourdain-P. 2022) $\begin{array}{l} \text{Let } \sigma, \theta \in \mathcal{C}_{\text{lin}_{x}} \left([0, T] \times \mathbb{R}, \mathbb{M}_{d,q} \right) \\ dX_{t}^{(\sigma)} = \sigma(t, X_{t}^{(\sigma)}) dW_{t}^{(\sigma)}, \ X_{0}^{(\sigma)} \in L^{1+\eta}, \ \eta > 0 \end{array}$ $dX_{t}^{(\theta)} = \theta(t, X_{t}^{(\theta)}) dW_{t}^{(\theta)}, \ X_{0}^{(\theta)} \in L^{1+\eta}, \quad both \ (W_{t}^{(\cdot)})_{t \in [0,T]} \ standard \ B.M.$ (a) If $X_0^{(\sigma)} \prec_{cor} X_0^{(\theta)}$ and $\begin{cases} (i)_{\sigma} \quad \sigma(t,.): \mathbb{R}^{d} \to \mathbb{M}_{d,q} \text{ is } \preceq \text{-convex for every } t \in [0, T], \\ \text{or} \\ (i)_{\theta} \quad \theta(t,.): \mathbb{R}^{d} \to \mathbb{M}_{d,q} \text{ is } \preceq \text{-convex for every } t \in [0, T], \\ \text{and} \\ (ii) \quad \sigma(t,\cdot) \preceq \theta(t,\cdot) \text{ for every } t \in [0, T] \end{cases}$

then, for every functional $F : C([0, T], \mathbb{R}^d) \to \mathbb{R}$, *l.s.c. convex*,

(i) The function x → E F(X^{(σ),x}) is convex from R^d to (-∞, +∞],
(ii) Convex ordering holds: E F(X^(σ)) ≤ E F(X^(θ)) ∈ (-∞, +∞].

• By a functional inf-convolution argument, it suffices to consider $\|\cdot\|_{sup}$ -Lipschitz functionals.

Theorem (martingale case (strong), P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

Let $\sigma, \theta \in \operatorname{Lip}_{x}([0, T] \times \mathbb{R}, \mathbb{M}_{d,q})$, W q-S.B.M. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique strong solutions to $dX_t^{(\sigma)} = \sigma(t, X_t^{(\sigma)}) dW_t, X_0^{(\sigma)} \in L^1$, (no more $\eta!$) $dX_t^{(\theta)} = \theta(t, X_t^{(\theta)}) dW_t, X_0^{(\theta)} \in L^1, \quad (W_t)_{t \in [0, T]} \text{ standard } B.M.$ (a) If $X_0^{(\sigma)} \prec_{\text{cvx}} X_0^{(\theta)}$ and $\begin{cases} (i)_{\sigma} \quad \sigma(t,.): \mathbb{R}^{d} \to \mathbb{M}_{d,q} \text{ is } \preceq \text{-convex for every } t \in [0, T], \\ \text{or} \\ (i)_{\theta} \quad \theta(t,.): \mathbb{R}^{d} \to \mathbb{M}_{d,q} \text{ is } \preceq \text{-convex for every } t \in [0, T], \\ \text{and} \\ (ii) \quad \sigma(t,\cdot) \preceq \theta(t,\cdot) \text{ for every } t \in [0, T] \end{cases}$

then, for every $F : C([0, T], \mathbb{R}^d) \to \mathbb{R}$, *l.s.c. convex*,

(i) The function $x \mapsto \mathbb{E} F(X^{(\sigma),x})$ is convex from \mathbb{R}^d to $(-\infty, +\infty]$,

(ii) Convex ordering holds: $\mathbb{E} F(X^{(\sigma)}) \leq \mathbb{E} F(X^{(\theta)}) \in (-\infty, +\infty].$

• By a functional inf-convolution argument, it suffices to consider $\|\cdot\|_{sup}$ -Lipschitz functionals.

Martingale (and scaled) Brownian diffusions

Scaled/drifted martingale diffusions (extension to)

• The former theorems still hold true for

$$dX_t^{(\sigma)} = \alpha(t) (X_t^{(\sigma)} + \beta(t)) dt + \sigma(t, X_t^{(\sigma)}) dW_t^{(\sigma)},$$

$$dX_t^{(\theta)} = \alpha(t) (X_t^{(\theta)} + \beta(t)) dt + \theta(t, X_t^{(\theta)}) dW_t^{(\theta)},$$

where $\alpha(t) \in \mathbb{M}_{d,d}(\mathbb{R})$ and $\beta(t) \in \mathbb{R}^d$ are continuous.

• Change of variable:

$$\widetilde{X}_t^{(\sigma)} = e^{-\int_0^t \alpha(s) ds} \big(X_t^{(\sigma)} + \beta(t) \big).$$

• Finance: spot interest rate $\alpha(t) = r(t)\mathbf{1}$ and $\beta(t) = 0$ since typical (risk-neutral) dynamics of traded assets read

$$dS_t = r(t)S_t dt + S_t \sigma(S_t, \omega) dW_t$$

 For more general drifts b(t,x) when d = q = 1: functional version of Hajek's theorem: monotone functional convex order holds true if
 ∀ t ∈ [0, T], b(t,.) is convex.

Strategy (constructive)

- Time discretization (preferably) accessible to simulation: typically the Euler scheme.
- Propagate convexity (marginal or pathwise)
- Propagate comparison (marginal or pathwise)
- Transfer by functional limit theorems "à la Jacod-Shiryaev".

Step 1: discrete time ARCH models

 ARCH dynamics: Let (Z_k)_{1≤k≤n} be a sequence of independent, symmetric r.v. on (Ω, A, ℙ). Two ARCH models: X₀, Y₀ ∈ L¹(ℙ),

$$\begin{array}{rcl} X_{k+1} &=& X_k + \sigma_k(X_k) \, Z_{k+1}, \\ Y_{k+1} &=& Y_k + \theta_k(Y_k) \, Z_{k+1}, \quad k = 0: \, n-1, \end{array}$$

where σ_k , $\theta_k : \mathbb{R} \to \mathbb{R}$, k = 0 : n - 1 have linear growth.

Proposition (Propagation result)

If σ_k , k = 0 = n - 1 are \leq -convex with linear growth,

$$X_0 = x$$
 and $\forall k \in \{0, \ldots, n-1\}, \sigma_k \preceq \theta_k,$

then, for every convex function $F : (\mathbb{R}^d)^{n+1} \to \mathbb{R}$ convex with linear growth

 $x \mapsto \mathbb{E} F(x, X_1^x \dots, X_n^x)$ is convex.

Martingale (and scaled) Brownian diffusions

Partial proof (marginal) with Gaussian white noise

•
$$Z_k \sim \mathcal{N}(0, I_q), 1 \leq k \leq n.$$

• Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function. Let
 $P_k^{\sigma} f(x) := \mathbb{E} f(x + \sigma_k(x)Z) = \left[\mathbb{E} f(x + AZ)\right]_{|A = \sigma_k(x)}.$
• Set $A \in \mathbb{M}_{d,q} \mapsto Qf(A) := \mathbb{E} f(x + AZ)$ is right $O(d)$ -invariant, convex and \preceq -non-decreasing by the starting example.
• Then $P_k^{\sigma} f$ is convex since $\forall x, y \in \mathbb{R}^d$ and $\forall \lambda \in [0, 1]$
 $P_k^{\sigma} f(\lambda x + (1 - \lambda)y) = Qf(\sigma_k(\lambda x + (1 - \lambda)y))$
 $\leq Qf(\lambda \sigma_k(x) + (1 - \lambda)\sigma_k(y))$
 $\leq \lambda Qf(\sigma_k(x)) + (1 - \lambda)Qf(\sigma_k(y))$
 $= \lambda P_k^{\sigma} f(x) + (1 - \lambda)P_k^{\sigma} f(y).$

Hence

$$x \mapsto \mathbb{E} f(X_n^x) = P_{1:n}^{\sigma} f(x) := P_1^{\sigma} \circ \cdots \circ P_n^{\sigma} f(x)$$
 is convex

Theorem (Discrete time comparison result)

If all σ_k , k = 0 = n - 1 or all θ_k , k = 0 : n - 1 are \leq -convex with linear growth,

$$X_0 \preceq_{cvx} Y_0$$
 and $\forall k \in \{0, \dots, n-1\}, \sigma_k \preceq \theta_k,$

then

$$(X_0,\ldots,X_n) \preceq_{cvx} (Y_0,\ldots,Y_n).$$

Martingale (and scaled) Brownian diffusions

Partial proof (marginal) with Gaussian white noise

• Backward induction on k.

• For k = n. Let $f : \mathbb{R}^d \to \mathbb{R}$ be a (Lipschitz) convex function.

$$\sigma_n \preceq \theta_n \Longrightarrow \mathcal{P}_n^{\sigma} f(x) = \mathcal{Q} f(\sigma_n(x)) \le \mathcal{Q} f(\theta_n(x)) = \mathcal{P}_n^{\theta} f(x)$$

by non-decreasing \leq -monotony of Q.

• Assume
$$\underbrace{P_{k+1:n}^{\sigma}f}_{\text{convex}} \leq P_{k+1:n}^{\theta}f$$
.
 $A \in \mathbb{M}_{d,q} \longmapsto Q(P_{k+1:n}^{\sigma}f)(A)$ is \leq -non-decreasing
so that $P_{k:n}^{\sigma}f(x) = P_{k}^{\sigma}(P_{k+1:n}^{\sigma})f(x) = Q(P_{k+1:n}^{\sigma}f)(\sigma_{k}(x)) \stackrel{\downarrow}{\leq} Q(P_{k+1:n}^{\sigma}f)(\theta_{k}(x))$
 $\leq Q(P_{k+1:n}^{\theta}f)(\theta_{k}(x))$
 $= P_{k:n}^{\theta}f(x).$

Hence

 $\mathbb{E} f(X_n^{\sigma}) = \mathbb{E} P_{1:n}^{\sigma} f(X_0) \leq \mathbb{E} P_{1:n}^{\sigma} f(Y_0) \leq \mathbb{E} P_{1:n}^{\theta} f(Y_0) = \mathbb{E} f(X_n^{\theta}).$

Functional approach

- By "functional" we mean here : $F(X_0, \ldots, X_n)$ with $F : (\mathbb{R}^d)^{n+1} \to \mathbb{R}$ convex.
- Same strategy by induction
- But entirely backward.

Step 2 of the proof: Back to continuous time

▷ Euler scheme(s): Discrete time Euler scheme with step $\frac{T}{n}$, starting at x is an ARCH model. For $X^{(\sigma)}$: for k = 0, ..., n - 1,

$$\bar{X}_{t_{k+1}^n}^{(\sigma),n} = \bar{X}_{t_k^n}^{(\sigma),n} + \sigma(t_k^n, \bar{X}_{t_k^n}^{(\sigma),n}) \big(W_{t_{k+1}^n} - W_{t_k^n} \big), \ \bar{X}_0^{(\sigma),n} = x$$

Set

$$Z_k = W_{t_k^n} - W_{t_{k-1}^n}, \ k = 1, \dots, n$$

$$\downarrow$$

discrete time setting applies

Remark. Linear growth of σ and θ , implies

$$\forall \, p > 0, \qquad \sup_{n \ge 1} \Big\| \sup_{t \in [0,T]} |\bar{X}_t^{(\sigma),n}| \Big\|_p + \sup_{n \ge 1} \Big\| \sup_{t \in [0,T]} |\bar{X}_t^{(\theta),n}| \Big\|_p < +\infty.$$

From discrete to continuous time

 \triangleright Interpolation ($n \ge 1$)

• Piecewise affine interpolator defined by

$$\forall x_{0:n} \in \mathbb{R}^{n+1}, \ \forall k = 0, \dots, n-1, \ \forall t \in [t_k^n, t_{k+1}^n], \quad .$$

$$i_n(x_{0:n})(t) = \frac{n}{T} ((t_{k+1}^n - t)x_k + (t - t_k^n)x_{k+1})$$

$$\bullet \ \widetilde{X}^{(\sigma),n} := i_n ((\overline{X}_{t_k^n}^{(\sigma),n})_{k=0:n}) = \text{piecewise affine Euler scheme.}$$

G. Pagès (LPSM)

▷ Let $F : C([0, T], \mathbb{R}) \to \mathbb{R}$ be a convex functional (with *r*-poly. growth).

$$\forall n \geq 1, \qquad F_n : \mathbb{R}^{n+1} \ni x_{0:n} \longmapsto F_n(x_{0:n}) := F(i_n(x_{0:n})).$$

• Step 1 (Discrete time): $F(\widetilde{X}^{(\sigma),n}) = F_n((\overline{X}^{(\sigma),n}_{t_k^n})_{k=0:n}$ and

$$F \text{ convex} \Longrightarrow F_n \text{ convex}, n \ge 1.$$

Discrete time result implies since $\sigma(t_k^n, .) \leq \theta(t_k^n, .)$.

$$\mathbb{E} F(\widetilde{X}^{(\sigma),n}) = \mathbb{E} F_n((\overline{X}_{t_k^n}^{(\sigma),n})_{k=0:n}) \leq \mathbb{E} F_n((\overline{X}_{t_k^n}^{(\theta),n})_{k=0:n}) = \mathbb{E} F(\widetilde{X}^{(\theta),n}).$$

• Step 2 (Transfer): See e.g. [Jacod-Shiryaev's book, 2nd edition, Theorem 3.39, p.551].

$$\widetilde{X}^{(\sigma),n} \stackrel{\mathcal{L}(\|.\|_{sup})}{\longrightarrow} X^{(\sigma)} \quad \text{ as } n \to \infty.$$

$$\mathbb{E} F(X^{(\sigma)}) = \lim_{n} \mathbb{E} F(\widetilde{X}^{(\sigma),n}) \quad (idem \text{ for } X^{(\theta)}).$$

The Euler scheme provides a simulable approximation

which preserves convex order.

Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. '23)

Is convexity necessary ? $\sigma(t,x) = \sigma(x), d = 1$

• Note that when $\vartheta = \sigma$, a posteriori (ii) \Rightarrow (i) since

$$\delta_{\lambda x + (1-\lambda)y} \preceq_{cvx} \lambda \delta_x + (1-\lambda)\delta_y$$

so that, as $\sigma(\cdot) \leq \sigma(\cdot)$ (sic!), $\mathbb{E} F(X^{\lambda x + (1-\lambda)y}) < \lambda \mathbb{E} F(X^x) + (1-\lambda) \mathbb{E} F(X^y).$

• One shows [Jourdain-P '23] that (when d = 1)

$$\begin{split} &\sqrt{\frac{2}{\pi}}|\sigma(x)| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}|X_t^{\times} - x| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}|X_0^{\times} - X_t^{\times}| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}F(X^{\times}) \\ & \text{with } F(\alpha) = |\alpha(t) - \alpha(0)| \text{ an (only) 2-marginal functional convex} \\ & \text{functional.} \end{split}$$

- If convexity propagation for 2-marginal functional holds true then $|\sigma|$ is convex !!
- The convexity assumption on σ or ϑ is mandatory ... except maybe for 1-marginal convex order when d = q = 1.

For the 1D diffusion (after [El Karoui et al.])

• Let $\varphi(x) = \mathbb{E} f(X_{\tau}^{x})$ with $f : \mathbb{R} \to \mathbb{R}$ convex with right derivative f'_{r} . One has

$$\begin{split} \varphi'(x) &= \mathbb{E} \big[f'_r(X_T^x) e^{\int_0^T \sigma'(X_s^x) dW_s - \frac{1}{2} \int_0^T (\sigma')^2 (X_s^x) ds} \big] \\ &= \dots \\ &= \mathbb{E}_{\mathbb{Q}} f'_r(Y_T^x) \quad \text{Girsanov !} \end{split}$$

- $x \mapsto Y_T^x$ is non-decreasing (cf. [Revuz-Yor])
- Finally

 $\varphi' : x \mapsto \mathbb{E}_{\mathbb{O}} f'_r(X^x_T)$ is non-decreasing

so that (almost ...) whatever σ is

$$\varphi: x \longmapsto \mathbb{E} f(X_T^x)$$
 is convex.

• So 1D setting for 1-marginal functionals is special !

Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. '23)

Smooth $\sigma \& d = q = 1$: get rid of convexity (with B. Jourdain '22)

- Assume $\sigma : \mathbb{R} \to \mathbb{R}_+ C^2$, Lipschitz $(\|\sigma'\|_{\infty} < +\infty)$.
- True Euler operator, $Z \sim \mathcal{N}(0, 1)$:

$$Pf(x) = \mathbb{E} f(x + \sqrt{h\sigma(x)Z}).$$

• Assume w.l.g. $f : \mathbb{R}^d \to \mathbb{R}$ C^2 and convex

$$(Pf)''(x) = \mathbb{E}[f''(x + \sqrt{h\sigma(x)Z})(1 + \sqrt{h\sigma'(x)Z})^2] + \sqrt{h\sigma'(x)}\mathbb{E}[f'(x + \sqrt{h\sigma(x)Z})Z] = \mathbb{E}[f''(x + \sqrt{h\sigma(x)Z})(1 + \sqrt{h\sigma'(x)Z})^2] + h\sigma\sigma''(x)\mathbb{E}[f''(x + \sqrt{h\sigma(x)Z})]$$
Stein I.P.
$$= \mathbb{E}[f''(x + \sqrt{h\sigma(x)Z})\underbrace{((1 + \sqrt{h\sigma'(x)Z})^2 + h\sigma\sigma''(x))}_{always \ge 0 \forall Z(\omega)??}]$$

• No ! But... If we truncate : $Z \rightsquigarrow Z^h = Z \mathbf{1}_{\{|Z| \le A_h\}}$...

25/41

• ... Then, the same Stein-I.P. transform yields $(P^{h}f)''(x) = \mathbb{E}\left[f''(x + \sqrt{h}\sigma(x)Z^{h})\underbrace{\left((1 + \sqrt{h}\sigma'(x)Z^{h})^{2} + h\left(1 - e^{-(A_{h}^{2} - (Z^{h})^{2})}\right)\mathbf{1}_{\{Z^{h} \neq 0\}}\sigma\sigma''(x)\right)}_{always \ge 0 \forall Z^{h}(\omega)??}\right]$ • YES !! If $A_{h} = A/\sqrt{h}$ with $A < \frac{1}{\|\sigma'\|_{\infty}}$ for h small enough, provided (*) $\sup_{x \in \mathbb{R}} \frac{\sigma(\sigma'')^{-}}{|\sigma'|} < +\infty$ (\Longrightarrow Ok if σ convex since = 0!!)

- Hence truncated Euler scheme propagates convexity, \rightarrow comparison, etc !
- Truncated Euler scheme with time step h = T/n does converge (almost) "as usual" toward the diffusion as $n \to \infty$.
- Smoothness of σ and (*) can be relaxed into σ²(x) + ax² convex for some a > 0 (semi-convexity).

Theorem (Jourdain-P. 2023)

Under this semi-convexity assumption on σ^2 both propagation & comparison theorems hold for 1-marginal convex ordering.

G. Pagès (LPSM)

- Similar results for monotone convex ordering for diffusions sharing the same convex drift.
- Applications to local volatility models (like CEV) extending results by El Karoui-Jeanblanc-Shreve to continuous time path-dependent options.
- Extension to *m*-marginal directionally convex functionals *F* (see also Rüshendorf & Bergenthum but ... with restrictions).

Directionally convex functionals

• A function $f : \mathbb{R}^m \to \mathbb{R}$ is directionally convex if

- $\forall i, x_i \mapsto f(x_1, \ldots, x_i, \ldots, x_m)$ is convex
- $\forall j, x_j \mapsto \partial_{x_i} f(x_1, \dots, x_i, \dots x_m)$ is non-decreasing.
- Functional version (smooth directionally convex functionals):
 f : C([0, T], ℝ) → ℝ

 $\forall x, u, v \in C([0, T], \mathbb{R}), \quad u, v \ge 0 \Longrightarrow DF(x).(u, v) \ge 0$

Theorem

The 1D version of both functional comparison-propagation theorems remains true under the assumption that σ^2 (or ϑ^2) is semi-convex, for the class of continuous directionally convex functionals on $C([0, T], \mathbb{R})$ with *r*-polynomial growth if $X_0^{(\sigma)}$ and $X_0^{(\vartheta)} \in L^r(\mathbb{P})$.

Examples

Convecté, convecté maginale et convecté dischimalle On considere la fondia $\int (x,g) = \frac{1}{2} (a x^2 + by^2 + cxy)$ · J marginelement unide shi a, b > 0 · J converse she P2 flag & g+ (d, R) (=) [a g2] + g+ (d, K) alb > 0 dr c° slab . I directionnellement contrace sin lo, b, c≥0 - marginalement uncle - distinuel converse Ex: Si a; 6>0 -2Vab 0 21ab

Examples

Let

$$F(x) = \Phi\left(\int_0^T \varphi(x(s))ds\right)$$

• F is convex iff φ is convex and Φ is non-decreasing convex.

• F is directionally convex iff both φ and Φ are non-decreasing convex.

Extensions

This provides as systematic approach which successfully works with

- Jump diffusion models,
- Path-dependent American style options,
- BSDE (without "Z" in the driver),

• . . .

McKean-Vlasov diffusions:

• The MKV dynamics

$$(E) \equiv dX_t = b(t, X_t, \mu_t) dW_t + \sigma(t, X_t, \mu_t) dW_t, \quad t \in [0, T]$$

with $\mu_t = \mathcal{L}(X_t), W = (W_t)_{t \in [0, T]}$ a standard B.M. and
 $b, \sigma : [0, T] \times \mathbb{R} \times \mathcal{P}_p(\mathbb{R}) \to \mathbb{R}$ are continuous satisfying

(Lip) $\equiv b(t, \cdot, \cdot), \sigma(t, \cdot, \cdot)$ is $(|\cdot|, \mathcal{W}_p)$ -Lipschitz, uniformly in $t \in [0, T]$.

$$\begin{aligned} \text{Wasserstein distance:} \qquad \mathcal{W}_p^p(\mu,\nu) &= \inf\Big\{\int |x-y|^p \, \textit{m}(\textit{d}x,\textit{d}y), \ \textit{m}(\textit{d}x,\mathbb{R}^d) = \mu, \ \textit{m}(\mathbb{R}^d,\textit{d}y) = \nu\Big\}. \\ &\Big(= \sup\Big\{\int \textit{fd}\mu - \int \textit{fd}\nu, \textit{[f]}_{\rm Lip} \leq 1\Big\} \text{ when } p = 1\Big). \end{aligned}$$

- Under this assumption a strong solution exists for this equation.
- "Scaled" Martingality "requires" a drift term

$$b(t, X_t, \mu_t) = \alpha(t)(X_t + \beta(t, \mathbb{E} X_t))$$

 $\alpha(t), \beta(t,\xi)$ Hölder continuous in t, β Lipschitz in ξ , uniformly in t. (From now on all zero for convenience...)

Understanding MKV

• Vlasov framework (p = 1). If σ has the following linear representation in μ

$$\sigma(x,\mu) = \int_{\mathbb{R}} \boldsymbol{\sigma}(x,\xi) \mu(d\xi).$$

• Non linear framework. E.g.

$$\sigma(x,\mu) = arphi_0\left(\int_{\mathbb{R}} \pmb{\sigma}(x,\xi) \mu(d\xi)
ight).$$

MKV propagates convex order

Theorem (Liu-P., AAP 2023)

Let $\sigma, \theta \in Lip([0, T] \times \mathbb{R} \times \mathcal{P}_p(\mathbb{R}), \mathbb{R}^d)$, $p \ge 2$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique solutions to

$$\begin{split} dX_t &= \sigma(t, X_t, \mu_t) dW_t, \ X_0 \in L^p \\ dY_t &= \theta(t, Y_t, \nu_t) dW_t, \ Y_0 \in L^p \quad \text{with } (W_t^{(\cdot)})_{t \in [0, T]} \text{ standard } B.M. \\ & If \begin{cases} (i)_\sigma \quad \sigma(t, x, \mu) \text{ is } x \text{-} \text{-} \text{convex and } \mu \text{-} \uparrow_{cv} \text{ for every } t \in [0, T], \\ \text{or} \\ (i)_\theta \quad \theta(t, x, \mu) \text{ is } x \text{-} \text{-} \text{convex and } \mu \text{-} \uparrow_{cv} \text{ for every } t \in [0, T], \\ \text{and} \\ (ii) \quad \sigma(t, x, \mu) \leq \theta(t, x, \mu) \quad [|\sigma(t, x, \mu)| \leq |\theta(t, x, \mu)| \text{ if } d = 1] \end{cases} \end{split}$$

and $X_0 \leq_{cv} Y_0$, then, for every $F : C([0, T], \mathbb{R}) \to \mathbb{R}$, convex with $\| \cdot \|_{\sup}$ -polynomial growth,

 $x \mapsto \mathbb{E} F(X^{\times})$ is convex (if $X_0 = x$ and (i)_{σ} holds) and $\mathbb{E} F(X) \leq \mathbb{E} F(Y)$.

Specificty of the proof

- The "regular" Euler scheme is again the main tool ... although not simulatable.
- Specificity for convexity propagation: two steps
 - Forward "marginal" approach necessary prior to
 - a backward "functional" approach.

Volterra equations

Stochastic Volterra equation (for $X_0 \in L^1(\mathbb{P})$)

Let (X_t)_{t∈[0,T]} be a solution to the scaled stochastic Volterra equation

$$X_t = X_0 + \int_0^t \frac{\kappa(t,s)(\alpha(s) + \beta(s)X_s) ds}{s} + \int_0^t \frac{\kappa(t,s)\sigma(s,X_s) dW_s}{s}, \ t \in [0,T]$$

where the non-negative kernel $(\mathcal{K}(t,s))_{0 \le s \le t \le T}$ is measurable and integrable, $\sigma : [0, T] \times \mathbb{R}^d \to \mathbb{M}_{d,q}$ and $(W_t)_{t \in [0,T]}$ is a standard *q*-dimensional Brownian motion on $(\Omega, \mathcal{A}, \mathbb{P})$.

Theorem (Strong solution, Zhang (2005), Joudain-P'22)

If If
$$\sup_{t\in [0,T]}\int_0^t \mathcal{K}^{2
ho}(t,s)ds < +\infty$$
 for some $ho>1$,

 $\left(\mathcal{K}^{cont}_{\theta}\right) \ \exists \kappa < +\infty, \ \forall \delta \in (0, T), \ \sup_{t \in [0, T]} \left[\int_{0}^{t} |\mathcal{K}((t + \delta) \wedge T, s) - \mathcal{K}_{i}(t, s)|^{i} ds\right]^{\frac{1}{t}} \leq \kappa \, \delta^{\theta}$

and b(t,.) and $\sigma(t,.)$ are Lipschitz uniformly in $t \in [0, T]$ then, for any $X_0 \in L^1(\mathbb{P})$, $X_0 \perp \!\!\!\perp W$, the equation has a unique $\mathcal{F}^{X_0,W}$ -adapted pathwise continuous strong solution.

G. Pagès (LPSM)

Non-Markovian dynamics

- Main features:
 - Such a process is centered, (\mathcal{F}_t^W) -adapted but, in general,
 - it is not a martingale (not even a semi-martingale),
 - nor a Markov process.
 - Used to mimick Fractional Brownian motion driven SDEs when $K(t,s) = (t-s)^{H-\frac{1}{2}}$ (Rough stochastic volatility models à la Gatheral-Rosenbaum).

Theorem (convex propagation, (Jourdain-P. '22))

Assume $X_0 \in L^p(\mathbb{P})$, $p \in 51, +\infty$) and

 $\forall t \in [0, T], x \mapsto \sigma(t, x) \text{ is } \preceq \text{-convex}$

then, for every convex functional $F : C([0, T], \mathbb{R}^d) \to \mathbb{R}$ with $\| . \|_{\sup}$ -p-pol.growth

 $x \mapsto \mathbb{E} F(X^x)$ is convex.

Functional convex ordering

Let

$$Y_t = Y_0 + \int_0^t \frac{\mathcal{K}(t,s)(\alpha(s) + \beta(s)Y_s)ds}{s} + \int_0^t \frac{\mathcal{K}(t,s)\theta(s,Y_s)dW_s}{t \in [0,T]}$$

Theorem (convex ordering (Jourdain-P. '22))

lf

$$\begin{array}{l} (i)_{\sigma} \quad \sigma(t,x) \text{ is } x \text{-} \underline{\prec} \text{-convex for every } t \in [0, T], \\ \text{or} \\ (i)_{\theta} \quad \theta(t,x) \text{ is } x \text{-} \underline{\prec} \text{-convex for every } t \in [0, T], \\ \text{and} \\ (ii) \quad \sigma(t,x) \preceq \theta(t,x) \quad {}_{[\sigma(t,x)] \leq |\theta(t,x)| \text{ if } d = 1]} \end{array}$$

and $X_0 \leq_{cv} Y_0$, then, for every $F : C([0, T], \mathbb{R}) \to \mathbb{R}$, convex (with $\| \cdot \|_{sup}$ -polynomial growth), $\mathbb{E} F(X) \leq \mathbb{E} F(Y).$

Methods of proof

- $(\alpha = \beta = 0 \text{ for simplicity}).$
- We consider its Euler scheme with time step $\frac{T}{n}$ $(t_k = \frac{kT}{n})$:

$$ar{X}_{t_k} = X_0 + \sum_{\ell=0}^{k-1} \sigma(t_\ell, ar{X}_{t_\ell}) \int_{t_\ell}^{t_{\ell+1}} K(t_k, s) dW_s, \quad ar{X}_0 = X_0.$$

- Not enough due to lack of Markovianity since \bar{X}_{t_k} is not (in general) a function of $(\bar{X}_{t_{k-1}}, (W_s W_{t_{k-1}})_{s \in [t_{k-1}, t_k]})$.
- Markovianization: introduce for $k \in \{1, \dots, n\}$, $(X_{t_{\ell}}^k)_{0 \le \ell \le k}$ starting from $X_0^k = X_0$ and evolving inductively according to

$$X_{t_{\ell+1}}^{k} = X_{t_{\ell}}^{k} + \sigma(t_{\ell}, \bar{X}_{t_{\ell}}) \int_{t_{\ell}}^{t_{\ell+1}} K(t_{k}, s) dW_{s}, \quad 0 \leq \ell \leq k-1,$$

so that $\bar{X}_{t_k} = X_{t_k}^k$ for $k \in \{1, \cdots, n\}$ and $X^n = \bar{X}$.

• "Extend" the backward propagation proof to functionals

$$F((X_{t_{\ell}}^{n})_{\ell=0:n},\ldots,(X_{t_{\ell}}^{k})_{\ell=0:k},\ldots,(X_{t_{\ell}}^{1})_{\ell=0:1}).$$

- Transfer to continuous time by letting $n \to \infty$ (using e.g. Richard et al. '20).
- Extension to (one-dimensional) non-decreasing convex ordering when the drift *b* is ∠-convex.

Volterra equations

Applications to Vix options in rough Heston model

• Let us consider the auxiliary variance process in the quadratic rough Heston model (see Gatheral-Jusselin-Rosenbaum '20):

$$V_t = a(Z_t - b)^2 + c$$
 with $a, b, c \ge 0$

and, for $H \in (0, 1/2)$,

$$Z_t = Z_0 + \int_0^t (t-s)^{H-\frac{1}{2}} \lambda(f(s)-Z_s) ds + \sigma \int_0^t (t-s)^{H-\frac{1}{2}} \sqrt{a(Z_s-b)^2 + c} dW_s.$$

•
$$z \mapsto \sqrt{a(z-b)^2 + c}$$
 is convex and Lipschitz.

- Let (Z^σ_t)_{t≥0} be its unique strong solution and V^σ the resulting squared volatility.
- For $\sigma \in (0, \tilde{\sigma}]$, one has $(Z_t^{\sigma})_{t \in [0, T]} \preceq_{cvx} (Z_t^{\tilde{\sigma}})_{t \in [0, T]}$.
- Convexity of $L^2(dt)$ norm and (again) of $z\mapsto \sqrt{a(z-b)^2+c}$ imply that

$$\mathbb{E}\left(\sqrt{\frac{1}{T}\int_0^T V_t^{\sigma} dt}\right) \leq \mathbb{E}\left(\sqrt{\frac{1}{T}\int_0^T V_t^{\tilde{\sigma}} dt}\right)$$