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Introduction

Definitions

Definition (Convex order, peacock)

(a) Two Rd -valued random vectors U, V ∈ L1(P) are ordered w.r.t. convex order,
denoted

U �cvx V

if, for every ϕ : Rd → R, convex, [ϕ Lipschitz is enough (Jourdain-P. 2023) by an inf convolution argument],

Eϕ(U) ≤ Eϕ(V ) ∈ (−∞,+∞].

(b) A stochastic process (Xu)u≥0 is a p.c.o.c. (for “processus croissant pour l’ordre
convexe”) if

u 7−→ Xu is non-decreasing for the convex order.

Then EU = EV [ϕ(x) = ±x ] and, if both lie in L2 [ϕ(x) = x2]

Var(U) ≤ Var(V ).
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Introduction

Examples and motivation

If (Xt)t≥0 is a martingale, then (Xt)t≥0 is a p.c.o.c./peacock: let 0 ≤ s ≤ t,

Eϕ(Xs) = E
(
ϕ(E(Xt |Xs))

)
≤︸︷︷︸

Jensen

E
(
E(ϕ(Xt)|Xs)

)
= Eϕ(Xt).

Example: Gaussian distributions (centered): Let Z ∼ N (0, Iq) on Rq and let
A, B∈M(d , q) be d × q matrices(

A � B i .e. BB∗ − AA∗ ∈ S+(d)
)

=⇒ AZ �cvx BZ

i.e. N (0,AA∗) �cvx N (0,BB∗) [Still true if Z is radial: Z ∼ OZ , ∀O∈ O(d), Jourdain-P. 2022].

Proof: Let Z1,Z2 ∼ N (0; Iq) be independent and set

X1 = AZ1, X2 = X1 + (BB∗ − AA∗)1/2Z2.

Then (X1,X2) is an Rd -valued martingale and X2 ∼ N (0,BB∗).

Scalar case d = q = 1: |σ| ≤ |ϑ| =⇒ N (0, σ2) �cvx N (0, ϑ2).

1D-proof: ϕ : R→ R convex and Z ∈ L1, Z
d
= −Z . Then, by Jensen’s ≤,

u 7→ Eϕ(uZ) is even, convex and attains its minimum ϕ(0) at u = 0.

Hence u 7→ Eϕ(uZ) is non-decreasing on R+ and non-increasing on R−.
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Introduction

About the converse of “martingale ⇒ p.c.o.c.”

Strassen’s Theorem (1965): µ �cvx ν⇐⇒∃ transition P(x , dy) s.t.

ν = µP and ∀ x ∈ Rd ,

∫
y P(x , dy) = x

Kellerer’s Theorem (1972): X is a p.c.o.c ⇐⇒

There exists a martingale (Mt)t≥0 such that Xt
d
= Mt , t ≥ 0,

i.e. X is a “1-martingale”.

Both proofs are unfortunately non-constructive.

In Hirsch, Roynette, Profeta & Yor’s monography, many (many. . . )
explicit “representations” of p.c.o.c. by true martingales.
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Introduction

A revival motivated by Finance. . .

A starter! t being fixed, σ 7→ eσWt−σ
2t
2 is a p.c.o.c. since

∀σ > 0, eσWt−σ
2t
2

d
= eWσ2t−

σ2t
2 (→ σ-martingale).

Application to Black-Scholes model Sσt = s0e
σWt−σ

2t
2 . For every

convex payoff function ϕ : R+ → R+

0 ≤ σ ≤ σ′ =⇒ Eϕ(Sσt ) ≤ Eϕ(Sσ
′

t ).

Vanilla options: Call and Put options: ϕ(S
T

) = (S
T
− K )+,

ϕ(S
T

) = (K − S
T

)+, etc.

Path-dependent options (Asian payoffs). Let ϕ : R+ → R+ convex

σ 7−→ Premium(σ) = E
[
ϕ
( 1

T

∫ T

0
s0e

σWt−σ
2t
2︸ ︷︷ ︸

=Sσt

dt
)]

?
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Introduction

P. Carr et al. (2008): Non-decreasing in σ when ϕ(x) = (x − K )+ (Asian
Call).

M. Yor (2010): σ 7→ 1

T

∫ T

0

s0e
σWt−σ

2t
2 dt is a p.c.o.c.

(Hint: Representation using a a Brownian sheet).

Yields bounds on the option prices of vanilla options.

Extensions to American options (optimal stopping, P. 2016).
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Introduction

B This suggests many other (new or not so new) questions !

Monotone (non-decreasing) convex order : ∃ drif b! [Hajek, 1985].

Functional convex order I: switch from BS to local volatility models

i .e σ = σ(x): σ 7→ E f (X
(σ)
T ) [see e.g. El Karoui-Jeanblanc-Schreve, 1998].

m-marginal path-dependent convex order: e.g. E f (X
(σ)
T1
,X

(σ)
T2

) if
m = 2. [see e.g.Brown, Rogers, Hobson 2001, Rüschendorf et al. 2008]

“Functional” convex order II: from E f (X
(σ)
T ) to EF (X (σ))

path-dependent convex order [P.2016].

Bermuda options [Pham 2005, Rüschendorf 2008], American options [P. 2016].

Jump (risky asset) dynamics for (X
(σ)
t ) ? [Rüschendorf-Bergenthum 2007,

P. 2016]

P.c.o.c. trough Martingale Optimal Transport.
[Bëıgelbock,Henry-Labordère et al, 2013, Tan, Touzi, Henry-Labordère 2015,

Jourdain-P. 2022].
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Introduction

Aims and methods

1 Unify and generalize these results with of focus on functional aspects
(path-dependent payoffs) (like Asian options) i.e. both functional
convex order I and II.

2 Constraint: provide a constructive method of proof

based on time discretization of continuous time martingale dynamics
(risky assets in Finance) .
using numerical schemes that preserve the functional convex order
satisfied by the process under consideration. . .
e.g. to avoid “convexity arbitrages” in Finance.

3 Apply the paradigm to various frameworks:

American style options, jump diffusions, stochastic integrals,

McKean-Vlasov diffusions, MFG [Liu-P. 2022, SPA] and [Liu-P. 2023,

AAP],

Volterra equations [Jourdain-P. 2022],

etc.
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Martingale (and scaled) Brownian diffusions

Martingale (and scaled) Brownian diffusions

Pre-order � on M(d , q,R): let A, B∈Md,q.

A � B if BB∗ − AA∗∈ S+(d ,R).

B If d = q = 1, a � b iff a2 ≤ b2 iff |a| ≤ |b|]

� -Convexity: σ : Rd → Md,q is �-convex if

∀ x , y ∈ Rd , λ∈ [0, 1], there exists Oλ,x , Oλ,y ∈ O(d) such that

σ
(
λx + (1− λ)y) � λσ(x)Oλ,x + (1− λ)σ(y)Oλ,y

i.e.

σσ∗
(
λx + (1−λ)y) ≤

(
λσ(x)Oλ,x + (1−λ)σ(y)Oλ,y

)(
λσ(x)Oλ,x + (1−λ)σ(y)Oλ,y

)∗
B d = q = 1 with Oλ,x = sign(σ(x)) this simply reads

|σ| convex.
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Martingale (and scaled) Brownian diffusions

Theorem (martingale case (weak), P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

Letσ, θ∈ Clinx
(
[0,T ]× R,Md,q

)
.

dX
(σ)
t = σ(t,X

(σ)
t )dW

(σ)
t , X

(σ)
0 ∈ L1+η, η > 0

dX
(θ)
t = θ(t,X

(θ)
t )dW

(θ)
t , X

(θ)
0 ∈ L1+η, both (W

(·)
t )t∈[0,T ] standard B.M.

(a) If X
(σ)
0 �cvx X

(θ)
0 and

(i)σ σ(t, .) : Rd →Md,q is �-convex for every t∈ [0,T ],
or
(i)θ θ(t, .) : Rd →Md,q is �-convex for every t∈ [0,T ],
and
(ii) σ(t, ·) � θ(t, ·) for every t∈ [0,T ]

then, for every functional F : C([0,T ],Rd)→ R, l.s.c. convex,

(i) The function x 7→ EF (X (σ),x) is convex from Rd to (−∞,+∞],

(ii) Convex ordering holds: EF (X (σ)) ≤ EF (X (θ))∈ (−∞,+∞].

• By a functional inf-convolution argument, it suffices to consider ‖ · ‖sup-Lipschitz functionals.
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Martingale (and scaled) Brownian diffusions

Theorem (martingale case (strong), P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

Letσ, θ∈ Lipx
(
[0,T ]× R,Md,q

)
, W q-S.B.M.. Let X (σ) and X (θ) be the unique

strong solutions to

dX
(σ)
t = σ(t,X

(σ)
t )dW t , X

(σ)
0 ∈ L1, (no more η!)

dX
(θ)
t = θ(t,X

(θ)
t )dW t , X

(θ)
0 ∈ L1, (W t)t∈[0,T ] standard B.M.

(a) If X
(σ)
0 �cvx X

(θ)
0 and

(i)σ σ(t, .) : Rd →Md,q is �-convex for every t∈ [0,T ],
or
(i)θ θ(t, .) : Rd →Md,q is �-convex for every t∈ [0,T ],
and
(ii) σ(t, ·) � θ(t, ·) for every t∈ [0,T ]

then, for every F : C([0,T ],Rd)→ R, l.s.c. convex,

(i) The function x 7→ EF (X (σ),x) is convex from Rd to (−∞,+∞],

(ii) Convex ordering holds: EF (X (σ)) ≤ EF (X (θ))∈ (−∞,+∞].

• By a functional inf-convolution argument, it suffices to consider ‖ · ‖sup-Lipschitz functionals.
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Martingale (and scaled) Brownian diffusions

Scaled/drifted martingale diffusions (extension to)

The former theorems still hold true for

dX
(σ)
t = α(t)

(
X

(σ)
t + β(t)

)
dt + σ(t,X

(σ)
t )dW

(σ)
t ,

dX
(θ)
t = α(t)

(
X

(θ)
t + β(t)

)
dt + θ(t,X

(θ)
t )dW

(θ)
t ,

where α(t)∈Md ,d(R) and β(t)∈ Rd are continuous.

Change of variable:

X̃
(σ)
t = e−

∫ t
0 α(s)ds

(
X

(σ)
t + β(t)

)
.

Finance: spot interest rate α(t) = r(t)1 and β(t) = 0 since typical
(risk-neutral) dynamics of traded assets read

dSt = r(t)Stdt + Stσ(St , ω)dWt

For more general drifts b(t, x) when d = q = 1: functional version of
Hajek’s theorem: monotone functional convex order holds true if

∀ t∈ [0,T ], b(t, .) is convex.
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Martingale (and scaled) Brownian diffusions

Strategy (constructive)

Time discretization (preferably) accessible to simulation: typically the
Euler scheme.

Propagate convexity (marginal or pathwise)

Propagate comparison (marginal or pathwise)

Transfer by functional limit theorems “à la Jacod-Shiryaev”.
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Martingale (and scaled) Brownian diffusions

Step 1: discrete time ARCH models

ARCH dynamics: Let (Zk)1≤k≤n be a sequence of independent,
symmetric r.v. on (Ω,A,P). Two ARCH models: X0,Y0∈ L1(P),

Xk+1 = Xk + σk(Xk)Zk+1,

Yk+1 = Yk + θk(Yk)Zk+1, k = 0 : n − 1,

where σk , θk : R→ R, k = 0 : n − 1 have linear growth.

Proposition (Propagation result)

If σk , k = 0 = n − 1 are �-convex with linear growth,

X0 = x and ∀ k∈ {0, . . . , n − 1}, σk � θk ,

then, for every convex funtion F : (Rd)n+1 → R convex with linear growth

x 7−→ EF (x ,X x
1 . . . ,X

x
n ) is convex.
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Martingale (and scaled) Brownian diffusions

Partial proof (marginal) with Gaussian white noise

Zk ∼ N (0, Iq), 1 ≤ k ≤ n.

Let f : Rd → R be a convex function. Let

Pσk f (x) := Ef (x + σk(x)Z ) =
[
E f (x + AZ )

]
|A=σk (x)

.

Set A∈Md ,q 7→ Qf (A) := E f (x + AZ ) is right O(d)-invariant,
convex and �-non-decreasing by the starting example.

Then Pσk f is convex since ∀ x , y ∈ Rd and ∀λ∈ [0, 1]

Pσk f
(
λx + (1− λ)y

)
= Qf

(
σk(λx + (1− λ)y)

)
≤Qf

(
λσk(x) + (1− λ)σk(y)

)
≤λQf

(
σk(x)

)
+ (1− λ)Qf

(
σk(y)

)
= λPσk f (x) + (1− λ)Pσk f (y).

Hence

x 7−→ E f (X x
n ) = Pσ1:nf (x) := Pσ1 ◦ · · · ◦ Pσn f (x) is convex
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Martingale (and scaled) Brownian diffusions

Theorem (Discrete time comparison result)

If all σk , k = 0 = n − 1 or all θk , k = 0 : n − 1 are �-convex with linear
growth,

X0 �cvx Y0 and ∀ k∈ {0, . . . , n − 1}, σk � θk ,

then
(X0, . . . ,Xn) �cvx (Y0, . . . ,Yn).
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Martingale (and scaled) Brownian diffusions

Partial proof (marginal) with Gaussian white noise

Backward induction on k .

For k = n. Let f : Rd → R be a (Lipschitz) convex function.

σn� θn =⇒ Pσn f (x) = Qf
(
σn(x)

)
≤ Qf

(
θn(x)

)
= Pθn f (x)

by non-decreasing �-monotony of Q.

Assume Pσk+1:nf︸ ︷︷ ︸
convex

≤ Pθk+1:nf .

A ∈Md,q 7−→ Q
(
Pσk+1:nf

)
(A) is �-non-decreasing

so that Pσk:nf (x) = Pσk (Pσk+1:n)f (x) = Q
(
Pσk+1:nf

)(
σk(x)

) ↓
≤Q

(
Pσk+1:nf

)(
θk(x)

)
≤ Q

(
Pθk+1:nf

)(
θk(x)

)
= Pθk:nf (x).

Hence

E f (Xσ
n ) = EPσ1:nf (X0) ≤ EPσ1:nf (Y0) ≤ EPθ1:nf (Y0) = E f (X θ

n ).
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Martingale (and scaled) Brownian diffusions

Functional approach

By “functional” we mean here : F (X0, . . . ,Xn) with F : (Rd)n+1 → R
convex.

Same strategy by induction

But entirely backward.
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Martingale (and scaled) Brownian diffusions

Step 2 of the proof: Back to continuous time

B Euler scheme(s): Discrete time Euler scheme with step T
n , starting at x

is an ARCH model. For X (σ): for k = 0, . . . , n − 1,

X̄
(σ),n
tnk+1

= X̄
(σ),n
tnk

+ σ(tnk , X̄
(σ),n
tnk

)
(
W tnk+1

−W tnk

)
, X̄

(σ),n
0 = x

Set
Zk = W tnk

−W tnk−1
, k = 1, . . . , n

⇓

discrete time setting applies

Remark. Linear growth of σ and θ, implies

∀ p > 0, sup
n≥1

∥∥∥ sup
t∈[0,T ]

|X̄ (σ),n
t |

∥∥∥
p

+ sup
n≥1

∥∥∥ sup
t∈[0,T ]

|X̄ (θ),n
t |

∥∥∥
p
< +∞.
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Martingale (and scaled) Brownian diffusions

From discrete to continuous time

B Interpolation (n ≥ 1)

Piecewise affine interpolator defined by

∀ x0:n∈ Rn+1, ∀ k = 0, . . . , n − 1, ∀ t∈ [tnk , t
n
k+1], .

in(x0:n)(t) =
n

T

(
(tnk+1 − t)xk + (t − tnk )xk+1

)
X̃ (σ),n := in

(
(X̄

(σ),n
tnk

)k=0:n

)
= piecewise affine Euler scheme.

Figura: Interpolator
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Martingale (and scaled) Brownian diffusions

B Let F : C([0,T ],R)→ R be a convex functional (with r -poly. growth).

∀ n ≥ 1, Fn : Rn+1 3 x0:n 7−→ Fn(x0:n) := F
(
in(x0:n)

)
.

Step 1 (Discrete time): F
(
X̃ (σ),n

)
= Fn

(
(X̄

(σ),n
tnk

)k=0:n and

F convex =⇒ Fn convex, n ≥ 1.

Discrete time result implies since σ(tnk , .) ≤ θ(tnk , .).

EF
(
X̃ (σ),n

)
= EFn

(
(X̄

(σ),n
tnk

)k=0:n

)
≤EFn

(
(X̄

(θ),n
tnk

)k=0:n

)
= EF

(
X̃ (θ),n

)
.

Step 2 (Transfer): See e.g. [Jacod-Shiryaev’s book, 2nd edition,
Theorem 3.39, p.551].

X̃ (σ),n L(‖.‖sup)−→ X (σ) as n→∞.

EF (X (σ)) = lim
n

EF
(
X̃ (σ),n

)
(idem for X (θ)).
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Martingale (and scaled) Brownian diffusions

The Euler scheme provides a simulable approximation

which preserves convex order.
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’23)

Is convexity necessary ? σ(t, x) = σ(x), d = 1

Note that when ϑ = σ, a posteriori (ii)⇒ (i) since

δλx+(1−λ)y �cvx λδx + (1− λ)δy

so that, as σ(·) ≤ σ(·) (sic!),

EF (Xλx+(1−λ)y ) ≤ λEF (X x) + (1− λ)EF (X y ).

One shows [Jourdain-P ’23] that (when d = 1)√
2

π
|σ(x)| = lim

t→0

1√
t
E|X x

t −x | = lim
t→0

1√
t
E|X x

0−X x
t | = lim

t→0

1√
t
EF (X x)

with F (α) = |α(t)− α(0)| an (only) 2-marginal functional convex
functional.

If convexity propagation for 2-marginal functional holds true then |σ|
is convex !!

The convexity assumption on σ or ϑ is mandatory . . . except maybe
for 1-marginal convex order when d = q = 1.
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’23)

For the 1D diffusion (after [El Karoui et al.])

Let ϕ(x) = E f (X x
T ) with f : R→ R convex with right derivative f ′r .

One has

ϕ′(x) = E
[
f ′r (X x

T )e
∫ T

0 σ′(X x
s )dWs− 1

2

∫ T
0 (σ′)2(X x

s )ds
]

= . . .

= EQf
′
r (Y x

T ) Girsanov !

x 7→ Y x
T is non-decreasing (cf. [Revuz-Yor])

Finally
ϕ′ : x 7−→ EQ f ′r (X x

T ) is non-decreasing

so that (almost . . . ) whatever σ is

ϕ : x 7−→ E f (X x
T ) is convex.

So 1D setting for 1-marginal functionals is special !
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’23)

Smooth σ & d = q = 1: get rid of convexity (with B.
Jourdain ’22)

Assume σ : R→ R+ C 2, Lipschitz (‖σ′‖∞ < +∞).

True Euler operator, Z ∼ N (0, 1):

Pf (x) = E f
(
x +
√
hσ(x)Z

)
.

Assume w.l.g. f : Rd → R C 2 and convex

(Pf )′′(x) = E
[
f ′′(x +

√
hσ(x)Z

)
(1 +

√
hσ′(x)Z)2]

+
√
hσ′(x)E

[
f ′(x +

√
hσ(x)Z

)
Z
]

= E
[
f ′′(x +

√
hσ(x)Z

)
(1 +

√
hσ′(x)Z)2]

+ hσσ′′(x)E
[
f ′′(x +

√
hσ(x)Z)

]
Stein I.P.

= E
[
f ′′(x +

√
hσ(x)Z

) (
(1 +

√
hσ′(x)Z)2 + hσσ′′(x)

)︸ ︷︷ ︸
always ≥0 ∀ Z(ω)??

]

No ! But. . . If we truncate : Z  Z h = Z1{|Z |≤Ah}. . .
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’23)

. . . Then, the same Stein-I.P. transform yields

(Phf )′′(x)

= E
[
f ′′(x +

√
hσ(x)Z h

) (
(1 +

√
hσ′(x)Z h)2 + h

(
1− e−(A2

h−(Z h)2)
)
1{Z h 6=0}σσ

′′(x)
)︸ ︷︷ ︸

always ≥0 ∀ Z h(ω)??

]

YES !! If Ah = A/
√
h with A < 1

‖σ′‖∞ for h small enough, provided

(∗) sup
x∈R

σ(σ′′)−

|σ′|
< +∞ (=⇒ Ok if σ convex since = 0!!)

Hence truncated Euler scheme propagates convexity, → comparison, etc !

Truncated Euler scheme with time step h = T/n does converge (almost) “as
usual” toward the diffusion as n→∞.

Smoothness of σ and (∗) can be relaxed into σ2(x) + ax2 convex for some
a > 0 (semi-convexity).

Theorem (Jourdain-P. 2023)

Under this semi-convexity assumption on σ2 both propagation & comparison theorems
hold for 1-marginal convex ordering.
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’23)

Similar results for monotone convex ordering for diffusions sharing the
same convex drift.

Applications to local volatility models (like CEV) extending results by
El Karoui-Jeanblanc-Shreve to continuous time path-dependent
options.

Extension to m-marginal directionally convex functionals F (see also
Rüshendorf & Bergenthum but . . . with restrictions).
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Martingale (and scaled) Brownian diffusions Directionally convex functionals

Directionally convex functionals

A function f : Rm → R is directionally convex if

∀ i , xi 7→ f (x1, . . . , xi , . . . xm) is convex
∀ j , xj 7→ ∂xi f (x1, . . . , xi , . . . xm) is non-decreasing.

Functional version (smooth directionally convex functionals):
f : C ([0,T ],R)→ R

∀x , u, v ∈ C ([0,T ],R), u, v ≥ 0 =⇒ DF (x).(u, v) ≥ 0

Theorem

The 1D version of both functional comparison-propagation theorems
remains true under the assumption that σ2 (or ϑ2) is semi-convex, for the
class of continuous directionally convex functionals on C ([0,T ],R) with

r -polynomial growth if X
(σ)
0 and X

(ϑ)
0 ∈ Lr (P).
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Martingale (and scaled) Brownian diffusions Directionally convex functionals

Examples

Figura: Comparing various convexities
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Martingale (and scaled) Brownian diffusions Directionally convex functionals

Examples

Let

F (x) = Φ

(∫ T

0
ϕ(x(s))ds

)
.

F is convex iff ϕ is convex and Φ is non-decreasing convex.

F is directionally convex iff both ϕ and Φ are non-decreasing convex.
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Martingale (and scaled) Brownian diffusions Directionally convex functionals

Extensions

This provides as systematic approach which successfully works with

Jump diffusion models,

Path-dependent American style options,

BSDE (without “Z” in the driver),

. . .
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McKean-Vlasov diffusions McKean-Vlasov equations

McKean-Vlasov diffusions:

The MKV dynamics

(E ) ≡ dXt = b(t,Xt , µt)dWt + σ(t,Xt , µt)dWt , t∈ [0,T ]

with µt = L(Xt), W = (Wt)t∈[0,T ] a standard B.M. and

b, σ : [0,T ]× R× Pp(R)→ R are continuous satisfying

(Lip) ≡ b(t, ·, ·), σ(t, ·, ·) is
(
|·|,Wp

)
-Lipschitz, uniformly in t∈ [0,T ].

Wasserstein distance: Wp
p (µ, ν) = inf

{ ∫
|x − y|pm(dx, dy), m(dx,Rd ) = µ, m(Rd

, dy) = ν
}
.(

= sup
{ ∫

fdµ−
∫

fdν, [f ]Lip ≤ 1
}

when p = 1
)
.

Under this assumption a strong solution exists for this equation.

“Scaled” Martingality “requires” a drift term

b(t,Xt , µt) = α(t)(Xt + β(t,EXt))

α(t), β(t, ξ) Hölder continuous in t, β Lipschitz in ξ, uniformly in t.
(From now on all zero for convenience. . . )
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McKean-Vlasov diffusions McKean-Vlasov equations

Understanding MKV

Vlasov framework (p = 1). If σ has the following linear representation
in µ

σ(x , µ) =

∫
R
σσ(x , ξ)µ(dξ).

Non linear framework. E.g.

σ(x , µ) = ϕ0

(∫
R
σσ(x , ξ)µ(dξ)

)
.
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McKean-Vlasov diffusions Convex order for McKean-Vlasov diffusions (with Y. Liu, ’20)

MKV propagates convex order

Theorem (Liu-P., AAP 2023)

Let σ, θ∈ Lip
(
[0,T ]× R× Pp(R),Rd

)
, p ≥ 2. Let X (σ) and X (θ) be the unique

solutions to

dXt = σ(t,Xt , µt)dW t , X0∈ Lp

dYt = θ(t,Yt , νt)dW t , Y0∈ Lp with (W
(·)
t )t∈[0,T ] standard B.M.

If


(i)σ σ(t, x , µ) is x-�-convex and µ-↑cv for every t∈ [0,T ],
or
(i)θ θ(t, x , µ) is x-�-convex and µ-↑cv for every t∈ [0,T ],
and
(ii) σ(t, x , µ) � θ(t, x , µ) [|σ(t, x, µ)| ≤ |θ(t, x, µ)| if d = 1]

and X0 ≤cv Y0, then, for every F : C([0,T ],R)→ R, convex with
‖ . ‖sup-polynomial growth,

x 7→ EF (X x) is convex (if X0 = x and (i)σ holds) and EF (X ) ≤ EF (Y ).
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McKean-Vlasov diffusions Convex order for McKean-Vlasov diffusions (with Y. Liu, ’20)

Specificty of the proof

The “regular” Euler scheme is again the main tool . . . although not
simulatable.

Specificity for convexity propagation: two steps

Forward “marginal ” approach necessary
prior to

a backward “functional” approach.
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Volterra equations

Stochastic Volterra equation (for X0∈ L1(P))

Let (Xt)t∈[0,T ] be a solution to the scaled stochastic Volterra equation

Xt = X0 +

∫ t

0

K (t, s)
(
α(s) +β(s)Xs

)
ds +

∫ t

0

K (t, s)σ(s,Xs)dWs , t∈ [0,T ]

where the non-negative kernel
(
K (t, s)

)
0≤s≤t≤T is measurable and

integrable, σ : [0,T ]× Rd →Md,q and (Wt)t∈[0,T ] is a standard
q-dimensional Brownian motion on (Ω,A,P).

Theorem (Strong solution, Zhang (2005), Joudain-P’22)

If If sup
t∈[0,T ]

∫ t

0

K 2ρ(t, s)ds < +∞ for some ρ > 1,

(Kcont
θ ) ∃κ < +∞, ∀ δ ∈ (0,T ), sup

t∈[0,T ]

[∫ t

0

|K(
(
t + δ) ∧ T , s

)
− Ki (t, s)|ids

] 1
i

≤ κ δθ

and b(t, .) and σ(t, .) are Lipschitz uniformly in t∈ [0,T ] then, for any
X0∈ L1(P), X0 ⊥⊥W , the equation has a unique FX0,W -adapted pathwise
continuous strong solution.
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Volterra equations

Non-Markovian dynamics

Main features:

Such a process is centered, (FW
t )-adapted but, in general,

it is not a martingale (not even a semi-martingale),
nor a Markov process.
Used to mimick Fractional Brownian motion driven SDEs when
K (t, s) = (t − s)H−

1
2 (Rough stochastic volatility models à la

Gatheral-Rosenbaum).

Theorem (convex propagation, (Jourdain-P. ’22))

Assume X0∈ Lp(P), p∈ 51,+∞) and

∀ t ∈ [0,T ], x 7→ σ(t, x) is �-convex

then, for every convex functional F : C([0,T ],Rd)→ R with ‖ . ‖sup-p-pol.growth

x 7−→ EF (X x) is convex.
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Volterra equations

Functional convex ordering

Let

Yt = Y0 +

∫ t

0

K (t, s)
(
α(s) +β(s)Ys

)
ds +

∫ t

0

K (t, s)θ(s,Ys)dWs , t∈ [0,T ]

Theorem (convex ordering (Jourdain-P. ’22))

If 
(i)σ σ(t, x) is x-�-convex for every t∈ [0,T ],
or
(i)θ θ(t, x) is x-�-convex for every t∈ [0,T ],
and
(ii) σ(t, x) � θ(t, x) [|σ(t, x)| ≤ |θ(t, x)| if d = 1]

and X0 ≤cv Y0, then, for every F : C([0,T ],R)→ R, convex (with
‖ . ‖sup-polynomial growth),

EF (X ) ≤ EF (Y ).
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Volterra equations

Methods of proof

(α = β = 0 for simplicity).

We consider its Euler scheme with time step T
n (tk = kT

n ):

X̄tk = X0 +
k−1∑
`=0

σ(t`, X̄t`)

∫ t`+1

t`

K (tk , s)dWs , X̄0 = X0.

Not enough due to lack of Markovianity since X̄tk is not (in general ) a
function of (X̄tk−1

, (Ws −Wtk−1
)s∈[tk−1,tk ]).

Markovianization: introduce for k ∈ {1, · · · , n}, (X k
t`)0≤`≤k starting from

X k
0 = X0 and evolving inductively according to

X k
t`+1

= X k
t` + σ(t`, X̄t`)

∫ t`+1

t`

K (tk , s)dWs , 0 ≤ ` ≤ k − 1,

so that X̄tk = X k
tk for k ∈ {1, · · · , n} and X n = X̄ .

“Extend” the backward propagation proof to functionals

F
(
(X n

t`)`=0:n, . . . , (X
k
t`)`=0:k , . . . , (X

1
t`)`=0:1

)
.
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Volterra equations

Transfer to continuous time by letting n→∞ (using e.g. Richard et al.
’20). �

Extension to (one-dimensional) non-decreasing convex ordering when the
drift b is �-convex.
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Volterra equations

Applications to Vix options in rough Heston model

Let us consider the auxiliary variance process in the quadratic rough Heston
model (see Gatheral-Jusselin-Rosenbaum ’20):

Vt = a(Zt − b)2 + c with a, b, c ≥ 0

and, for H∈ (0, 1/2),

Zt = Z0+

∫ t

0

(t−s)H−
1
2λ(f (s)−Zs)ds+σ

∫ t

0

(t−s)H−
1
2

√
a(Zs − b)2 + cdWs .

z 7→
√
a(z − b)2 + c is convex and Lipschitz.

Let (Zσt )t≥0 be its unique strong solution and V σ the resulting squared
volatility.

For σ∈ (0, σ̃], one has (Zσt )t∈[0,T ] �cvx (Z σ̃t )t∈[0,T ].

Convexity of L2(dt) norm and (again) of z 7→
√
a(z − b)2 + c imply that

E

√ 1

T

∫ T

0

V σ
t dt

 ≤ E

√ 1

T

∫ T

0

V σ̃
t dt

 .
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