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1. Motivation



Background
•Well-known illustration of smoothing properties of heat kernel:
ODE driven by bounded non-Lipschitz velocity field

Ẋt = bt(Xt)

◦ b continuous⇒ existence but uniqueness

◦ restore uniqueness by perturbing the dynamics by a Brownian
motion (Bt)t≥0

dXt = bt(Xt)dt + dBt

• General objective

◦ similar smoothing properties but for

∂tµt = −div
(
bt(·, µt)µt

)
where µt ∈ P(Rd)

◦ what is B here? Intuitively, should force µt to be random

◦ motivation: gradient descent on the space of probability
measures, mean-field games
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Form of the noise
• Intuitively, use kind of Brownian motion on the space of P(R)

◦ throughout, dimension is 1 (work on P(R))

◦ earlier approaches but no canonical definition: Stannat [02,06],
Sturm and Von Renesse [09], Konarovskyi [15], Dello Schiavo [20]...

• Here, follow P.L. Lions’ approach to differential calculus on P2(R)

◦ see function ϕ : P(R) 3 µ 7→ ϕ(µ) ∈ R as

L2(S = R/Z, dx) 3 X 7→ ϕ
(
L(X)

)
• Proceed here in the same way for smoothing out ϕ:

L2(S, dx) 3 X 7→ ϕ
(
L(Xt)

)
, t > 0,

with

dXt(x) = ∆Xt(x)dt + dWt(x), t > 0; X0(x) = X(x),

where (Wt(x))t≥0,x∈R white noise with values in L2(S, dx)

◦ but destroys the mean-field structure!
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2. Rearranged Noise



General plan
• Throughout, d = 1

• Take as before SHE

dXt(x) = ∆Xt(x)dt + dWt(x), x ∈ S, t ≥ 0,

◦ with
Wt(x) =

∑
m∈Z

Wm
t em(x)

where ((Wm
t )t≥0)m∈Z are independent Brownian motions and (em)m∈Z

shorter notation for Fourier basis

• Recall the shape of the solution

Xt(x) =

[
exp(t∆)X0 +

∫ t

0
exp

(
(t − s)∆

)
dWs

]
(x)

• In order to make it intrinsic{ RE-ARRANGE

• Intuitively

Xt {
[
exp(dt∆)Xt+

∫ dt

0
exp

(
(dt−s)∆

)
dWt+s

]
{ re-arrangement = Xt+dt
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Re-arrangement in 1d
• Take a probability measure µ on R

µ↔ quantile function F−1
µ

◦ where x ∈ (0, 1) 7→ F−1
µ (x) is the quantile function

◦ x ∈ (0, 1) 7→ F−1
µ (x) is the canonical random variable for

representing µ, i.e.

Leb(0,1) ◦
(
x ∈ (0, 1) 7→ F−1

µ (x)
)−1

= µ

• Conversely, re-arranging Xt(x) in SHE is choosing canonical
representative of

Leb ◦
(
x ∈ S 7→ Xt(x)

)−1

◦ on [0, 1), choose quantile function of law of x 7→ Xt(x)

◦ on S ' [0, 1], choose non-decreasing on [0, 1/2] and reflect
w.r.t. 1/2 to get it periodic



Re-arrangement in 1d
• Take a probability measure µ on R

µ↔ quantile function F−1
µ

◦ where x ∈ (0, 1) 7→ F−1
µ (x) is the quantile function

◦ x ∈ (0, 1) 7→ F−1
µ (x) is the canonical random variable for

representing µ, i.e.

Leb(0,1) ◦
(
x ∈ (0, 1) 7→ F−1

µ (x)
)−1

= µ

• Conversely, re-arranging Xt(x) in SHE is choosing canonical
representative of

Leb ◦
(
x ∈ S 7→ Xt(x)

)−1

◦ on [0, 1), choose quantile function of law of x 7→ Xt(x)

◦ on S ' [0, 1], choose non-decreasing on [0, 1/2] and reflect
w.r.t. 1/2 to get it periodic



Re-arrangement in 1d – plots

• Simplest example: X(x) =
1
N

N−1∑
i=0

ai1[i/N,(i+1)/N)(x)

◦ rearrangement on [0, 1): X∗(x) =
1
N

N−1∑
i=0

a(i)1[i/N,(i+1)/N)(x)

◦ where a(1) ≤ a(2) ≤ ... ≤ a(N) is the non-decreasing
rearrangement of a1, · · · , aN

◦ to get it on S, use contraction of rate 1/2 and symmetrize
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Euler scheme with white noise
• Naive idea (from the general plan)

Xh
n+1 =

[
eh∆Xh

n +

∫ h

0
e(h−s)∆dWnh+s

]∗
◦ h > 0 is a time step

• Not able to prove tightness (i.e., weak compactness)!

• Principle of the analysis taken from Brenier [09]

E
[∥∥∥∥Xh

n+1 − e((n+1)−N)h∆Xh
N

∥∥∥∥2

2,S

]
≤ E

[∥∥∥∥eh∆
(
Xh

n − e(n−N)h∆Xh
N

)∥∥∥∥2

2,S

]
+ E

[∥∥∥∥∫ h

0
e(h−s)∆dWnh+s

∥∥∥∥2

2,S

]
︸                            ︷︷                            ︸

h1−...

◦ use contraction of eh∆{ h−1h1−... = h−... { BAD

◦ need to combine eh∆ and ∗{ NO SIMPLE WAY
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Euler scheme with colored noise
• Replace white noise by colored noise

W̃t(x) =
∑
m∈Z

m−λWm
t em(x)

where λ ∈ (1/2, 1] and ((Wm
t )t≥0)m∈Z are independent Brownian

motions

◦ E
[
‖W̃t(·)‖22

]
= ct < ∞

◦ the noise takes values in L2(S,Leb)

• New scheme

Xh
n+1 =

[
eh∆Xh

n +

∫ h

0
e(h−s)∆dW̃nh+s

]∗
◦ h > 0 is a time step

◦ get tightness in any C([0,T]; L2(S, dx))
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3. Rearranged SHE



Equation satisfied by limit process
• Brenier’s work{ infinitesimal impact of re-arrangement =
reflection on symmetric non-decreasing functions

• Get a reflected SHE

dXt = ∆Xtdt + dW̃t + dηt

◦ recall that Xt ∈ L2(S,Leb) by symmetric non-decreasing

•What is ηt?

dηt =

(
edt∆ Xt +

∫ dt

0
e(dt−s)∆dW̃t+s

)∗
−

(
edt∆ Xt +

∫ dt

0
e(dt−s)∆dW̃t+s

)
◦ if u is smooth and symmetric non-decreasing〈

u, dηt
〉

2,S ≥ 0

◦ if (zt)t≥0 is smooth, symmetric↗ and varies smoothly in time∫ t

0

〈
zs, dηs

〉
2,S

makes sense (think of Stieltjes-integral) and ≥ 0
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Definition of a solution (with W. Hammersley)

• For (Xt)t≥0 a continuous process with values in L2(S,Leb) with each
Xt symmetric non-decreasing

•We require the equation to be satisfied in a weak sense〈
Xt − Xs, u

〉
2,S =

∫ t

s

〈
Xr,∆u

〉
2,Sdr +

〈
W̃t − W̃s, u

〉
2,S +

〈
ηt − ηs, u

〉
2,S

◦ for u smooth function on S

• Non-decreasing property of the reflection term∫ t

s

〈
eε∆Zr, dηr

〉
2,S ≥ 0,

◦ if (Zr)r≥0 continuous process with values in L2(S,Leb) such that
Zr is symmetric decreasing

◦ ε > 0 is an arbitrarily small regularization parameter

• Orthogonality principle

lim
ε↘0
E

∫ t

s

〈
eε∆Xr, dηr

〉
2,S = 0

• Implies uniqueness as in finite dimension
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4. Smoothing Effect



Result (with W. Hammersley)

• Smoothing effect of the semi-group is standard folklore of SPDEs

Pt : X0 ∈ L2(S,Leb) 7→ E
[
ϕ
(
X

X∗0
t

)]
◦ for ϕ : L2(S,Leb)→ R bounded and measurable

• Bound on the Lipschitz constant∣∣∣Ptϕ
(
(X0 + z)∗

)
− Ptϕ(X∗0)

∣∣∣ ≤ CT

t(1+λ)/2 ‖ϕ‖∞‖z‖L2

◦ for t ∈ (0,T]

• Discussion on the rate

◦ blow-up exponent (1 + λ)/2 ∈ (3/4, 1), close to 3/4 for λ ∼ 1/2

◦ NOT AS GOOD as in finite dimension (blow up like t−1/2)

◦ but INTEGRABLE in small time, which is crucial for nonlinear
models
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5. Application to Stochastic Gradient Descent on
P(R)



Gradient Descent
•Minimization problem

min
µ∈P2(R)

{V(µ)}, V : P2(R)→ R

• Gradient descent

dXt(ω) = −∂µV
(
µt,Xt(ω)

)
dt, µt := L(Xt)

◦ where ∂µV is Wasserstein derivative, i.e.

∂µV
(
L(X)

)(
X(x)

)
= DL2(S,dx)

[
V
(
L(X)

)]
(x), x ∈ S

• Stochastic gradient descent

dXt(x) = −∂µV
(
L(Xt)

)(
Xt(x)

)
dt + ∆Xt(x)dt + dW̃t(x) + dηt(x)

for x ∈ S and t ≥ 0

◦ same interpretation as before
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Results (with W. Hammersley)

• Assume V is smooth potential that confines the mean, typically

V(µ) = V0(µ) + λ
(∫
R

xdµ(x)
)2
,

for V0 smooth (with bounded derivatives)

◦ solution to SGD and unique invariant measure

• metastability for rescaled forcing

dXε
t (x) = −∂µV

(
L(Xε

t )
)(

Xε
t (x)

)
dt

+ ε2∆xXε
t (x)dt + εdWε

t (x) + dηεt (x)

◦ where

W̃ε
t (x) =

∑
|m|≤ε−1

Bm
t em(x) +

∑
|m|>ε−1

m−λBm
t em(x)

◦ same result and mean time to exit from convex well is of order
exp(a/ε2) for a the height of the well
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6. Application to mean field games



Application to MFG (with Y. Ouknine)

• Back to the first section{MFG without idiosyncratic noise

◦ 1d representative player{ dXt = αtdt

◦ cost functional with f , g convex in x

J
(
α
)

= E
[
g
(
XT , µT

)
+

∫ T

0

(
f
(
Xt, µt

)
+ 1

2 |αt|
2
)
dt

]

• Optimal trajectories with µt = L(Xt) (on L2(S, dx))

dXt(x) = −Yt(x)dt

+ ∆Xt(x)dt + dWt(x) + dη(x)

dYt(x) = −∂xf
(
Xt(x),LebS ◦ X−1

t
)
dt

+ dMt(x)

YT (x) = ∂xg
(
XT (x),LebS ◦ X−1

T
)
, x ∈ S

◦ ∂xf and ∂xg smooth, then existence and uniqueness hold for
stochastic system! Solution is distributed:

Yt(x) = v(t,X(x),LebS ◦ X−1
t )
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Combining with Idiosyncratic Noise
• Consider (Bt)t≥0 another Brownian motion constructed on some Ω,
whilst W̃ is constructed on some Ω0

◦ with gt Gaussian kernel, let

µt(ω0) = Lx,ω
(
Xt(x, ω0) + Bt(ω)

)
= gt ?Lx

(
Xt(x, ω0)

)
• Trotter-Kato?

X0 { XX0
dt (x, ω0){ gdt ?Lx

(
XX0

dt (x, ω0)
)

◦ generator is ϕ 7→
1
2
∂x∂µϕ + Lµϕ

◦ new stochastic differential inclusion for Xt(x)?

• Higher dimension?

◦ replace re-arrangement by optimal transport: X ∼ ∇xϕ(U) for U
d-dimensional with a density


