# Rearranged stochastic heat equation 

# François Delarue (Nice, Université Côte d’Azur, France) 

## Conference in Honor of Denis Talay

September 4-8, 2023

Joint works W. Hammersley (Nice, Université Côte d'Azur, France)
\& Y. Ouknine (Marrakech, Morocco)

1. Motivation

## Background

- Well-known illustration of smoothing properties of heat kernel: ODE driven by bounded non-Lipschitz velocity field

$$
\dot{X}_{t}=b_{t}\left(X_{t}\right)
$$

$\circ b$ continuous $\Rightarrow$ existence but tniqueness

- restore uniqueness by perturbing the dynamics by a Brownian motion $\left(B_{t}\right)_{t \geq 0}$

$$
d X_{t}=b_{t}\left(X_{t}\right) d t+d B_{t}
$$

## Background

- Well-known illustration of smoothing properties of heat kernel:

ODE driven by bounded non-Lipschitz velocity field

$$
\dot{X}_{t}=b_{t}\left(X_{t}\right)
$$

- $b$ continuous $\Rightarrow$ existence but tniqueness
- restore uniqueness by perturbing the dynamics by a Brownian motion $\left(B_{t}\right)_{t \geq 0}$

$$
d X_{t}=b_{t}\left(X_{t}\right) d t+d B_{t}
$$

- General objective
- similar smoothing properties but for

$$
\partial_{t} \mu_{t}=-\operatorname{div}\left(b_{t}\left(\cdot, \mu_{t}\right) \mu_{t}\right)
$$

where $\mu_{t} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

- what is $B$ here? Intuitively, should force $\mu_{t}$ to be random
- motivation: gradient descent on the space of probability measures, mean-field games


## Form of the noise

- Intuitively, use kind of Brownian motion on the space of $\mathcal{P}(\mathbb{R})$
- throughout, dimension is 1 (work on $\mathcal{P}(\mathbb{R})$ )
- earlier approaches but no canonical definition: Stannat [02,06], Sturm and Von Renesse [09], Konarovskyi [15], Dello Schiavo [20]...


## Form of the noise

- Intuitively, use kind of Brownian motion on the space of $\mathcal{P}_{2}(\mathbb{R})$
- throughout, dimension is 1 (work on $\mathcal{P}_{2}(\mathbb{R})$ )
- Here, follow P.L. Lions' approach to differential calculus on $\mathcal{P}_{2}(\mathbb{R})$
- see function $\varphi: \mathcal{P}(\mathbb{R}) \ni \mu \mapsto \varphi(\mu) \in \mathbb{R}$ as

$$
L^{2}(\mathbb{S}=\mathbb{R} / \mathbb{Z}, d x) \ni X \mapsto \varphi(\mathcal{L}(X))
$$

$\ldots$ and then define derivative as Fréchet derivative in $L^{2}(\mathbb{S}, d x)$

## Form of the noise

- Intuitively, use kind of Brownian motion on the space of $\mathcal{P}_{2}(\mathbb{R})$
- throughout, dimension is 1 (work on $\mathcal{P}_{2}(\mathbb{R})$ )
- Here, follow P.L. Lions' approach to differential calculus on $\mathcal{P}_{2}(\mathbb{R})$
- see function $\varphi: \mathcal{P}(\mathbb{R}) \ni \mu \mapsto \varphi(\mu) \in \mathbb{R}$ as

$$
L^{2}(\mathbb{S}=\mathbb{R} / \mathbb{Z}, d x) \ni X \mapsto \varphi(\mathcal{L}(X))
$$

- Proceed here in the same way for smoothing out $\varphi$ :

$$
L^{2}(\mathbb{S}, d x) \ni X \mapsto \varphi\left(\mathcal{L}\left(X_{t}\right)\right), \quad t>0
$$

with

$$
d X_{t}(x)=\Delta X_{t}(x) d t+d W_{t}(x), \quad t>0 ; \quad X_{0}(x)=X(x)
$$

where $\left(W_{t}(x)\right)_{t \geq 0, x \in \mathbb{R}}$ white noise with values in $L^{2}(\mathbb{S}, d x)$

- but destroys the mean-field structure!


## 2. Rearranged Noise

## General plan

- Throughout, $d=1$
- Take as before SHE

$$
d X_{t}(x)=\Delta X_{t}(x) d t+d W_{t}(x), \quad x \in \mathbb{S}, t \geq 0
$$

- with

$$
W_{t}(x)=\sum_{m \in \mathbb{Z}} W_{t}^{m} e_{m}(x)
$$

where $\left(\left(W_{t}^{m}\right)_{t \geq 0}\right)_{m \in \mathbb{Z}}$ are independent Brownian motions and $\left(e_{m}\right)_{m \in \mathbb{Z}}$ shorter notation for Fourier basis

- Recall the shape of the solution

$$
X_{t}(x)=\left[\exp (t \Delta) X_{0}+\int_{0}^{t} \exp ((t-s) \Delta) d W_{s}\right](x)
$$

## General plan

- Throughout, $d=1$
- Take as before SHE

$$
d X_{t}(x)=\Delta X_{t}(x) d t+d W_{t}(x), \quad x \in \mathbb{S}, t \geq 0
$$

- with

$$
W_{t}(x)=\sum_{m \in \mathbb{Z}} W_{t}^{m} e_{m}(x)
$$

where $\left(\left(W_{t}^{m}\right)_{t \geq 0}\right)_{m \in \mathbb{Z}}$ are independent Brownian motions and $\left(e_{m}\right)_{m \in \mathbb{Z}}$ shorter notation for Fourier basis

- Recall the shape of the solution

$$
X_{t}(x)=\left[\exp (t \Delta) X_{0}+\int_{0}^{t} \exp ((t-s) \Delta) d W_{s}\right](x)
$$

- In order to make it intrinsic $\leadsto$ RE-ARRANGE
- Intuitively
$X_{t} \leadsto\left[\exp (d t \Delta) X_{t}+\int_{0}^{d t} \exp ((d t-s) \Delta) d W_{t+s}\right] \leadsto$ re-arrangement $=X_{t+d t}$


## Re-arrangement in 1d

- Take a probability measure $\mu$ on $\mathbb{R}$

$$
\mu \leftrightarrow \text { quantile function } F_{\mu}^{-1}
$$

- where $x \in(0,1) \mapsto F_{\mu}^{-1}(x)$ is the quantile function
- $x \in(0,1) \mapsto F_{\mu}^{-1}(x)$ is the canonical random variable for representing $\mu$, i.e.

$$
\operatorname{Leb}_{(0,1)} \circ\left(x \in(0,1) \mapsto F_{\mu}^{-1}(x)\right)^{-1}=\mu
$$

## Re-arrangement in 1d

- Take a probability measure $\mu$ on $\mathbb{R}$

$$
\mu \leftrightarrow \text { quantile function } F_{\mu}^{-1}
$$

- where $x \in(0,1) \mapsto F_{\mu}^{-1}(x)$ is the quantile function
- $x \in(0,1) \mapsto F_{\mu}^{-1}(x)$ is the canonical random variable for representing $\mu$, i.e.

$$
\operatorname{Leb}_{(0,1)} \circ\left(x \in(0,1) \mapsto F_{\mu}^{-1}(x)\right)^{-1}=\mu
$$

- Conversely, re-arranging $X_{t}(x)$ in SHE is choosing canonical representative of

$$
\operatorname{Leb} \circ\left(x \in \mathbb{S} \mapsto X_{t}(x)\right)^{-1}
$$

- on $[0,1)$, choose quantile function of law of $x \mapsto X_{t}(x)$
$\circ$ on $\mathbb{S} \simeq[0,1]$, choose non-decreasing on $[0,1 / 2]$ and reflect w.r.t. $1 / 2$ to get it periodic


## Re-arrangement in 1d - plots

- Simplest example: $X(x)=\frac{1}{N} \sum_{i=0}^{N-1} a_{i} 1_{[i / N,(i+1) / N)}(x)$
- rearrangement on $[0,1): X^{*}(x)=\frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} 1_{[i / N,(i+1) / N)}(x)$
- where $a_{(1)} \leq a_{(2)} \leq \ldots \leq a_{(N)}$ is the non-decreasing rearrangement of $a_{1}, \cdots, a_{N}$
$\circ$ to get it on $\mathbb{S}$, use contraction of rate $1 / 2$ and symmetrize


## Re-arrangement in 1d - plots

- Simplest example: $X(x)=\frac{1}{N} \sum_{i=0}^{N-1} a_{i} 1_{[i / N,(i+1) / N)}(x)$
- rearrangement on $[0,1): X^{*}(x)=\frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} 1_{[i / N,(i+1) / N)}(x)$
- where $a_{(1)} \leq a_{(2)} \leq \ldots \leq a_{(N)}$ is the non-decreasing rearrangement of $a_{1}, \cdots, a_{N}$
$\circ$ to get it on $\mathbb{S}$, use contraction of rate $1 / 2$ and symmetrize




## Re-arrangement in 1d - plots

- Simplest example: $X(x)=\frac{1}{N} \sum_{i=0}^{N-1} a_{i} 1_{[i / N,(i+1) / N)}(x)$
- rearrangement on $[0,1): X^{*}(x)=\frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} 1_{[i / N,(i+1) / N)}(x)$
- where $a_{(1)} \leq a_{(2)} \leq \ldots \leq a_{(N)}$ is the non-decreasing rearrangement of $a_{1}, \cdots, a_{N}$
$\circ$ to get it on $\mathbb{S}$, use contraction of rate $1 / 2$ and symmetrize




## Euler scheme with white noise

- Naive idea (from the general plan)

$$
X_{n+1}^{h}=\left[e^{h \Delta} X_{n}^{h}+\int_{0}^{h} e^{(h-s) \Delta} d W_{n h+s}\right]^{*}
$$

- $h>0$ is a time step


## Euler scheme with white noise

- Naive idea (from the general plan)

$$
X_{n+1}^{h}=\left[e^{h \Delta} X_{n}^{h}+\int_{0}^{h} e^{(h-s) \Delta} d W_{n h+s}\right]^{*}
$$

- $h>0$ is a time step
- Not able to prove tightness (i.e., weak compactness)!


## Euller scheme with white noise

- Naive idea (from the general plan)

$$
X_{n+1}^{h}=\left[e^{h \Delta} X_{n}^{h}+\int_{0}^{h} e^{(h-s) \Delta} d W_{n h+s}\right]^{*}
$$

- $h>0$ is a time step
- Not able to prove tightness (i.e., weak compactness)!
- Principle of the analysis taken from Brenier [09]
- use non-expansion of the re-arrangement

$$
\begin{aligned}
& \left\|u^{*}-v^{*}\right\|_{2, \mathbb{S}}^{2}=\int_{\mathbb{S}}\left|u^{*}(x)-v^{*}(x)\right|^{2} d x \leq \int_{\mathbb{S}}|u(x)-v(x)|^{2} d x=\|u-v\|_{2, \mathbb{S}}^{2} \\
& \quad \text { with } u^{*}=X_{n+1}^{h} \text { and } \underbrace{v^{*}=e^{((n+1)-N) h \Delta} X_{N}^{h}}_{\text {sym. } \nearrow} \text { for } N \leq n \\
& \quad \text { and } u=e^{h \Delta} X_{n}^{h}+\int_{0}^{h} e^{(h-s) \Delta} d W_{n h+s} \text { and } v=v^{*} \text { for } N \leq n
\end{aligned}
$$

## Euler scheme with white noise

- Naive idea (from the general plan)

$$
X_{n+1}^{h}=\left[e^{h \Delta} X_{n}^{h}+\int_{0}^{h} e^{(h-s) \Delta} d W_{n h+s}\right]^{*}
$$

- $h>0$ is a time step
- Not able to prove tightness (i.e., weak compactness)!
- Principle of the analysis taken from Brenier [09]

$$
\begin{aligned}
& \mathbb{E}\left[\left\|X_{n+1}^{h}-e^{((n+1)-N) h \Delta} X_{N}^{h}\right\|_{2, \mathbb{S}}^{2}\right] \\
& \leq \mathbb{E}\left[\left\|e^{h \Delta}\left(X_{n}^{h}-e^{(n-N) h \Delta} X_{N}^{h}\right)\right\|_{2, \mathbb{S}}^{2}\right]+\underbrace{\mathbb{E}\left[\left\|\int_{0}^{h} e^{(h-s) \Delta} d W_{n h+s}\right\|_{2, \mathbb{S}}^{2}\right]}_{h^{1-\ldots}}
\end{aligned}
$$

- use contraction of $e^{h \Delta} \leadsto h^{-1} h^{1-\ldots}=h^{-\ldots} \leadsto \mathrm{BAD}$
- need to combine $e^{h \Delta}$ and $* \leadsto$ NO SIMPLE WAY


## Euler scheme with colored noise

- Replace white noise by colored noise

$$
\widetilde{W}_{t}(x)=\sum_{m \in \mathbb{Z}} m^{-\lambda} W_{t}^{m} e_{m}(x)
$$

where $\lambda \in(1 / 2,1]$ and $\left(\left(W_{t}^{m}\right)_{t \geq 0}\right)_{m \in \mathbb{Z}}$ are independent Brownian motions

- $\mathbb{E}\left[\left\|\widetilde{W}_{t}(\cdot)\right\|_{2}^{2}\right]=c t<\infty$
- the noise takes values in $L^{2}(\mathbb{S}$, Leb)


## Euler scheme with colored noise

- Replace white noise by colored noise

$$
\widetilde{W}_{t}(x)=\sum_{m \in \mathbb{Z}} m^{-\lambda} W_{t}^{m} e_{m}(x)
$$

where $\lambda \in(1 / 2,1]$ and $\left(\left(W_{t}^{m}\right)_{t \geq 0}\right)_{m \in \mathbb{Z}}$ are independent Brownian motions

- $\mathbb{E}\left[\left\|\widetilde{W}_{t}(\cdot)\right\|_{2}^{2}\right]=c t<\infty$
- the noise takes values in $L^{2}(\mathbb{S}$, Leb)
- May wonder why $\Delta$ is still needed in the equation
- for the smoothing effect!! [Da Prato, ...]


## Euler scheme with colored noise

- Replace white noise by colored noise

$$
\widetilde{W}_{t}(x)=\sum_{m \in \mathbb{Z}} m^{-\lambda} W_{t}^{m} e_{m}(x)
$$

where $\lambda \in(1 / 2,1]$ and $\left(\left(W_{t}^{m}\right)_{t \geq 0}\right)_{m \in \mathbb{Z}}$ are independent Brownian motions

- $\mathbb{E}\left[\left\|\widetilde{W}_{t}(\cdot)\right\|_{2}^{2}\right]=c t<\infty$
- the noise takes values in $L^{2}(\mathbb{S}$, Leb)
- New scheme

$$
X_{n+1}^{h}=\left[e^{h \Delta} X_{n}^{h}+\int_{0}^{h} e^{(h-s) \Delta} d \widetilde{W}_{n h+s}\right]^{*}
$$

- $h>0$ is a time step
- get tightness in any $\mathcal{C}\left([0, T] ; L^{2}(\mathbb{S}, d x)\right)$


## 3. Rearranged SHE

## Equation satisfied by limit process

- Brenier's work $\leadsto$ infinitesimal impact of re-arrangement $=$ reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$
d X_{t}=\Delta X_{t} d t+d \widetilde{W}_{t}+d \eta_{t}
$$

- recall that $X_{t} \in L^{2}(\mathbb{S}$, Leb) by symmetric non-decreasing


## Equation satisfied by limit process

- Brenier's work $\leadsto$ infinitesimal impact of re-arrangement $=$ reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$
d X_{t}=\Delta X_{t} d t+d \widetilde{W}_{t}+d \eta_{t}
$$

- recall that $X_{t} \in L^{2}(\mathbb{S}$, Leb) by symmetric non-decreasing
- reflected SPDE $\sim$ Donati-Martin \& Pardoux, Nualart \& Pardoux, Zambotti (reflection to preserve positivity), Barbu \& Da Prato \& Tubaro, Röckner \& Zhu and \& Zhu (more general treatment)


## Equation satisfied by limit process

- Brenier's work $\leadsto$ infinitesimal impact of re-arrangement $=$ reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$
d X_{t}=\Delta X_{t} d t+d \widetilde{W}_{t}+d \eta_{t}
$$

- recall that $X_{t} \in L^{2}(\mathbb{S}$, Leb) by symmetric non-decreasing
- What is $\eta_{t}$ ?

$$
d \eta_{t}=\left(e^{d t \Delta} X_{t}+\int_{0}^{d t} e^{(d t-s) \Delta} d \widetilde{W}_{t+s}\right)^{*}-\left(e^{d t \Delta} X_{t}+\int_{0}^{d t} e^{(d t-s) \Delta} d \widetilde{W}_{t+s}\right)
$$

- if $u$ is smooth and symmetric non-decreasing

$$
\left\langle u, d \eta_{t}\right\rangle_{2, \mathbb{S}} \geq 0
$$

- if $\left(z_{t}\right)_{t \geq 0}$ is smooth, symmetric $\nearrow$ and varies smoothly in time

$$
\int_{0}^{t}\left\langle z_{s}, d \eta_{s}\right\rangle_{2, \mathbb{S}}
$$

makes sense (think of Stieltjes-integral) and $\geq 0$

## Equation satisfied by limit process

- Brenier's work $\sim$ infinitesimal impact of re-arrangement $=$ reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$
d X_{t}=\Delta X_{t} d t+d \widetilde{W}_{t}+d \eta_{t}
$$

- recall that $X_{t} \in L^{2}(\mathbb{S}$, Leb) by symmetric non-decreasing
- What is $\eta_{t}$ ?

$$
d \eta_{t}=\left(e^{d t \Delta} X_{t}+\int_{0}^{d t} e^{(d t-s) \Delta} d \widetilde{W}_{t+s}\right)^{*}-\left(e^{d t \Delta} X_{t}+\int_{0}^{d t} e^{(d t-s) \Delta} d \widetilde{W}_{t+s}\right)
$$

$\circ$ if $u$ is smooth and symmetric non-decreasing

$$
\left\langle u, d \eta_{t}\right\rangle_{2, \mathbb{S}} \geq 0
$$

- if $\left(z_{t}\right)_{t \geq 0}$ is smooth, symmetric $\nearrow$ and varies smoothly in time

$$
\int_{0}^{t}\left\langle z_{s}, d \eta_{s}\right\rangle_{2, \mathbb{S}}=\sum_{m} \int_{0}^{t}\left\langle z_{s}, e_{m}\right\rangle_{2, \mathbb{S}} d\left\langle\eta_{s}, e_{m}\right\rangle_{2, \mathbb{S}}
$$

makes sense (think of Stieltjes-integral) and $\geq 0$

## Definition of a solution (with W. Hammersley)

- For $\left(X_{t}\right)_{t \geq 0}$ a continuous process with values in $L^{2}(\mathbb{S}$, Leb $)$ with each $X_{t}$ symmetric non-decreasing


## Definition of a solution (with W. Hammersley)

- For $\left(X_{t}\right)_{t \geq 0}$ a continuous process with values in $L^{2}(\mathbb{S}$, Leb $)$ with each $X_{t}$ symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$
\left\langle X_{t}-X_{s}, u\right\rangle_{2, \mathbb{S}}=\int_{s}^{t}\left\langle X_{r}, \Delta u\right\rangle_{2, \mathbb{S}} d r+\left\langle\widetilde{W}_{t}-\widetilde{W}_{s}, u\right\rangle_{2, \mathbb{S}}+\left\langle\eta_{t}-\eta_{s}, u\right\rangle_{2, \mathbb{S}}
$$

- for $u$ smooth function on $\mathbb{S}$


## Definition of a solution (with W. Hammersley)

- For $\left(X_{t}\right)_{t \geq 0}$ a continuous process with values in $L^{2}(\mathbb{S}$, Leb $)$ with each $X_{t}$ symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$
\left\langle X_{t}-X_{s}, u\right\rangle_{2, \mathbb{S}}=\int_{s}^{t}\left\langle X_{r}, \Delta u\right\rangle_{2, \mathbb{S}} d r+\left\langle\widetilde{W}_{t}-\widetilde{W}_{s}, u\right\rangle_{2, \mathbb{S}}+\left\langle\eta_{t}-\eta_{s}, u\right\rangle_{2, \mathbb{S}}
$$

- for $u$ smooth function on $\mathbb{S}$
- Non-decreasing property of the reflection term

$$
\int_{s}^{t}\left\langle e^{\varepsilon \Delta} Z_{r}, d \eta_{r}\right\rangle_{2, \mathbb{S}} \geq 0
$$

- if $\left(Z_{r}\right)_{r \geq 0}$ continuous process with values in $L^{2}(\mathbb{S}$, Leb $)$ such that $Z_{r}$ is symmetric decreasing
- $\varepsilon>0$ is an arbitrarily small regularization parameter


## Definition of a solution (with W. Hammersley)

- For $\left(X_{t}\right)_{t \geq 0}$ a continuous process with values in $L^{2}(\mathbb{S}$, Leb $)$ with each $X_{t}$ symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$
\left\langle X_{t}-X_{s}, u\right\rangle_{2, \mathbb{S}}=\int_{s}^{t}\left\langle X_{r}, \Delta u\right\rangle_{2, \mathbb{S}} d r+\left\langle\widetilde{W}_{t}-\widetilde{W}_{s}, u\right\rangle_{2, \mathbb{S}}+\left\langle\eta_{t}-\eta_{s}, u\right\rangle_{2, \mathbb{S}}
$$

- for $u$ smooth function on $\mathbb{S}$
- Non-decreasing property of the reflection term

$$
\int_{s}^{t}\left\langle e^{\varepsilon \Delta} Z_{r}, d \eta_{r}\right\rangle_{2, \mathbb{S}} \geq 0
$$

- if $\left(Z_{r}\right)_{r \geq 0}$ continuous process with values in $L^{2}(\mathbb{S}$, Leb $)$ such that $Z_{r}$ is symmetric decreasing
- $\varepsilon>0$ is an arbitrarily small regularization parameter
- Orthogonality principle

$$
\lim _{\varepsilon \searrow 0} \mathbb{E} \int_{s}^{t}\left\langle e^{\varepsilon \Delta} X_{r}, d \eta_{r}\right\rangle_{2, \mathbb{S}}=0
$$

## Definition of a solution (with W. Hammersley)

- We require the equation to be satisfied in a weak sense

$$
\left\langle X_{t}-X_{s}, u\right\rangle_{2, \mathbb{S}}=\int_{s}^{t}\left\langle X_{r}, \Delta u\right\rangle_{2, \mathbb{S}} d r+\left\langle\widetilde{W}_{t}-\widetilde{W}_{s}, u\right\rangle_{2, \mathbb{S}}+\left\langle\eta_{t}-\eta_{s}, u\right\rangle_{2, \mathbb{S}}
$$

- for $u$ smooth function on $\mathbb{S}$
- Non-decreasing property of the reflection term

$$
\int_{s}^{t}\left\langle e^{\varepsilon \Delta} Z_{r}, d \eta_{r}\right\rangle_{2, \mathbb{S}} \geq 0
$$

- if $\left(Z_{r}\right)_{r \geq 0}$ continuous process with values in $L^{2}(\mathbb{S}$, Leb $)$ such that $Z_{r}$ is symmetric decreasing
- $\varepsilon>0$ is an arbitrarily small regularization parameter
- Orthogonality principle

$$
\lim _{\varepsilon \searrow 0} \mathbb{E} \int_{s}^{t}\left\langle e^{\varepsilon \Delta} X_{r}, d \eta_{r}\right\rangle_{2, \mathbb{S}}=0
$$

- Implies uniqueness as in finite dimension

4. Smoothing Effect

## Result (with W. Hammersley)

- Smoothing effect of the semi-group is standard folklore of SPDEs

$$
\mathcal{P}_{t}: X_{0} \in L^{2}(\mathbb{S}, \text { Leb }) \mapsto \mathbb{E}\left[\varphi\left(X_{t}^{X_{0}^{*}}\right)\right]
$$

- for $\varphi: L^{2}(\mathbb{S}$, Leb $) \rightarrow \mathbb{R}$ bounded and measurable

Resullt (with W. Hammersley)

- Smoothing effect of the semi-group is standard folklore of SPDEs

$$
\mathcal{P}_{t}: X_{0} \in L^{2}(\mathbb{S}, \text { Leb }) \mapsto \mathbb{E}\left[\varphi\left(X_{t}^{X_{0}^{*}}\right)\right]
$$

- for $\varphi: L^{2}(\mathbb{S}$, Leb $) \rightarrow \mathbb{R}$ bounded and measurable
- Bound on the Lipschitz constant

$$
\left|\mathcal{P}_{t} \varphi\left(\left(X_{0}+z\right)^{*}\right)-\mathcal{P}_{t} \varphi\left(X_{0}^{*}\right)\right| \leq \frac{C_{T}}{t^{(1+\lambda) / 2}}\|\varphi\|_{\infty}\|z\|_{L^{2}}
$$

- for $t \in(0, T]$

Resullt (with W. Hammersley)

- Smoothing effect of the semi-group is standard folklore of SPDEs

$$
\mathcal{P}_{t}: X_{0} \in L^{2}(\mathbb{S}, \text { Leb }) \mapsto \mathbb{E}\left[\varphi\left(X_{t}^{X_{0}^{*}}\right)\right]
$$

- for $\varphi: L^{2}(\mathbb{S}$, Leb $) \rightarrow \mathbb{R}$ bounded and measurable
- Bound on the Lipschitz constant

$$
\left|\mathcal{P}_{t} \varphi\left(\left(X_{0}+z\right)^{*}\right)-\mathcal{P}_{t} \varphi\left(X_{0}^{*}\right)\right| \leq \frac{C_{T}}{t^{(1+\lambda) / 2}}\|\varphi\|_{\infty}\|z\|_{L^{2}}
$$

- for $t \in(0, T]$
- Discussion on the rate
- blow-up exponent $(1+\lambda) / 2 \in(3 / 4,1)$, close to $3 / 4$ for $\lambda \sim 1 / 2$
- NOT AS GOOD as in finite dimension (blow up like $t^{-1 / 2}$ )
- but INTEGRABLE in small time, which is crucial for nonlinear models

5. Application to Stochastic Gradient Descent on $\mathcal{P}(\mathbb{R})$

## Gradient Descent

- Minimization problem

$$
\min _{\mu \in \mathcal{P}_{2}(\mathbb{R})}\{V(\mu)\}, \quad V: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}
$$

## Gradient Descent

- Minimization problem

$$
\min _{\mu \in \mathcal{P}_{2}(\mathbb{R})}\{V(\mu)\}, \quad V: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}
$$

- Gradient descent

$$
d X_{t}(\omega)=-\partial_{\mu} V\left(\mu_{t}, X_{t}(\omega)\right) d t, \quad \mu_{t}:=\mathcal{L}\left(X_{t}\right)
$$

- where $\partial_{\mu} V$ is Wasserstein derivative, i.e.

$$
\partial_{\mu} V(\mathcal{L}(X))(X(x))=D_{L^{2}(\mathbb{S}, d x)}[V(\mathcal{L}(X))](x), \quad x \in \mathbb{S}
$$

## Gradient Descent

- Minimization problem

$$
\min _{\mu \in \mathcal{P}_{2}(\mathbb{R})}\{V(\mu)\}, \quad V: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}
$$

- Gradient descent

$$
d X_{t}(\omega)=-\partial_{\mu} V\left(\mu_{t}, X_{t}(\omega)\right) d t, \quad \mu_{t}:=\mathcal{L}\left(X_{t}\right)
$$

- where $\partial_{\mu} V$ is Wasserstein derivative, i.e.

$$
\partial_{\mu} V(\mathcal{L}(X))(X(x))=D_{L^{2}(\mathbb{S}, d x)}[V(\mathcal{L}(X))](x), \quad x \in \mathbb{S}
$$

- Stochastic gradient descent

$$
d X_{t}(x)=-\partial_{\mu} V\left(\mathcal{L}\left(X_{t}\right)\right)\left(X_{t}(x)\right) d t+\Delta X_{t}(x) d t+d \widetilde{W}_{t}(x)+d \eta_{t}(x)
$$

for $x \in \mathbb{S}$ and $t \geq 0$

- same interpretation as before

Results (with W. Hammersley)

- Assume $V$ is smooth potential that confines the mean, typically

$$
V(\mu)=V_{0}(\mu)+\lambda\left(\int_{\mathbb{R}} x d \mu(x)\right)^{2},
$$

for $V_{0}$ smooth (with bounded derivatives)

- solution to SGD and unique invariant measure

Results (with W. Hammersley)

- Assume $V$ is smooth potential that confines the mean, typically

$$
V(\mu)=V_{0}(\mu)+\lambda\left(\int_{\mathbb{R}} x d \mu(x)\right)^{2},
$$

for $V_{0}$ smooth (with bounded derivatives)

- No explicit shape of the invariant measure but metastability for rescaled forcing

$$
\begin{aligned}
d X_{t}^{\varepsilon}(x)= & -\partial_{\mu} V\left(\mathcal{L}\left(X_{t}^{\varepsilon}\right)\right)\left(X_{t}^{\varepsilon}(x)\right) d t \\
& +\varepsilon^{2} \Delta_{x} X_{t}^{\varepsilon}(x) d t+\varepsilon d W_{t}^{\varepsilon}(x)+d \eta_{t}^{\varepsilon}(x)
\end{aligned}
$$

- where

$$
\widetilde{W}_{t}^{\varepsilon}(x)=\sum_{|m| \leq \varepsilon^{-1}} B_{t}^{m} e_{m}(x)+\sum_{|m|>\varepsilon^{-1}} m^{-\lambda} B_{t}^{m} e_{m}(x)
$$

- same result


## Results (with W. Hammersley)

- Assume $V$ is smooth potential that confines the mean, typically

$$
V(\mu)=V_{0}(\mu)+\lambda\left(\int_{\mathbb{R}} x d \mu(x)\right)^{2},
$$

for $V_{0}$ smooth (with bounded derivatives)

- metastability for rescaled forcing

$$
\begin{aligned}
d X_{t}^{\varepsilon}(x)= & -\partial_{\mu} V\left(\mathcal{L}\left(X_{t}^{\varepsilon}\right)\right)\left(X_{t}^{\varepsilon}(x)\right) d t \\
& +\varepsilon^{2} \Delta_{x} X_{t}^{\varepsilon}(x) d t+\varepsilon d W_{t}^{\varepsilon}(x)+d \eta_{t}^{\varepsilon}(x)
\end{aligned}
$$

- where

$$
\widetilde{W}_{t}^{\varepsilon}(x)=\sum_{|m| \leq \varepsilon^{-1}} B_{t}^{m} e_{m}(x)+\sum_{|m|>\varepsilon^{-1}} m^{-\lambda} B_{t}^{m} e_{m}(x)
$$

- same result and mean time to exit from convex well is of order $\exp \left(a / \varepsilon^{2}\right)$ for $a$ the height of the well


## 6. Application to mean field games

## Application to MFG (with Y. Ouknine)

- Back to the first section $\leadsto$ MFG without idiosyncratic noise
- 1 d representative player $\leadsto d X_{t}=\alpha_{t} d t$
- cost functional with $f, g$ convex in $x$

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]
$$

## Application to MFG (with Y. Ouknine)

- Back to the first section $\leadsto$ MFG without idiosyncratic noise
- 1 d representative player $\leadsto d X_{t}=\alpha_{t} d t$
- cost functional with $f, g$ convex in $x$

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]
$$

- Optimal trajectories with $\mu_{t}=\mathcal{L}\left(X_{t}\right)\left(\right.$ on $\left.L^{2}(\mathbb{S}, d x)\right)$

$$
\begin{aligned}
& d X_{t}(x)=-Y_{t}(x) d t \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}} \circ X_{t}^{-1}\right) d t \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}
\end{aligned}
$$

## Application to MFG (with Y. Ouknine)

- Back to the first section $\leadsto$ MFG without idiosyncratic noise
- 1 d representative player $\leadsto d X_{t}=\alpha_{t} d t$
- cost functional with $f, g$ convex in $x$

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]
$$

- Optimal trajectories with $\mu_{t}=\mathcal{L}\left(X_{t}\right)\left(\right.$ on $\left.L^{2}(\mathbb{S}, d x)\right)$

$$
\begin{aligned}
& d X_{t}(x)=-Y_{t}(x) d t+\Delta X_{t}(x) d t+d W_{t}(x)+d \eta_{(x)} \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}} \circ X_{t}^{-1}\right) d t \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}
\end{aligned}
$$

$\circ \partial_{x} f$ and $\partial_{x} g$ smooth, then existence and uniqueness hold for stochastic system! Solution is distributed:

$$
Y_{t}(x)=v\left(t, X_{( }(x), \operatorname{Leb}_{\mathbb{S}} \circ X_{t}^{-1}\right)
$$

## Application to MFG (with Y. Ouknine)

- Back to the first section $\leadsto$ MFG without idiosyncratic noise
- 1 d representative player $\leadsto d X_{t}=\alpha_{t} d t$
- cost functional with $f, g$ convex in $x$

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]
$$

- Optimal trajectories with $\mu_{t}=\mathcal{L}\left(X_{t}\right)\left(\right.$ on $\left.L^{2}(\mathbb{S}, d x)\right)$

$$
\begin{aligned}
& d X_{t}(x)=-Y_{t}(x) d t+\Delta X_{t}(x) d t+d W_{t}(x)+d \eta_{( }(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}} \circ X_{t}^{-1}\right) d t+d M_{t}(x) \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}
\end{aligned}
$$

$\circ \partial_{x} f$ and $\partial_{x} g$ smooth, then existence and uniqueness hold for stochastic system! Solution is distributed:

$$
Y_{t}(x)=v\left(t, X_{(x)}, \operatorname{Leb}_{\mathbb{S}} \circ X_{t}^{-1}\right)
$$

## Combining with Idiosyncratic Noise

- Consider $\left(B_{t}\right)_{t \geq 0}$ another Brownian motion constructed on some $\Omega$, whilst $\widetilde{W}$ is constructed on some $\Omega^{0}$
- with $g_{t}$ Gaussian kernel, let

$$
\mu_{t}\left(\omega_{0}\right)=\mathcal{L}_{x, \omega}\left(X_{t}\left(x, \omega_{0}\right)+B_{t}(\omega)\right)=g_{t} \star \mathcal{L}_{x}\left(X_{t}\left(x, \omega_{0}\right)\right)
$$

- Trotter-Kato?

$$
X_{0} \leadsto X_{d t}^{X_{0}}\left(x, \omega_{0}\right) \leadsto g_{d t} \star \mathcal{L}_{x}\left(X_{d t}^{X_{0}}\left(x, \omega_{0}\right)\right)
$$

$\circ$ generator is $\varphi \mapsto \frac{1}{2} \partial_{x} \partial_{\mu} \varphi+\mathbf{L}_{\mu} \varphi$

- new stochastic differential inclusion for $X_{t}(x)$ ?
- Higher dimension?
- replace re-arrangement by optimal transport: $X \sim \nabla_{x} \varphi(U)$ for $U$ $d$-dimensional with a density

