Rearranged stochastic heat equation

François Delarue (Nice, Université Côte d'Azur, France)

Conference in Honor of Denis Talay September 4-8, 2023

Joint works W. Hammersley (Nice, Université Côte d'Azur, France) & Y. Ouknine (Marrakech, Morocco)

1. Motivation

Background

• Well-known illustration of smoothing properties of heat kernel: ODE driven by bounded non-Lipschitz velocity field

$$\dot{X}_t = b_t(X_t)$$

 \circ *b* continuous \Rightarrow existence but uniqueness

• restore uniqueness by perturbing the dynamics by a Brownian motion $(B_t)_{t\geq 0}$

 $dX_t = b_t(X_t)dt + dB_t$

Background

• Well-known illustration of smoothing properties of heat kernel: ODE driven by bounded non-Lipschitz velocity field

$$\dot{X}_t = b_t(X_t)$$

 \circ *b* continuous \Rightarrow existence but uniqueness

• restore uniqueness by perturbing the dynamics by a Brownian motion $(B_t)_{t\geq 0}$

$$dX_t = b_t(X_t)dt + \frac{dB_t}{dB_t}$$

• General objective

similar smoothing properties but for

$$\partial_t \mu_t = -\operatorname{div}(b_t(\cdot, \boldsymbol{\mu}_t)\mu_t)$$

where $\mu_t \in \mathcal{P}(\mathbb{R}^d)$

what is *B* here? Intuitively, should force μt to be random
 motivation: gradient descent on the space of probability measures, mean-field games

Form of the noise

• Intuitively, use kind of Brownian motion on the space of $\mathcal{P}(\mathbb{R})$

• throughout, dimension is 1 (work on $\mathcal{P}(\mathbb{R})$)

earlier approaches but no canonical definition: Stannat [02,06],
 Sturm and Von Renesse [09], Konarovskyi [15], Dello Schiavo [20]...

Form of the noise

- Intuitively, use kind of Brownian motion on the space of P₂(ℝ)
 o throughout, dimension is 1 (work on P₂(ℝ))
- Here, follow P.L. Lions' approach to differential calculus on 𝒫₂(ℝ)
 see function φ : 𝒫(ℝ) ∋ μ ↦ φ(μ) ∈ ℝ as

 $L^2(\mathbb{S} = \mathbb{R}/\mathbb{Z}, dx) \ni X \mapsto \varphi(\mathcal{L}(X))$

... and then define derivative as Fréchet derivative in $L^2(\mathbb{S}, dx)$

Form of the noise

- Intuitively, use kind of Brownian motion on the space of P₂(ℝ)
 o throughout, dimension is 1 (work on P₂(ℝ))
- Here, follow P.L. Lions' approach to differential calculus on P₂(ℝ)
 see function φ : P(ℝ) ∋ μ ↦ φ(μ) ∈ ℝ as

 $L^2(\mathbb{S} = \mathbb{R}/\mathbb{Z}, dx) \ni X \mapsto \varphi(\mathcal{L}(X))$

• Proceed here in the same way for smoothing out φ :

$$L^2(\mathbb{S}, dx) \ni X \mapsto \varphi(\mathcal{L}(X_t)), \quad t > 0,$$

with

 $dX_t(x) = \Delta X_t(x)dt + dW_t(x), \quad t > 0; \quad X_0(x) = X(x),$

where $(W_t(x))_{t\geq 0, x\in\mathbb{R}}$ white noise with values in $L^2(\mathbb{S}, dx)$ • but destroys the mean-field structure!

2. Rearranged Noise

General plan

- Throughout, d = 1
- Take as before SHE

$$dX_t(x) = \Delta X_t(x)dt + dW_t(x), \quad x \in \mathbb{S}, \ t \ge 0,$$

• with

$$W_t(x) = \sum_{m \in \mathbb{Z}} W_t^m e_m(x)$$

where $((W_t^m)_{t\geq 0})_{m\in\mathbb{Z}}$ are independent Brownian motions and $(e_m)_{m\in\mathbb{Z}}$ shorter notation for Fourier basis

• Recall the shape of the solution

$$X_t(x) = \left[\exp(t\Delta)X_0 + \int_0^t \exp((t-s)\Delta)dW_s\right](x)$$

General plan

- Throughout, d = 1
- Take as before SHE

$$dX_t(x) = \Delta X_t(x)dt + dW_t(x), \quad x \in \mathbb{S}, \ t \ge 0,$$

• with

$$W_t(x) = \sum_{m \in \mathbb{Z}} W_t^m e_m(x)$$

where $((W_t^m)_{t\geq 0})_{m\in\mathbb{Z}}$ are independent Brownian motions and $(e_m)_{m\in\mathbb{Z}}$ shorter notation for Fourier basis

• Recall the shape of the solution

$$X_t(x) = \left[\exp(t\Delta)X_0 + \int_0^t \exp((t-s)\Delta)dW_s\right](x)$$

- In order to make it intrinsic \rightarrow **RE-ARRANGE**
- Intuitively

$$X_t \rightsquigarrow \left[\exp(dt\Delta)X_t + \int_0^{dt} \exp((dt-s)\Delta)dW_{t+s}\right] \rightsquigarrow \text{re-arrangement} = X_{t+dt}$$

Re-arrangement in 1d

• Take a probability measure μ on $\mathbb R$

 $\mu \leftrightarrow$ quantile function F_{μ}^{-1}

• where $x \in (0, 1) \mapsto F_{\mu}^{-1}(x)$ is the quantile function • $x \in (0, 1) \mapsto F_{\mu}^{-1}(x)$ is the canonical random variable for representing μ , i.e.

$$\text{Leb}_{(0,1)} \circ \left(x \in (0,1) \mapsto F_{\mu}^{-1}(x) \right)^{-1} = \mu$$

Re-arrangement in 1d

• Take a probability measure μ on $\mathbb R$

 $\mu \leftrightarrow$ quantile function F_{μ}^{-1}

• where $x \in (0, 1) \mapsto F_{\mu}^{-1}(x)$ is the quantile function • $x \in (0, 1) \mapsto F_{\mu}^{-1}(x)$ is the canonical random variable for representing μ , i.e.

Leb_(0,1)
$$\circ \left(x \in (0,1) \mapsto F_{\mu}^{-1}(x) \right)^{-1} = \mu$$

• Conversely, re-arranging $X_t(x)$ in SHE is choosing canonical representative of

$$\text{Leb} \circ (x \in \mathbb{S} \mapsto X_t(x))^{-1}$$

 \circ on [0, 1), choose quantile function of law of $x \mapsto X_t(x)$

 \circ on $\mathbb{S}\simeq[0,1],$ choose non-decreasing on [0,1/2] and reflect w.r.t. 1/2 to get it periodic

Re-arrangement in 1d – plots

• Simplest example:
$$X(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_i \mathbb{1}_{[i/N,(i+1)/N)}(x)$$

• rearrangement on [0, 1): $X^*(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} \mathbb{1}_{[i/N,(i+1)/N)}(x)$

• where $a_{(1)} \le a_{(2)} \le \dots \le a_{(N)}$ is the non-decreasing rearrangement of a_1, \dots, a_N

 \circ to get it on S, use contraction of rate 1/2 and symmetrize

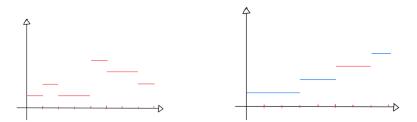
Re-arrangement in 1d – plots

• Simplest example:
$$X(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_i \mathbb{1}_{[i/N,(i+1)/N)}(x)$$

• rearrangement on [0, 1): $X^*(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} \mathbb{1}_{[i/N,(i+1)/N)}(x)$

• where $a_{(1)} \le a_{(2)} \le \dots \le a_{(N)}$ is the non-decreasing rearrangement of a_1, \dots, a_N

 \circ to get it on S, use contraction of rate 1/2 and symmetrize



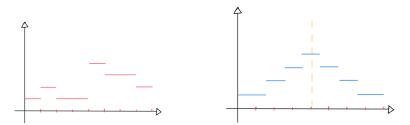
Re-arrangement in 1d – plots

• Simplest example:
$$X(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_i \mathbb{1}_{[i/N,(i+1)/N)}(x)$$

• rearrangement on [0, 1):
$$X^*(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} \mathbb{1}_{[i/N,(i+1)/N)}(x)$$

• where $a_{(1)} \le a_{(2)} \le \dots \le a_{(N)}$ is the non-decreasing rearrangement of a_1, \dots, a_N

 \circ to get it on S, use contraction of rate 1/2 and symmetrize



• Naive idea (from the general plan)

$$X_{n+1}^{h} = \left[e^{h\Delta}X_{n}^{h} + \int_{0}^{h} e^{(h-s)\Delta}dW_{nh+s}\right]^{*}$$

 $\circ h > 0$ is a time step

• Naive idea (from the general plan)

$$X_{n+1}^{h} = \left[e^{h\Delta}X_{n}^{h} + \int_{0}^{h} e^{(h-s)\Delta}dW_{nh+s}\right]^{*}$$

 $\circ h > 0$ is a time step

• Not able to prove *tightness* (i.e., weak compactness)!

• Naive idea (from the general plan)

$$X_{n+1}^{h} = \left[e^{h\Delta}X_{n}^{h} + \int_{0}^{h} e^{(h-s)\Delta}dW_{nh+s}\right]^{*}$$

 $\circ h > 0$ is a time step

- Not able to prove *tightness* (i.e., weak compactness)!
- Principle of the analysis taken from Brenier [09]

• use non-expansion of the re-arrangement

$$||u^* - v^*||_{2,\mathbb{S}}^2 = \int_{\mathbb{S}} |u^*(x) - v^*(x)|^2 dx \le \int_{\mathbb{S}} |u(x) - v(x)|^2 dx = ||u - v||_{2,\mathbb{S}}^2$$

with $u^* = X_{n+1}^h$ and $\underbrace{v^* = e^{((n+1)-N)h\Delta} X_N^h}_{\text{sym. } \mathcal{O}}$ for $N \le n$

and
$$u = e^{h\Delta}X_n^h + \int_0^h e^{(h-s)\Delta}dW_{nh+s}$$
 and $v = v^*$ for $N \le n$

• Naive idea (from the general plan)

$$X_{n+1}^{h} = \left[e^{h\Delta}X_{n}^{h} + \int_{0}^{h} e^{(h-s)\Delta}dW_{nh+s}\right]^{*}$$

 $\circ h > 0$ is a time step

- Not able to prove *tightness* (i.e., weak compactness)!
- Principle of the analysis taken from Brenier [09]

$$\mathbb{E}\left[\left\|X_{n+1}^{h}-e^{((n+1)-N)h\Delta}X_{N}^{h}\right\|_{2,\mathbb{S}}^{2}\right]$$

$$\leq \mathbb{E}\left[\left\|e^{h\Delta}\left(X_{n}^{h}-e^{(n-N)h\Delta}X_{N}^{h}\right)\right\|_{2,\mathbb{S}}^{2}\right] + \underbrace{\mathbb{E}\left[\left\|\int_{0}^{h}e^{(h-s)\Delta}dW_{nh+s}\right\|_{2,\mathbb{S}}^{2}\right]}_{h^{1-\dots}}$$

• use contraction of $e^{h\Delta} \rightsquigarrow h^{-1}h^{1-\dots} = h^{-\dots} \rightsquigarrow BAD$ • need to combine $e^{h\Delta}$ and $* \rightsquigarrow NO$ SIMPLE WAY

Euler scheme with colored noise

• Replace white noise by colored noise

$$\widetilde{W}_t(x) = \sum_{m \in \mathbb{Z}} m^{-\lambda} W_t^m e_m(x)$$

where $\lambda \in (1/2, 1]$ and $((W_t^m)_{t \ge 0})_{m \in \mathbb{Z}}$ are independent Brownian motions

$$\circ \mathbb{E} \big[\| \widetilde{W}_t(\cdot) \|_2^2 \big] = ct < \infty$$

• the noise takes values in $L^2(\mathbb{S}, \text{Leb})$

Euler scheme with colored noise

• Replace white noise by colored noise

$$\widetilde{W}_t(x) = \sum_{m \in \mathbb{Z}} m^{-\lambda} W_t^m e_m(x)$$

where $\lambda \in (1/2, 1]$ and $((W_t^m)_{t \ge 0})_{m \in \mathbb{Z}}$ are independent Brownian motions

 $\circ \, \mathbb{E} \big[\| \widetilde{W}_t(\cdot) \|_2^2 \big] = ct < \infty$

• the noise takes values in $L^2(\mathbb{S}, \text{Leb})$

• May wonder why Δ is still needed in the equation

• for the smoothing effect!! [Da Prato, ...]

Euler scheme with colored noise

• Replace white noise by colored noise

$$\widetilde{W}_t(x) = \sum_{m \in \mathbb{Z}} m^{-\lambda} W_t^m e_m(x)$$

where $\lambda \in (1/2, 1]$ and $((W_t^m)_{t \ge 0})_{m \in \mathbb{Z}}$ are independent Brownian motions

$$\circ \mathbb{E} \big[\| \widetilde{W}_t(\cdot) \|_2^2 \big] = ct < \infty$$

• the noise takes values in $L^2(\mathbb{S}, \text{Leb})$

• New scheme

$$X_{n+1}^{h} = \left[e^{h\Delta}X_{n}^{h} + \int_{0}^{h} e^{(h-s)\Delta}d\widetilde{W}_{nh+s}\right]^{*}$$

- $\circ h > 0$ is a time step
- get tightness in any $C([0, T]; L^2(\mathbb{S}, dx))$

3. Rearranged SHE

- Brenier's work \rightsquigarrow infinitesimal impact of re-arrangement = reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$dX_t = \Delta X_t dt + d\widetilde{W}_t + d\eta_t$$

• recall that $X_t \in L^2(\mathbb{S}, \text{Leb})$ by symmetric non-decreasing

• Brenier's work \rightsquigarrow infinitesimal impact of re-arrangement = reflection on symmetric non-decreasing functions

• Get a reflected SHE

$$dX_t = \Delta X_t dt + d\widetilde{W}_t + d\eta_t$$

◦ recall that $X_t \in L^2(S, \text{Leb})$ by symmetric non-decreasing

o reflected SPDE → Donati-Martin & Pardoux, Nualart &
 Pardoux, Zambotti (reflection to preserve positivity), Barbu & Da
 Prato & Tubaro, Röckner & Zhu and & Zhu (more general treatment)

• Brenier's work \rightsquigarrow infinitesimal impact of re-arrangement = reflection on symmetric non-decreasing functions

• Get a reflected SHE

$$dX_t = \Delta X_t dt + d\widetilde{W}_t + d\eta_t$$

◦ recall that $X_t \in L^2(S, \text{Leb})$ by symmetric non-decreasing

• What is η_t ?

$$d\eta_t = \left(e^{dt\Delta} X_t + \int_0^{dt} e^{(dt-s)\Delta} d\widetilde{W}_{t+s}\right)^* - \left(e^{dt\Delta} X_t + \int_0^{dt} e^{(dt-s)\Delta} d\widetilde{W}_{t+s}\right)$$

 \circ if *u* is smooth and symmetric non-decreasing

$$\big\langle u,d\eta_t\big\rangle_{2,\mathbb{S}}\geq 0$$

• if $(z_t)_{t\geq 0}$ is smooth, symmetric \nearrow and varies smoothly in time

$$\int_0^t \langle z_s, d\eta_s \rangle_{2,\mathbb{S}}$$

makes sense (think of Stieltjes-integral) and ≥ 0

• Brenier's work \rightsquigarrow infinitesimal impact of re-arrangement = reflection on symmetric non-decreasing functions

• Get a reflected SHE

$$dX_t = \Delta X_t dt + d\widetilde{W}_t + d\eta_t$$

◦ recall that $X_t \in L^2(S, \text{Leb})$ by symmetric non-decreasing

• What is η_t ?

$$d\eta_t = \left(e^{dt\Delta} X_t + \int_0^{dt} e^{(dt-s)\Delta} d\widetilde{W}_{t+s}\right)^* - \left(e^{dt\Delta} X_t + \int_0^{dt} e^{(dt-s)\Delta} d\widetilde{W}_{t+s}\right)$$

 \circ if *u* is smooth and symmetric non-decreasing

$$\big\langle u,d\eta_t\big\rangle_{2,\mathbb{S}}\geq 0$$

• if $(z_t)_{t\geq 0}$ is smooth, symmetric \nearrow and varies smoothly in time

$$\int_0^t \langle z_s, d\eta_s \rangle_{2,\mathbb{S}} = \sum_m \int_0^t \langle z_s, e_m \rangle_{2,\mathbb{S}} d\langle \eta_s, e_m \rangle_{2,\mathbb{S}}$$

makes sense (think of Stieltjes-integral) and ≥ 0

• For $(X_t)_{t\geq 0}$ a continuous process with values in $L^2(\mathbb{S}, \text{Leb})$ with each X_t symmetric non-decreasing

- For $(X_t)_{t\geq 0}$ a continuous process with values in $L^2(\mathbb{S}, \text{Leb})$ with each X_t symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$\langle X_t - X_s, u \rangle_{2,\mathbb{S}} = \int_s^t \langle X_r, \Delta u \rangle_{2,\mathbb{S}} dr + \langle \widetilde{W}_t - \widetilde{W}_s, u \rangle_{2,\mathbb{S}} + \langle \eta_t - \eta_s, u \rangle_{2,\mathbb{S}}$$

 \circ for *u* smooth function on \mathbb{S}

- For $(X_t)_{t\geq 0}$ a continuous process with values in $L^2(\mathbb{S}, \text{Leb})$ with each X_t symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$\langle X_t - X_s, u \rangle_{2,\mathbb{S}} = \int_s^t \langle X_r, \Delta u \rangle_{2,\mathbb{S}} dr + \langle \widetilde{W}_t - \widetilde{W}_s, u \rangle_{2,\mathbb{S}} + \langle \eta_t - \eta_s, u \rangle_{2,\mathbb{S}}$$

 \circ for *u* smooth function on \mathbb{S}

• Non-decreasing property of the reflection term

$$\int_{s}^{t} \langle \boldsymbol{e}^{\boldsymbol{\varepsilon}\Delta} Z_{r}, d\eta_{r} \rangle_{2,\mathbb{S}} \geq 0,$$

• if $(Z_r)_{r\geq 0}$ continuous process with values in $L^2(\mathbb{S}, \text{Leb})$ such that Z_r is symmetric decreasing

 $\circ \varepsilon > 0$ is an arbitrarily small regularization parameter

- For $(X_t)_{t\geq 0}$ a continuous process with values in $L^2(\mathbb{S}, \text{Leb})$ with each X_t symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$\langle X_t - X_s, u \rangle_{2,\mathbb{S}} = \int_s^t \langle X_r, \Delta u \rangle_{2,\mathbb{S}} dr + \langle \widetilde{W}_t - \widetilde{W}_s, u \rangle_{2,\mathbb{S}} + \langle \eta_t - \eta_s, u \rangle_{2,\mathbb{S}}$$

 \circ for *u* smooth function on \mathbb{S}

• Non-decreasing property of the reflection term

$$\int_{s}^{t} \langle \boldsymbol{e}^{\boldsymbol{\varepsilon} \Delta} Z_{r}, d\eta_{r} \rangle_{2,\mathbb{S}} \geq 0,$$

• if $(Z_r)_{r\geq 0}$ continuous process with values in $L^2(\mathbb{S}, \text{Leb})$ such that Z_r is symmetric decreasing

 $\circ \varepsilon > 0$ is an arbitrarily small regularization parameter

• Orthogonality principle

$$\lim_{\varepsilon \searrow 0} \mathbb{E} \int_{s}^{t} \langle e^{\varepsilon \Delta} X_{r}, d\eta_{r} \rangle_{2,\mathbb{S}} = 0$$

• We require the equation to be satisfied in a weak sense

$$\langle X_t - X_s, u \rangle_{2,\mathbb{S}} = \int_s^t \langle X_r, \Delta u \rangle_{2,\mathbb{S}} dr + \langle \widetilde{W}_t - \widetilde{W}_s, u \rangle_{2,\mathbb{S}} + \langle \eta_t - \eta_s, u \rangle_{2,\mathbb{S}}$$

 \circ for *u* smooth function on \mathbb{S}

• Non-decreasing property of the reflection term

$$\int_{s}^{t} \langle \boldsymbol{e}^{\boldsymbol{\varepsilon} \Delta} \boldsymbol{Z}_{r}, d\eta_{r} \rangle_{2,\mathbb{S}} \geq 0,$$

• if $(Z_r)_{r\geq 0}$ continuous process with values in $L^2(\mathbb{S}, \text{Leb})$ such that Z_r is symmetric decreasing

 $\circ \varepsilon > 0$ is an arbitrarily small regularization parameter

• Orthogonality principle

$$\lim_{\varepsilon \searrow 0} \mathbb{E} \int_{s}^{t} \langle e^{\varepsilon \Delta} X_{r}, d\eta_{r} \rangle_{2,\mathbb{S}} = 0$$

• Implies uniqueness as in finite dimension

4. Smoothing Effect

Result (with W. Hammersley)

• Smoothing effect of the semi-group is standard folklore of SPDEs

$$\mathcal{P}_t: X_0 \in L^2(\mathbb{S}, \text{Leb}) \mapsto \mathbb{E}\left[\varphi\left(X_t^{X_0^*}\right)\right]$$

 \circ for $\varphi: L^2(\mathbb{S}, \text{Leb}) \to \mathbb{R}$ bounded and measurable

Result (with W. Hammersley)

• Smoothing effect of the semi-group is standard folklore of SPDEs

$$\mathcal{P}_t: X_0 \in L^2(\mathbb{S}, \text{Leb}) \mapsto \mathbb{E}\left[\varphi(X_t^{X_0^*})\right]$$

 \circ for $\varphi: L^2(\mathbb{S}, \text{Leb}) \to \mathbb{R}$ bounded and measurable

• Bound on the Lipschitz constant

$$\left|\mathcal{P}_{t}\varphi((X_{0}+z)^{*})-\mathcal{P}_{t}\varphi(X_{0}^{*})\right| \leq \frac{C_{T}}{t^{(1+\lambda)/2}} \|\varphi\|_{\infty} \|z\|_{L^{2}}$$

 \circ for *t* ∈ (0, *T*]

Result (with W. Hammersley)

• Smoothing effect of the semi-group is standard folklore of SPDEs

$$\mathcal{P}_t: X_0 \in L^2(\mathbb{S}, \text{Leb}) \mapsto \mathbb{E}\Big[\varphi(X_t^{X_0^*})\Big]$$

 \circ for $\varphi: L^2(\mathbb{S}, \text{Leb}) \to \mathbb{R}$ bounded and measurable

• Bound on the Lipschitz constant

$$\left|\mathcal{P}_{t}\varphi((X_{0}+z)^{*})-\mathcal{P}_{t}\varphi(X_{0}^{*})\right| \leq \frac{C_{T}}{t^{(1+\lambda)/2}}\|\varphi\|_{\infty}\|z\|_{L^{2}}$$

◦ for t ∈ (0, T]

• Discussion on the rate

• blow-up exponent $(1 + \lambda)/2 \in (3/4, 1)$, close to 3/4 for $\lambda \sim 1/2$

• NOT AS GOOD as in finite dimension (blow up like $t^{-1/2}$)

but INTEGRABLE in small time, which is crucial for nonlinear models

5. Application to Stochastic Gradient Descent on $\mathcal{P}(\mathbb{R})$

Gradient Descent

• Minimization problem

$$\min_{\mu \in \mathcal{P}_2(\mathbb{R})} \{ V(\mu) \}, \quad V : \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$$

Gradient Descent

• Minimization problem

$$\min_{\mu \in \mathcal{P}_2(\mathbb{R})} \{ V(\mu) \}, \quad V : \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$$

• Gradient descent

$$dX_t(\omega) = -\frac{\partial_{\mu} V(\mu_t, X_t(\omega))}{dt}, \quad \mu_t := \mathcal{L}(X_t)$$

• where $\partial_{\mu} V$ is Wasserstein derivative, i.e.

$$\partial_{\mu}V(\mathcal{L}(X))(X(x)) = D_{L^{2}(\mathbb{S},dx)}[V(\mathcal{L}(X))](x), \quad x \in \mathbb{S}$$

Gradient Descent

• Minimization problem

$$\min_{\mu \in \mathcal{P}_2(\mathbb{R})} \{ V(\mu) \}, \quad V : \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$$

• Gradient descent

$$dX_t(\omega) = -\frac{\partial_{\mu} V(\mu_t, X_t(\omega))}{dt}, \quad \mu_t := \mathcal{L}(X_t)$$

• where $\partial_{\mu}V$ is Wasserstein derivative, i.e.

$$\partial_{\mu}V(\mathcal{L}(X))(X(x)) = D_{L^{2}(\mathbb{S},dx)}[V(\mathcal{L}(X))](x), \quad x \in \mathbb{S}$$

• Stochastic gradient descent

 $dX_t(x) = -\partial_{\mu}V(\mathcal{L}(X_t))(X_t(x))dt + \Delta X_t(x)dt + d\widetilde{W}_t(x) + d\eta_t(x)$

for $x \in \mathbb{S}$ and $t \ge 0$

same interpretation as before

Results (with W. Hammersley)

• Assume V is smooth potential that confines the mean, typically

$$V(\mu) = V_0(\mu) + \lambda \left(\int_{\mathbb{R}} x d\mu(x)\right)^2,$$

for V_0 smooth (with bounded derivatives)

o solution to SGD and unique invariant measure

Results (with W. Hammersley)

• Assume V is smooth potential that confines the mean, typically

$$V(\mu) = V_0(\mu) + \lambda \left(\int_{\mathbb{R}} x d\mu(x)\right)^2,$$

for V_0 smooth (with bounded derivatives)

• No explicit shape of the invariant measure but metastability for rescaled forcing

$$dX_t^{\varepsilon}(x) = -\partial_{\mu}V(\mathcal{L}(X_t^{\varepsilon}))(X_t^{\varepsilon}(x))dt + \varepsilon^2 \Delta_x X_t^{\varepsilon}(x)dt + \varepsilon dW_t^{\varepsilon}(x) + d\eta_t^{\varepsilon}(x)$$

o where

$$\widetilde{W}^{\varepsilon}_t(x) = \sum_{|m| \leq \varepsilon^{-1}} B^m_t e_m(x) + \sum_{|m| > \varepsilon^{-1}} m^{-\lambda} B^m_t e_m(x)$$

same result

Results (with W. Hammersley)

• Assume V is smooth potential that confines the mean, typically

$$V(\mu) = V_0(\mu) + \lambda \left(\int_{\mathbb{R}} x d\mu(x)\right)^2,$$

for V_0 smooth (with bounded derivatives)

• metastability for rescaled forcing

$$dX_t^{\varepsilon}(x) = -\partial_{\mu}V(\mathcal{L}(X_t^{\varepsilon}))(X_t^{\varepsilon}(x))dt + \varepsilon^2 \Delta_x X_t^{\varepsilon}(x)dt + \varepsilon dW_t^{\varepsilon}(x) + d\eta_t^{\varepsilon}(x)$$

o where

$$\widetilde{W}_t^{\varepsilon}(x) = \sum_{|m| \le \varepsilon^{-1}} B_t^m e_m(x) + \sum_{|m| > \varepsilon^{-1}} m^{-\lambda} B_t^m e_m(x)$$

• same result and mean time to exit from convex well is of order $\exp(a/\varepsilon^2)$ for *a* the height of the well

6. Application to mean field games

- Back to the first section \rightsquigarrow MFG without idiosyncratic noise
 - 1d representative player $\rightsquigarrow dX_t = \alpha_t dt$
 - \circ cost functional with f, g convex in x

$$J(\boldsymbol{\alpha}) = \mathbb{E}\left[g(\boldsymbol{X}_T, \boldsymbol{\mu}_T) + \int_0^T \left(f(\boldsymbol{X}_t, \boldsymbol{\mu}_t) + \frac{1}{2}|\boldsymbol{\alpha}_t|^2\right) dt\right]$$

- Back to the first section \rightsquigarrow MFG without idiosyncratic noise
 - 1d representative player $\rightarrow dX_t = \alpha_t dt$
 - \circ cost functional with f, g convex in x

$$J(\boldsymbol{\alpha}) = \mathbb{E}\left[g(\boldsymbol{X}_T, \boldsymbol{\mu}_T) + \int_0^T \left(f(\boldsymbol{X}_t, \boldsymbol{\mu}_t) + \frac{1}{2}|\boldsymbol{\alpha}_t|^2\right) dt\right]$$

• Optimal trajectories with $\mu_t = \mathcal{L}(X_t)$ (on $L^2(\mathbb{S}, dx)$)

$$dX_t(x) = -Y_t(x)dt$$

$$dY_t(x) = -\partial_x f(X_t(x), \operatorname{Leb}_{\mathbb{S}} \circ X_t^{-1})dt$$

$$Y_T(x) = \partial_x g(X_T(x), \operatorname{Leb}_{\mathbb{S}} \circ X_T^{-1}), \quad x \in \mathbb{S}$$

- Back to the first section \rightsquigarrow MFG without idiosyncratic noise
 - 1d representative player $\rightarrow dX_t = \alpha_t dt$
 - \circ cost functional with *f*, *g* convex in *x*

$$J(\boldsymbol{\alpha}) = \mathbb{E}\left[g(X_T, \boldsymbol{\mu}_T) + \int_0^T \left(f(X_t, \boldsymbol{\mu}_t) + \frac{1}{2}|\boldsymbol{\alpha}_t|^2\right) dt\right]$$

• Optimal trajectories with $\mu_t = \mathcal{L}(X_t)$ (on $L^2(\mathbb{S}, dx)$)

$$dX_t(x) = -Y_t(x)dt + \Delta X_t(x)dt + dW_t(x) + d\eta(x)$$

$$dY_t(x) = -\partial_x f(X_t(x), \operatorname{Leb}_{\mathbb{S}} \circ X_t^{-1})dt$$

$$Y_T(x) = \partial_x g(X_T(x), \operatorname{Leb}_{\mathbb{S}} \circ X_T^{-1}), \quad x \in \mathbb{S}$$

 $\circ \partial_x f$ and $\partial_x g$ smooth, then existence and uniqueness hold for stochastic system! Solution is distributed:

$$Y_t(x) = v(t, X_t(x), \operatorname{Leb}_{\mathbb{S}} \circ X_t^{-1})$$

- Back to the first section \rightsquigarrow MFG without idiosyncratic noise
 - 1d representative player $\rightarrow dX_t = \alpha_t dt$
 - \circ cost functional with *f*, *g* convex in *x*

$$J(\boldsymbol{\alpha}) = \mathbb{E}\left[g(X_T, \boldsymbol{\mu}_T) + \int_0^T \left(f(X_t, \boldsymbol{\mu}_t) + \frac{1}{2}|\boldsymbol{\alpha}_t|^2\right) dt\right]$$

• Optimal trajectories with $\mu_t = \mathcal{L}(X_t)$ (on $L^2(\mathbb{S}, dx)$)

$$dX_t(x) = -Y_t(x)dt + \Delta X_t(x)dt + dW_t(x) + d\eta(x)$$

$$dY_t(x) = -\partial_x f(X_t(x), \operatorname{Leb}_{\mathbb{S}} \circ X_t^{-1})dt + dM_t(x)$$

$$Y_T(x) = \partial_x g(X_T(x), \operatorname{Leb}_{\mathbb{S}} \circ X_T^{-1}), \quad x \in \mathbb{S}$$

 $\circ \partial_x f$ and $\partial_x g$ smooth, then existence and uniqueness hold for stochastic system! Solution is distributed:

$$Y_t(x) = v(t, X_t(x), \operatorname{Leb}_{\mathbb{S}} \circ X_t^{-1})$$

Combining with Idiosyncratic Noise

• Consider $(B_t)_{t\geq 0}$ another Brownian motion constructed on some Ω , whilst \widetilde{W} is constructed on some Ω^0

 \circ with g_t Gaussian kernel, let

$$\mu_t(\omega_0) = \mathcal{L}_{x,\omega} \Big(X_t(x,\omega_0) + B_t(\omega) \Big) = g_t \star \mathcal{L}_x \Big(X_t(x,\omega_0) \Big)$$

• Trotter-Kato?

$$X_0 \rightsquigarrow X_{dt}^{X_0}(x,\omega_0) \rightsquigarrow g_{dt} \star \mathcal{L}_x \left(X_{dt}^{X_0}(x,\omega_0) \right)$$

$$\circ \text{ generator is } \varphi \mapsto \frac{1}{2} \partial_x \partial_\mu \varphi + \mathbf{L}_\mu \varphi$$

 \circ new stochastic differential inclusion for $X_t(x)$?

• Higher dimension?

• replace re-arrangement by optimal transport: $X \sim \nabla_x \varphi(U)$ for *U d*-dimensional with a density