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1. Motivation



Background

e Well-known illustration of smoothing properties of heat kernel:
ODE driven by bounded non-Lipschitz velocity field

Xt = b(Xy)
o b continuous = existence but anigueness

o restore uniqueness by perturbing the dynamics by a Brownian
motion (By)>0
dX[ = bt(Xt)dt + dB[
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e General objective
o similar smoothing properties but for
Oupty = —div(b;(-, it )pts)
where y; € P(RY)
o what is B here? Intuitively, should force y, to be random

o motivation: gradient descent on the space of probability
measures, mean-field games



Form of the noise

o Intuitively, use kind of Brownian motion on the space of P(R)
o throughout, dimension is 1 (work on $(R))

o earlier approaches but no canonical definition: Stannat [02,06],
Sturm and Von Renesse [09], Konarovskyi [15], Dello Schiavo [20]...
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Form of the noise

o Intuitively, use kind of Brownian motion on the space of $»(R)
o throughout, dimension is 1 (work on $,(R))
e Here, follow P.L. Lions’ approach to differential calculus on P>(R)

o see function ¢ : P(R) > u — o(u) € R as
L3S =R/Z,dx) 3 X - o(L(X))
e Proceed here in the same way for smoothing out ¢:
L2(S,dx) 3 X — o(L(X)), >0,
with
dX,(x) = AX;(x)dt + dW,(x), t>0; Xpx)=X(x),

where (W;(x))s>0.xer White noise with values in L*(S, dx)

o but destroys the mean-field structure!



2. Rearranged Noise



General plan

e Throughout,

e Take as before SHE
dX,(x) = AX;(x)dt + dW,(x), x€8S,t>0,

o with

W) = ) Wen(x)
mezZ
where (W}")>0)mez are independent Brownian motions and (e,,;)mez
shorter notation for Fourier basis

e Recall the shape of the solution

t
X (x) = [exp(tA)Xo + f exp((t — s)A)dW; |(x)
0
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o with

W) = ) Wen(x)
mezZ
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shorter notation for Fourier basis

e Recall the shape of the solution

t
Xi(x) = [exp(tA)Xo + f exp((t — s)A)dWS](x)
0

e In order to make it intrinsic ~» ‘ RE-ARRANGE ‘

o Intuitively

t
X; ~> [exp(th)X,+ fd exp((dt—s)A)dWm] ~» re-arrangement = Xy g
0



Re-arrangement in 1d

e Take a probability measure y on R
u & quantile function F;l

o where x € (0, 1) = F;,' (x) is the quantile function
oxe((0,1)— F;l(x) is the canonical random variable for
representing u, i.e.
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e Conversely, re-arranging X;(x) in SHE is choosing canonical
representative of
Lebo(x €S X;(x))

o on [0, 1), choose quantile function of law of x — X;(x)

oon S = [0, 1], choose non-decreasing on [0, 1/2] and reflect
w.r.t. 1/2 to get it periodic



Re-arrangement in 1d — plots

N-1
. 1
e Simplest example: X(x) = — Z ailin i+1)/n)(x)
N i=0
N-1
o rearrangement on [0, 1): X'(x) = — Z a(,‘)l[l'/N,(H])/N)(X)
N i=0
o where a1y < ap) < ... < ag) is the non-decreasing

rearrangement of ap, - -+ ,ay

o to get it on S, use contraction of rate 1/2 and symmetrize
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Euler scheme with white noise

e Naive idea (from the general plan)
h
Xr,zz+l = [ehAXZ +f ePIRAW
0

o h > 0 is a time step

e Not able to prove tightness (i.e., weak compactness)!
e Principle of the analysis taken from Brenier [09]

o use non-expansion of the re-arrangement
* *12 * * 2d < 2d _ 2
lu” = vl = | [’ () = v (ldx < | fulx) —v(Ol"dx = |lu - vil3
s ]

with u* = XZ+1 and v' = e((”“)fN)hAXf\’, for N <n

sym. /

h
and u = ehAX,’j + f e AW, e and v = v for N < n
0



Euler scheme with white noise

o Naive idea (from the general plan)

*

h ;
X,y = e+ f IR AW,
0
o h > 0 is a time step
e Not able to prove tightness (i.e., weak compactness)!

e Principle of the analysis taken from Brenier [09]

7

2
h ((n+1)-N)hAvyh
Xn+1 - XN“2 S]

2 h 2
hA(yh _ (n—-N)hAyh (h-$)A
<E [”e (X! —e XN)||2’S] +E [||f0 "IDGW 2’8]
i
o use contraction of ¢ ~» h~1h!= = b= ~» BAD

o need to combine ¢"® and * ~» NO SIMPLE WAY



Euler scheme with colored noise

e Replace white noise by colored noise

Wix) = > m ™ Wey(x)

mezZ

where A € (1/2, 1] and ((W]")s=0)mez are independent Brownian
motions
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e May wonder why A is still needed in the equation

o for the smoothing effect!! [Da Prato, ...]



Euler scheme with colored noise

e Replace white noise by colored noise

Wix) = > m ™ Wey(x)

mezZ

where A € (1/2, 1] and ((W]")s=0)mez are independent Brownian
motions

o E[IW,()I] = et < oo
o the noise takes values in L*(S, Leb)
e New scheme

£

n+l —

h
xh = [ehAX,’; + f MR AW s
0

o h > 0 is a time step

o get tightness in any C([0, T']; L*(S, dx))



3. Rearranged SHE



Equation satisfied by limit process

e Brenier’s work ~» infinitesimal impact of re-arrangement =
reflection on symmetric non-decreasing functions

e Get a|reflected SHE
dX[ = AXtdt + dﬁ/t + dnl‘

o recall that X, € L2(S, Leb) by symmetric non-decreasing
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reflection on symmetric non-decreasing functions

e Get a|reflected SHE
dXt = AX[dt + dﬁ/t + dnl‘

o recall that X, € L2(S, Leb) by symmetric non-decreasing

o reflected SPDE ~» Donati-Martin & Pardoux, Nualart &
Pardoux, Zambotti (reflection to preserve positivity), Barbu & Da
Prato & Tubaro, Rockner & Zhu and & Zhu (more general treatment)
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Equation satisfied by limit process

e Brenier’s work ~» infinitesimal impact of re-arrangement =
reflection on symmetric non-decreasing functions

* Geta
dX, = AX,dt + dW, + dn,
o recall that X, € L*(S, Leb) by symmetric non-decreasing
e What is 1,?

t * dt
dn, = (edm X, + f e(‘”‘s)AdWm) - (ed’A X, + f e(d"s)AdW,H)
0 0

o if u is smooth and symmetric non-decreasing

(u,dn)y 5 2 0

o if (z;)>0 is smooth, symmetric ,” and varies smoothly in time

¢ ¢
f(; (zs,dns>2,§ = Z L (Zs’ €m>2,3d<77s’em>2,5

makes sense (think of Stieltjes-integral) and > 0
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Definition of a solution (with W. Hammersley)

e We require the equation to be satisfied in a weak sense

t
Xi = X5, u)y 5 = f (X, Au)y odr + (Wi = W, u)y o + (1 = 15, )
N

o for u smooth function on S

e Non-decreasing property of the reflection term

!
f (¢**Zy,dny)y g > 0,
N

o if (Z,),>0 continuous process with values in L?*(S, Leb) such that
Z, is symmetric decreasing

o & > ( is an arbitrarily small regularization parameter
e Orthogonality principle
!
HmE | ("X, dn,),5=0
timE [ (X dn s

e Implies uniqueness as in finite dimension
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Result (with W. Hammersley)
e Smoothing effect of the semi-group is standard folklore of SPDEs

P, : Xo € LA(S, Leb) > E[g(X,")]

o for ¢ : L*(S,Leb) — R bounded and measurable

¢ Bound on the Lipschitz constant

|Pro((Xo + 2)) — Prp(X;)

Cr
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¢ Discussion on the rate
o blow-up exponent (1 + 1)/2 € (3/4,1), close to 3/4 for A ~ 1/2
o NOT AS GOOD as in finite dimension (blow up like 7~!/?)

o but INTEGRABLE in small time, which is crucial for nonlinear
models



5. Application to Stochastic Gradient Descent on
PR)
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e Minimization problem

ergglR (V) V:PR)—>R
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Gradient Descent

e Minimization problem

in {V :P>(R) > R
#E;;?R){ W), V:PR)—

e Gradient descent
dX(w) = =0,V (u, Xl(w))dt, ;= L(X;)
o where d,,V is Wasserstein derivative, i.e.
O V(LX))X(X)) = Dpas an | VILEXO)(x), x€S
e Stochastic gradient descent
dX(x) = =0, V(LX) X,(x))dt + AX,(x)dt + dW,(x) + diy(x)

forxeSandt>0

o same interpretation as before



Results (with W. Hammersley)

e Assume V is smooth potential that confines the mean, typically

2
Vi) = Vo) + 4 fR )

for Vjy smooth (with bounded derivatives)

o solution to SGD and unique invariant measure
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e Assume V is smooth potential that confines the mean, typically

2
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for Vjy smooth (with bounded derivatives)

e No explicit shape of the invariant measure but metastability for
rescaled forcing

dX; (x) = =0, V(LX) (XF (x))dt
+ &2 AXE()dt + edWE(x) + dnf(x)

o where
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o same result



Results (with W. Hammersley)

e Assume V is smooth potential that confines the mean, typically

2
Vi) = Voo + A fR )

for Vjy smooth (with bounded derivatives)
e metastability for rescaled forcing
dX7(x) = =0, V(LXD)(X; (0))dt
+ &2 AXE(X)dt + edWE(x) + dnf(x)
o where
Wf x) = Z B ep(x) + Z m_}B’,"em(x)
[m|<e™! |m|>e~1

o same result and mean time to exit from convex well is of order
exp(a/ &%) for a the height of the well
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Application to MFG (with Y. Ouknine)

e Back to the first section ~ MFG without idiosyncratic noise
o 1d representative player ~ dX; = o,dt

o cost functional with f, g convex in x

T
() = BlsCtr ) + [ (70usa) + Pt

e Optimal trajectories with i, = £(X,) (on L*(S, dx))
dX;(x) = =Y, (x)dt + AX,(x)dt + dW,(x) + dnx)
dY,(x) = =0 f(X,(x), Lebg o X; dr + dM,(x)
Yr(x) = d.g(Xr(x),Lebs 0 X;'), xe€S

o dyf and 0,g smooth, then existence and uniqueness hold for
stochastic system! Solution is distributed:

Y:(x) = v(t, Xx), Lebg o X; )



Combining with Idiosyncratic Noise

e Consider (B;);>¢ another Brownian motion constructed on some £,
whilst W is constructed on some Q°

o with g, Gaussian kernel, let
p(@0) = Lew(Xi(x, ) + Bi(w)) = g * L(Xi(x, wp))
e Trotter-Kato?

Xo ~ X6, w0) ~ gar * L[ X (x, wo))

1
o generator is ¢ Eaxaﬂgo + Ly
o new stochastic differential inclusion for X,(x)?
e Higher dimension?

o replace re-arrangement by optimal transport: X ~ V,p(U) for U
d-dimensional with a density



