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This is a joint work with my colleague and friend Dasha Loukianova
from Université d’Evry, France.



Systems of interacting particles (neurons, agents, ...)

I N interacting particles XN,1
t , . . . ,XN,N

t , taking values in R+

dXN,i
t = b(XN,i

t , µNt )dt + ψ(XN,i
t− )dZN,i

t +
∑
j 6=i

WN
j→idZ

N,j
t ,

ZN,i
t jump process, having rate f (XN,i

t− ) at time t (f bounded).
I Each particle has drift b(x , µ), where x is its current position

and µ the empirical measure of the total system (deterministic flow

between jumps).
I Each particle jumps at rate f (x) when it is in position x .

I When jumping, it goes from position x to a new position
x + ψ(x).

I When it is the i−th particle that jumps, at the same time, all
other particles j 6= i receive a small kick WN

i→j , which is
random (synaptic weight).



Propagation of chaos/Mean field frame
I Mean field interactions : the kicks WN

i→j = WN do not depend
on the pair of particles that is involved ⇒ exchangeable
systems of particles described by their empirical measures

µN =
1
N

N∑
i=1

δ
(XN,i

t )t≥0
:

random probability measures on càdlàg trajectories.
I For suitable scalings of WN , µN → µ̄ : describes the typical

behavior of a single particle within an infinite limit population.
I Propagation of chaos : Limit µ̄ is deterministic ⇐⇒ in the

limit, particles are independent.
I Holds for our system if

WN = W /N

(W may be random), see De Masi et al. (2015), Fournier and
Lö. (2016), Cormier, Tanré, Veltz (2020) and many others.



Conditional propagation of chaos
I Diffusive scaling of synaptic weights WN = W /

√
N, with

random W ∼ ν centered, independent choices at each jump
time : has been studied in a series of papers together with
Xavier Erny and Dasha Loukianova.

I Gives rise to a limit Brownian motion representing a source of
common noise in the limit system (due to the CLT).

In this
case the limit empirical measure µ̄ will be random (see later).

I Today we ask the question: What happens if we are in the
domain of attraction of a stable law instead of being attracted
to a Gaussian law??? So when WN = U/Nξ, with random
U ≥ 0 (independent choices at each jump time) which is a (one sided) stable
random variable of index α ∈ (0, 1), that is

E(e−sU) = e−s
α
, s ≥ 0.

Nξ, ξ > 0, is a suitable renormalization. (It was ξ = 1 in the frame of

propagation of chaos and ξ = 1
2 in the diffusive setting).
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I The process is a PDMP (piecewise deterministic Markov
process) with generator

ANϕ(x) =
N∑
i=1

∂x iϕ(x)b(x i , µN,x)

+
N∑
i=1

f (x i )

∫
R+

ν(du)

ϕ(x + ψ(x i )ei +
∑
j 6=i

u

Nξ
ej)− ϕ(x)

 ,

x = (x1, . . . , xN) ∈ RN
+, µ

N,x = 1
N

∑N
j=1 δx j , ej denotes the

j−th unit vector in RN .

I ν is the law of the strictly stable random variable U ≥ 0.
I If U1, . . . ,Un i.i.d., ∼ ν, then n−1/α(U1 + . . .+ Un) ∼ ν.

And
so the renormalization has to be N−1/α, that is, ξ = 1/α.

I Notice : jumps are simultaneous : the jump caused by
particle i affects all other particles. So we have simultaneous
small jumps.
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Heuristics : Limit process I

I Interactions felt by particle i are given by

AN
t =

1
N1/α

N∑
j=1

∫
[0,t]×R+×R+

u1{z≤f (XN,j
t− )}π

j(dt, dz , du),

where the πi are i.i.d. Poisson random measures on
R+ × R+ × R+ having intensity dtdzν(du), ν = L(U).

I If f ≡ λ is constant, then AN
t = renormalized compound

Poisson process. The total jump rate is Nλ,

AN
t =

1
N1/αZPt , Zn = U1 + . . .+ Un, (Pt)t PP(Nλ) :

time changed random walk, having stable increments.
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Time changed stable random walks
Proposition
Let Un i.i.d. ∼ ν, Z0 = 0, Zn = U1 + . . .+ Un, n ≥ 1, the
associated random walk. Let P ∈ N be a r.v., independent of
(Un)n. Then the following almost sure equality holds.

ZP =
P∑

n=1

Un = P1/αŨ1, Ũ1 ∼ ν, P ⊥⊥ Ũ1!

Corollary
If f ≡ λ constant, Pt PP(Nλ), then for our interaction term

AN
t =

1
N1/αZPt =

(
Pt

Nt

)1/α

︸ ︷︷ ︸
LLN → λ1/α

t1/αŨ1︸ ︷︷ ︸
∼Sαt

→ λ1/αSαt ,

Sαt stable subordinator of index α.
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I We will use this argument for t = δ small - some time
discretization step that allows us to freeze the jump rate
over small time steps to deal with the general case when f is
not constant.

I On each time interval [kδ, (k + 1)δ[, k ≥ 0, the typical
contribution should be of type

(N−1× total jump intensity )1/α× increment stable subordinator

I In time freezed version, the intensity is
N∑
i=1

f (XN,i
kδ )

(on [kδ, (k + 1)δ[).

I As δ → 0 (and N →∞) the sum of all such contributions
should converge to ∫ t

0
(µ̄s−(f ))1/αdSαs .
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(Guess of the) Limit System

I Limit system should be an exchangeable system (X̄ 1, X̄ 2, . . .)
s.t.

X̄ i
t = X̄ i

0+

∫ t

0
b(X̄ i

s , µ̄s)ds+

∫
[0,t]×R+

ψ(X̄ i
s−)1{z≤f (X̄ i

s−)}π̄
i (ds, dz)

+

∫
[0,t]

(µ̄s−(f ))1/α dSαs .

I Presence of Sα = common source of noise for all particles =⇒
X̄ i , i ≥ 1, are NOT independent.

But we will show that they
are i.i.d. knowing Sα.

I This is called conditional propagation of chaos.
I Limit measure limN µ

N = µ̄ = limN
1
N

∑N
i=1 δX̄ i is random

expressing presence of common noise. Do we know more
about µ̄ ?
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More on µ̄

Theorem of Hewitt-Savage:
L
(
(X̄ i

t )i≥1
)

= mixture of i.i.d.’s, directed by the law of µ̄t .

In other words : With Q = L(µ̄t), we have

L((X̄ i
t )i≥1) =

∫
P(R)

Q(dmt)m
⊗∞
t .

Conditional version of strong law of large numbers implies
µ̄t(·) = P(X̄ i

t ∈ ·|Sα) such that the limit equation for one typical
particle is

dX̄ i
t = b(X̄ i

t , µ̄t)dt + ψ(X̄ i
t−)dZ̄ i

t + E(f (X̄ i
t )|Sα)1/αdSαt , (1)

Z̄ i
t : jumps at rate f (X̄ i

t−). END HEURISTICS
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Plan of the talk

I Strong existence and uniqueness for the limit system
I Convergence of the finite system to the limit system by

coupling.
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Strong existence of the limit

I The big jumps of Sα are not integrable.

But they are in Lq for
any q < α.

I Small jumps (≤ 1) are integrable!
I So we need a distance which is a mixture of L1 for small

jumps and Lq for big jumps.
I Similar problem has been tackled by Fournier IHP 2013 in the

Markovian case, but his approach does not work here (among
other things because of the dependence of the conditional law).

I So we do something else, still inspired by what I have learned
from Nicolas : we introduce a space transform (bijection)
a ∈ C 2, concave on R+, such that

a(x) ≤ C (x∧xq) ifx ≥ 0, a(x) = xq up to a constant, if x ≥ 1.

(This function depends on q, but q will be fixed in the sequel.)
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Assumptions
Big jumps and jump rate: bounded and a−Lipschitz, ψ is
positive.
Drift: bounded and

|b(x , µ)− b(x̃ , µ̃)| ≤ C (|a(x)− a(x̃)|

+ inf
π∈Π(µ,µ̃)

∫
R+×R+

π(dy , dy ′)|a(y)− a(y ′)|).

Here, Π(µ, µ̃) is the set of all couplings of µ and µ̃.
It suffices to suppose that µ 7→ b(x, µ) admits a functional derivative δµb(x, y, µ) which is uniformly

a−Lipschitz.

Minimal jump activity: f lowerbounded.



A priori bounds on limit process

I Since f , ψ, b bounded,

|X̄t | ≤ |X0|+ ‖b‖∞t + ‖ψ‖∞N
‖f ‖∞
t + ‖f ‖1/α∞ Sαt ,

where N‖f ‖∞ is a Poisson process of rate ‖f ‖∞.

I Since µ̄t = L(X̄t |Sα), this implies that µ̄t has as many
moments as the initial condition (although this is not the case
for Eµt).
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Theorem
Under our conditions (plus moment condition on initial condition) :
1. We have pathwise uniqueness for the limit equation.
2. There exists a unique strong solution (X̄t)t≥0 of the limit
equation, satisfying for every t > 0,

E(sup
s≤t
|a(X̄s)|) < +∞. (2)



Proof of the Uniqueness result.
− Let X̄ and X̃ be two solutions, driven by the same noise, and
starting from the same initial conditions.
− Consider ∆t := |a(X̄t)− a(X̃t)|.

− Most difficult term comes from the stochastic integral

It =

∫
[0,t]×R+

[
a
(
X̄s− + µ̄s−(f )1/αx

)
− a

(
X̄s−

)]
−
[
a
(
X̃s− + µ̃s−(f )1/αx

)
− a

(
X̃s−

)]
M(ds, dx),

M : jump measure of Sα : a PRM of intensity dsm(dx),

m(dx) = C1(0,+∞)(x)x−(α+1)dx .

− Small jump x ≤ 1 or big jumps x > 1 : It =: I 1t + I 2t .
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Control of small jumps
Proof.
I Since small jumps x ≤ 1 are integrable, we can apply Taylor’s

formula and obtain

a(y + µ̄(f )1/αx)− a(y) ∼ a′(ỹ)µ̄(f )1/α x .

I At some point we have to control

|µ̄s−(f )1/α − µ̃s−(f )1/α| ≤ C |µ̄s−(f )− µ̃s−(f )|,

since z 7→ z1/α is Lipschitz on [0, ‖f ‖∞].

I But µ̄s−(f ) = E[f (X̄s−)|Sα], µ̃s−(f ) = E[f (X̃s−)|Sα] (same
driving noise) and |f (x)− f (y)| ≤ C |a(x)− a(y)|...

I Taking expectation, this gives

E sup
t≤T
|I 1t | ≤ CTE sup

s≤T
|a(X̄s)− a(X̃s)|.
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Big jumps x ≥ 1

I We use that a is concave and compare after jump positions∣∣∣a(X̄s− + µ̄s−(f )1/αx
)
− a

(
X̃s− + µ̃s−(f )1/αx

)∣∣∣
≤
∣∣∣a(X̄s− + µ̄s−(f )1/αx

)
− a

(
X̄s− + µ̃s−(f )1/αx

)∣∣∣
+
∣∣∣a(X̄s− + µ̃s−(f )1/αx

)
− a

(
X̃s− + µ̃s−(f )1/αx

)∣∣∣
≤
∣∣∣a(µ̄s−(f )1/αx

)
− a

(
µ̃s−(f )1/αx

)∣∣∣+∣∣∣a (X̄s−
)
− a

(
X̃s−

)∣∣∣.
I Since f is lower-bounded and a(x) = xq for x > 1, for large

values of x , the dangerous red term equals

xq
∣∣∣µ̄s−(f )q/α − µ̃s−(f )q/α

∣∣∣
I and the mapping y 7→ yq/α is Lipschitz on [f ,∞[, if f is the

lowerbound on f .
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Control of the other terms

− The other terms are easier to be controlled....
− All in all we obtain

E sup
s≤T
|a(X̄s)− a(X̃s)| ≤ CTE sup

s≤T
|a(X̄s)− a(X̃s)|.

Taking T sufficiently small, we obtain uniqueness on [0,T ], and
then we iterate this argument.
− Strong existence by Picard iteration, using the same distance
function a.



Where are we ?

The Model

Strong existence of the limit

Strong convergence to the limit



Theorem
For suitable moment conditions on the initial condition, it is
possible to construct the finite and the limit system on the same
probability space such that for all t ≤ T ,

E(|a(XN,1
t )− a(X̄ 1

t )|) ≤ CTN
− α

2+α .

Attention The above statement is not precise; actually we obtain
the above rate only in the limit q ↑ α (which is not a possible
choice for q since moments of order α of the stable random
variables do not exist any more).



Proof : Time discretization (Pseudo Euler)

I We freeze time during intervals of length δ = δ(N) < 1,
δ × N →∞ as N →∞ (per time unit, the average number of
jumps tends to infinity).

I Our approximation will be based on the observation that
during each time interval of length δ, the increment of the
interaction term AN

t is approximately given by a time
changed random walk having stable increments
(increments: the random kicks).

I And the time change is the total number of jumps during this
interval – which is (conditionally) Poisson distributed.



More on discretising time

Freezing positions over time gives
I Approximation of the increment of the interaction term AN

t

over ]kδ, (k + 1)δ] :

Ak
δ :=

1
N1/α

N∑
j=1

∫
]kδ,(k+1)δ]×R+×R+

u1{z≤f (XN,j
kδ )}π

j(dt, dz , du).

I How many jumps ? Conditionally on Fkδ,

Nk
δ =

N∑
j=1

∫
]kδ,(k+1)δ]×R+×R+

1{z≤f (XN,j
kδ )}π

j(dt, dz , du),

∼ Poiss(f̄ (XN
kδ)δ), f̄ (x) =

∑N
i=1 f (x i ).

Depends only on “z” :
acceptance/rejection variable.
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I Freezing time allows us to separate the randomness z of the
acceptance/rejection and the one coming from the random
height u of the jumps.

I For each time step k , we have

Ak
δ =

1
N1/αZ

k
Nk
δ
,

Z k the random walk built from the α−stable increments,
during the k−th interval.
Important : (Z k

n )n INDEPENDENT of Nk
δ , and of

π̄j = πj(·, ·,R).

I We use the scaling argument of the beginning of this talk and
take the time change “out as a factor”.

So

Ak
δ =

(
Nk
δ

Nδ

)1/α

SN,k,α
δ ,

where SN,k,α is a stable subordinator, independent of Fkδ and
of π̄j , j ≥ 1.
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Conditionally on Fkδ, N
k
δ ∼ Poiss(f̄ (XN

kδ)δ), f bounded. So :

Nk
δ

Nδ
=

f̄ (XN
kδ)

N
+ O(

1√
Nδ

) = µNkδ(f ) + O(
1√
Nδ

). (3)

All in all :

Proposition
Representation of the increment of the interaction term

Ak
δ =

(
Nk
δ

Nδ

)1/α

SN,k,α
δ =

(
1
N
f̄ (XN

kδ)

)1/α

SN,k,α
δ + RN,k

δ ,

where E|RN,k
δ |q ≤ C (Nδ)−q/2δq/α (comes from the deviation

bounds on the Poisson random variables plus q−th moment of the
alpha-stable rv).



Concatenation
− We concatenate all these independent pieces of stable
subordinators SN,k,α

δ and fill in subordinator bridges to obtain a
global subordinator SN,α.
− By construction, SN,α is independent of the projections of the
PRM’s π̄i on the first two coordinates (time and
acceptance/rejection variable).

Theorem
We obtain the representation of the interaction term

AN
t =

∫ t

0

(
1
N
f̄ (XN

s−)

)1/α

dSN,α
s + RN

t , (4)

where RN
t is an error term such that

E(|RN
t |q) ≤ CT

 N1−q/αδq/α︸ ︷︷ ︸
discretization

+ (Nδ)−q/2δq/α−1︸ ︷︷ ︸
T
δ
Poisson errors

 .



Interpolating auxiliary system

− To prove the convergence to the limit system, we consider an
auxiliary particle system which is a mean-field version of the limit
system (X̄N,i )i≥1 :

dX̃N,i
t = . . . ( jumps + drift terms) +

 1
N

N∑
j=1

f (X̃N,j
t− )

1/α

dSN,α
t ,

driven by same stable subordinator and same PRM’s, starting from
the same initial values.
− To control the distance of X̃N to the limit system, we need to
control the distance between µ̄Nt = 1

N

∑N
i=1 δX̄N,i

t
, the empirical

measure of the limit system, and µ̄t = L(X̄N,i
t |SN,α).

− Since |b(x , µ)− b(x , µ̃)| ≤ CWq(µ, µ̃), it suffices to control the
Wasserstein-q−distance (q < 1). This is done by using
Fournier-Guillin (2015), conditionally on Sα.
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Open questions

I Jump heights not strictly stable, but only in the domain of
attraction of Sα ??? Weak approach via martingale problem ?

I Is it possible to obtain weak rates of convergence ?
I Typical behavior of the limit system ?
I Notice that when there are no big jumps (and when the initial

values are deterministic), then X̄ i
t is

σ{Sαs , s ≤ t}−measurable.

So µ̄t = δX̄ i
t
, such that the limit

system is

dX̄ i
t = b(X̄ i

t , µ̄t)dt + (f (X̄t−))1/αdSαt ,

which is Markovian.
I α ≥ 1?
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Thank you for your attention !
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