Gambling for resurrection and the heat equation on a triangle

Christophette BLANCHET-SCALLIET

ICJ, Ecole Centrale de Lyon

Joint work with S. Ankirchner (Jena) and Nabil Kazi-Tani (Metz) and Chao Zhou (Singapour)

A Random Walk in the Land of Stochastic Analysis and Numerical Probability in honor of Denis Talay-CIRM-4-8 septembre 2023

Introduction

Controlling the diffusion coefficient of a process with negative drift and minimizing the probability to hit a lower barrier up to time T.

Minimizing the probability

$$
J(t, x, \alpha)=P\left(\inf _{t \leqslant s \leqslant T} X_{s}^{t, x, \alpha}<0\right) .
$$

where

$$
X_{s}^{t, x, \alpha}=x-(s-t)+\int_{t}^{s} \alpha_{r} d W_{r}, \quad s \in[t, T]
$$

and $\alpha \in \mathcal{A}$ the set of progressively measurable stochastic processes with values in $[0,1]$.

Aim of our work

Let the value function

$$
V(t, x)=\inf \{J(t, x, \alpha): \alpha \in \mathcal{A}\}
$$

for all $(t, x) \in[0, T] \times[0, \infty)$.

Outline

(1) First analysis

(2) The probability for a BM to exit a right triangle from the hypothenuse
(3) The value function

Motivation

Stylized model :

- First example: a manager who can control the volatility of a firm's value process, wants to minimize the bankruptcy probability up to time T.
- The optimal strategy is to choose 1 if the value process is less than the time to maturity and 0 otherwise.

An alternative representation of the value function

Remark: If $x \geq T-t, \alpha=0$ is optimal and $V(t, x)=0$
For all $(t, x) \in[0, T] \times[0, \infty)$ and $\alpha \in \mathcal{A}$ we define

$$
\begin{aligned}
\tau_{l}^{t, x, \alpha} & =\inf \left\{s \geqslant t: X_{s}^{t, x, \alpha} \leqslant 0\right\}, \\
\tau_{u}^{t, x, \alpha} & =\inf \left\{s \geqslant t: X_{s}^{t, x, \alpha} \geqslant T-s\right\} .
\end{aligned}
$$

Moreover, we set $\widehat{\alpha}_{s}^{t, x}=\alpha_{s} 1_{\left\{\tau_{u}^{t, x, \alpha}>s\right\}}$ for all $s \in[t, T]$. Notice that

$$
J(t, x, \alpha) \geqslant J\left(t, x, \widehat{\alpha}^{t, x}\right)=P\left(\tau_{l}^{t, x, \alpha}<\tau_{u}^{t, x, \alpha}\right)
$$

Therefore, the value function satisfies

$$
V(t, x)=\inf \left\{P\left(\tau_{l}^{t, x, \alpha}<\tau_{u}^{t, x, \alpha}\right): \alpha \in \mathcal{A}\right\}
$$

HJB equation

Value function V is a solution of the following HJB equation:

$$
\partial_{t} V(t, x)-\partial_{x} V(t, x)+\inf _{a \in[0,1]} \frac{1}{2} a^{2} \partial_{x x} V(t, x)=0,
$$

with the boundary conditions

$$
\begin{aligned}
V(t, 0) & =1, \text { for all } t \in[0, T), \\
V(t, T-t) & =0, \text { for all } t \in[0, T] .
\end{aligned}
$$

The infimum in the above equation can only be attained for $a=0$ or for $a=1$. So the the candidate feedback control is

$$
a^{\star}(t, x)= \begin{cases}1, & \text { if } x<T-t \\ 0, & \text { otherwise }\end{cases}
$$

and $Y_{s}^{t, x}=x-(s-t)+W_{s}^{t, x}$ be the state process controlled with feedback function a^{\star}.

The value function coincides with the probability for $Y^{t, x}$ to first exit form the cathetus

Figure: $Y^{t, x}$ exits the triangle from the cathetus.

It is equivalent to the probability of the $\mathrm{BM}\left(W_{s}^{t, x}\right)_{s \geqslant t}$ to exit the right from the hypothenuse.

Figure: First exit time of $W^{t, x}$ from the hypothenuse.

First exit for a BM from the hypothenuse

For all $t \in[0, T)$ and $x \in(t, T)$

$$
\begin{aligned}
& \rho_{u}^{t, x}=\inf \left\{s \geqslant t: \gamma W_{s}^{t, x} \geqslant T\right\}, \\
& \rho_{l}^{t, x}=\inf \left\{s \geqslant t: \gamma W_{s}^{t, x} \leqslant s\right\},
\end{aligned}
$$

define the following quantity

$$
H(t, x):=P\left(\rho_{l}^{t, x}<\rho_{u}^{t, x}\right)
$$

which is the probability that $W^{t, x}$ exits from the hypothenuse.

Proposition

For all $(t, x) \in J=\{(t, x) \in[0, T) \times(0, T): x \geqslant t\}$ we have

$$
H(t, x)=1-\int_{0}^{T-t} f(T-x, v) g(T-x, v,(T-t-v), 1) d v
$$

where the functions f and g are defined as

$$
f(z, v)=\frac{|z|}{\sqrt{2 \pi} v^{3 / 2}} \exp \left(-\frac{z^{2}}{2 v}\right), \quad(z, v) \in \mathbb{R} \times(0, \infty)
$$

and

$$
g(y, u, a, b)=\sum_{j=-\infty}^{\infty}\left(1-2 j \frac{a+u b}{y}\right) e^{-\frac{2 a}{u} j^{2}(a+u b)} e^{\frac{2 a}{u} j y}
$$

Moreover, $H \in \mathcal{C}(\bar{J} \backslash\{(T, T)\}) \cap \mathcal{C}^{1,2}(J)$. and satisfies the heat equation on J with the boundary conditions

$$
H(t, t)=1 \text { and } H(t, T)=0
$$

for all $t \in[0, T)$.

Ideas of the proof-I

- Function H verifies

$$
\begin{aligned}
& 1-H(t, x)=\int_{t}^{T} P_{x}\left(W_{s}>s, s \in(0, v-t) \mid \rho_{u}=v\right) P\left(\rho_{u}^{t, x} \in d v\right) \\
& 1-H(t, x)= \\
& \int_{t}^{T} P_{x, v-t, T}\left(W_{s}>s, s \in(0, v-t) \mid W_{s}<T, s \in(0, v-t)\right) \\
& \\
& f(T-x, v) d v
\end{aligned}
$$

where $P_{x, u, y}$ denotes the law of the Brownian bridge between x and y, with length $u>0$.

Ideas of the proof-II

- The probability for a Brownian Bridge to exit from a wedge is given by Salminen and Yor [1]
- Tedious calculations+Itô calculus for the last point

The expression of V

Theorem

The value function satisfies, for all $(t, x) \in[0, T] \times(0, \infty)$ with $x<T-t$,

$$
V(t, x)=1-\int_{0}^{T-t} f(T-t-x, v) g(T-t-x, v, T-t-v, 1) d v
$$

Proof

- A candidate for V, let $w(t, x)=H(t, x+T)$
- Verification arguments with classical arguments.

Thank you for your attention

R
P. Salminen and M. Yor.

On hitting times of affine boundaries by reflecting brownian motion and bessel processes.
Periodica Mathematica Hungarica, 62(1):75-101, Mar 2011.

