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Motivation : Multiple myeloma
Clinical trial : Intergroupe Francophone du Myélome 2009
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Measurement of monoclonal immunoglobulin as a function of time
for one patient

Source : Centre de Recherche en Cancérologie de Toulouse
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Medical treatment optimization

Use past and present monoclonal immunoglobulin measurements
to sequentially choose

I the appropriate treatment to be applied until the next visit to
the medical center

I the date of the next visit to the medical center

to improve the patient health status: maintain low levels of
monoclonal immunoglobulin while minimizing undesirable side
effects and treatment constraints/costs
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Difficulties

I relapse date detection: the overall health status is random,
not directly observable: use monoclonal immunoglobulin as a
marker of the disease, continuous evolution of the marker, but
discrete observations dates with low frequency and
observations possibly corrupted by noise

I relapse type detection / treatment choice: several relapse
types and treatment types

I choice of the next visit date / treatment duration: non trivial
compromise between
I too early heavy treatments with severe side effects
I too late increased risk of death if the disease is not treated in

time
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Our approach

I propose a model for the joint evolution of the health status
and the marker

I formulate the treatment optimization problem as a stochastic
control problem

I propose a numerical method to construct an explicit a policy
close to optimality.

I study the performance of this policy on simulated patients
with paraemeters calibrated from the clinical trial data
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Modeling the control problem Continuous-time dynamics of health status and marker

Variables of interest

I mode m: overall health status
I m = 0 : healthy / remission,
I m = 1 : disease / type 1 relapse
I m = 2 : disease / type 2 relapse
I m = 3 : death

I marker ζ: monoclonal immunoglobulin ζ ∈ [ζ0,D]
I ζ = ζ0: nominal value in healthy mode
I ζ = D: death threshold
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Modeling the control problem Continuous-time dynamics of health status and marker

Treatments

The dynamics of the marker depend on the overall health status m
and on the treatment chosen

Possible treatments `
I ` = ∅: no treatment
I ` = a: treatment a

I efficient on type 1 disease
I slows the evolution of type 2 disease

I ` = b: treatment b
I efficient on type 2 disease
I slows the evolution of type 1 disease
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Modeling the control problem Continuous-time dynamics of health status and marker

Piecewise deterministic Markov process model
Flow

Conditionally to the current mode m and treatment ` values, the
dynamics of the marker is deterministic

ζ(t + s) = ζ(t) exp(v `ms)

` = ∅ ` = a ` = b
m = 0 v∅

0 = 0 v a
0 = 0 vb

0 = 0
m = 1 v∅

1> 0 v a
1< 0 0 <vb

1<v∅
1
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2> 0 0 <v a

2<v∅
2 vb

2<0
m = 3 v3 = 0
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Modeling the control problem Continuous-time dynamics of health status and marker

Piecewise deterministic Markov process model
Intensity and jump kernel

The health status is piecewise constant, it changes at deterministic
(solid lines) or random (dashes) dates with an intensity depending
on
I the marker value ζ and / or the time spent in the current

mode m (additional variable u required to keep a Markov process)
I and the treatment applied `
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Modeling the control problem Continuous-time dynamics of health status and marker

Stochastic impulse control problem
Sequential decision-making
I which treatment?
I for how long?

to keep the marker as close as possible to the nominal value ζ0,
while
I the mode is hidden
I the jump dates are hidden
I the marker is observed through noise and with low frequency

∅
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∅

b
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∗ ∗ ∗ ∗
∗
∗ ∗ ∗ ∗ ∗

∗ ∗
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Modeling the control problem Continuous-time dynamics of health status and marker

State of the art of impulse control for PDMPs
PDMP continuous time modelling
I close to biological reality
I allows the problem to be modeled with a small number of

parameters, all of which are interpretable
I theoretical and numerical framework of impulse control for

PDMPs well-defined under perfect observation at all times
[Davis 93],[dS, Dufour, Zhang 14] or under partial observation
when the jump dates are observed [dSDZ 14],[Bäuerle, Lange 17]
I choose impulse dates
I choose new process location after the impulse

I explicit theoretical and numerical construction of ε-optimal
policies very difficult if the jump dates are not observed

Simplify the problem: drastically limit the number of available
options for treatment durations
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Modeling the control problem Discrete time dynamics
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Modeling the control problem Discrete time dynamics

Time between visits

δ minimum time between two observations
I δ is not small: typically 15 days for multiple myeloma (control

horizon H = 2400 days)

I choice of the time r until the next visit restricted to some
multiples of δ : r ∈ {15, 30, 60} days

Only transitions from t to t + 15, t + 30 and t + 60 of the
continuous process are required: we only need to know the state of
the process at discrete dates all multiples of δ.

It is not a discrete approximation of the continuous time process,
we look at the real continuous time process process at discrete
dates. In particular, the process can change mode between two
observation dates.
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Modeling the control problem Discrete time dynamics

Discrete time process
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Modeling the control problem Discrete time dynamics

Markov decision process

Initialization
I X0 = (m(0), ζ(0)) = (0, ζ0) health status, marker + additional variables

I Y0 = ζ(0) + ε0 initial observation, with ε0 random noise + additional variables

I n← 0 current step, t ← 0 current date

Iterations Given the current value of n, t, Xn and Yn
I using only the available observations Y0, . . . ,Yn, choose the

next decision An = (`, r) ` = treatment, r = time until the next visit
I generate the next (hidden) marker value:

Xn+1 = (m(t + r), ζ(t + r)) with the continuous time dynamics,
conditionally to Xn = (m(t), ζ(t)) and `

I generate the next observation Yn+1 = ζ(t + r) + εn+1
I n← n + 1, t ← t + r
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Modeling the control problem Discrete time dynamics

Value function

I an admissible policy π is a sequence of decision rules based
only on the observations available at each time point. Let Π
be the set of admissible policies

I the optimization horizon is H = Nδ
I let c be the running cost function, and C the terminal cost

function

V (x , y) = inf
π∈Π

Eπ(x ,y)

[ N−1∑
n=0

c(Xn,Yn,An) + C(XN ,YN)
]

We are searching for a numerically tractable approximation of the
value function V and an explicit policy π∗ close to the optimum
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Construction of a candidate policy
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Construction of a candidate policy Belief space

Problem 1: partial observations

The process has hidden components Xn and observed ones Yn:
POMPD (partially observed MDP)

Classical solution: convert the POMDP into a fully observed MDP
on a larger space containing the belief space, using the belief
process or filter [Bäuerle, Rieder 11], [Cleynen, dS 18]

Θn(·) = P(Xn ∈ · | Y0,Y1, . . . ,Yn)

Explicit recursive formula (numerically intractable) linking Θn+1 to Θn and
Yn+1
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Construction of a candidate policy Belief space

Equivalence between the POMDP and the belief MDP

V (x , y) = V ′(δx , y) = inf
π∈Π

Eπ(δx ,y)

[ N−1∑
n=0

c ′(Θn,Yn,An)+C ′(ΘN ,YN)
]

with
I c ′(θ, y , , a) =

∫
c(x , y , a)θ(dx)

I C ′(θ, y) =
∫
C(x , y)θ(dx)
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Construction of a candidate policy Belief space

Dynamic programming

V ′ can be computed by backward iterations using dynamic
programming: set

V ′N(θ, y) = C ′(θ, y)

V ′n(θ, y) = inf
a
{c ′(θ, y , a) + R ′V ′n+1(θ, y , a)}

then V ′0 = V ′ and an optimal policy is obtained by taking the
arginf at each step

R ′ is the controlled transition kernel of the chain (Θn,Yn):

R ′f (θ, y ′, a) = E[f (Θn+1,Yn+1)| (Θn,Yn) = (θ, y),An = a]
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Construction of a candidate policy Discretizations
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Construction of a candidate policy Discretizations

Problem 2 : continuous state space / infinite dimension
Θn lives in an infinite dimensional space, one cannot integrate
analytically nor numerically against the kernel R ′

I one cannot solve the dynamic programming equations
I the filter cannot be simulated

Solution: two-step discretization
I discretize the marker state space to obtain anapproximate

filter Θ̄
I Θ̄n has finite support
I the recurrence relation between Θ̄n is Θ̄n+1 is computable
I Θ̄n can be simulated

I discretize the probabilities at each point in the support of the
filter

The integral against R ′ reduces to a calculable weighted sum and
if R ′ is sufficiently regular, we obtain a good approximation of V
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Construction of a candidate policy Discretizations

Problem 3 : kernel regularity

Because of the boundary jumps when the marker reaches ζ0 or D,
the kernel P of Xn is not regular over the entire space E , but only
locally Lipschitz on a specific partition of E

Solution: be extra careful when creating the first discretization grid
Ω. A point and its projection must always belong to the same
subspace in the partition: place points symmetrically with respect
to certain threshold values.
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Construction of a candidate policy Discretizations

Approximation of the value function
Theorem
Under regularity assumptions for the parameters and compatibility
assumptions between the grids and boundaries, one has

first discretization error

|V ′N(θ̄, ȳ)− V̄ ′N(θ̄, ȳ)| = 0
|V ′n(θ̄, ȳ)− V̄ ′n(θ̄, ȳ)| ≤ Cv ′

n maxDj , 0 ≤ n < N,

second discretization error

|V̂ ′N(θ̂, ȳ)− V̄ ′N(θ̂, ȳ)| = 0,
|V̂ ′n(θ̂, ȳ)− V̄ ′n(θ̂, ȳ)| ≤ Cv̄ ′

n max D̄j , 0 ≤ n < N,

where Cv ′
n
and Cv̄ ′

n
only depend on n, N, δ and the regularity parameters

and Dj is the diameter of the j-th cell of the first grid, D̄j that of the j-th
cell of the second grid
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Construction of a candidate policy Discretizations

Graphical sketch of the proof
Xt = (mt , ζt , ut ,wt)

Xn = (mtn , ζtn , utn ,wtn )

Space E , Kernel P

r ∈ {15, 30, 60}

(Xn,Yn,Zn,Wn)

Space X ⊂ E ×O, Kernel R

observations Zn = 1{mtn =3}

Yn = ζtn ) + εn

Wn = wtn

(Θn,Yn,Zn,Wn)

Space X′ ⊂ P(E )×O, Kernel R ′

V ′n(Θn,Yn,Zn,Wn)

filtaring

dynamic
programming

X̄n = (mtn , ζ̄tn , ūtn ,wtn )

Finite space Ω, Kernel P̄

(X̄n, Ȳn,Zn,Wn)

X̄ ⊂ Ω×O, Kernel R̄

(Θ̄n, Ȳn,Zn,Wn)

X̄′ ⊂ P(Ω)×O, Kernel R̄ ′

V̄ ′n(Θ̄n, Ȳn,Zn,Wn)

discretization 1

(Θ̂n, Ȳn,Zn,Wn)

Γ, R̂ ′

V̂ ′n(Θ̂n, Ȳn,Zn,Wn)

discretization 2
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Construction of a candidate policy Discretizations

Candidate strategy
Initialization
I Filter initialized at θ̄ ← δ(0,ζ0)

I initial observation y
I current time t ← 0, current step n← 0

While the horizon or death is not reached
I project the current filter θ̄ onto the second grid Γ to obtain θ̂
I choose the action a∗ = (`, r) given by dynamic programming for

(θ̂, y , n)

I give treatment ` until time t + r
I collect the new observation y on date t + r
I update the filter with the discretized operator from θ̄ and y
I t ← t + r , n← n + 1
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Numerical results
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Numerical results Grid construction

Problem 4: Decisions influence the dynamics

As the decisions significantly influence the dynamics, we cannot
explore all the possible trajectories by simulation (∼ 10152 policies)
and the use of simulations is thus very limited to construct the
grids

Solution: take advantage of the process rigidity
For a PDMP, the only source of randomness comes from jumps:
until the first jump time, the process remains constant at ζ0. The
process will not visit all areas of the state space. Use this a priori
information as best as possible so select the first grid points.
Enrich the second grid with simulations under the candidate policy.
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Numerical results Grid construction

First discretization
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Numerical results Grid construction

Second discretization

I Construct an initial grid in dimension |Ω|: for each point ω in
Ω take the probability distribution which loads ω with proba
0.95, and the rest of the points according to a Dirichlet
distribution, estimate of the kernel R̂ by Monte Carlo
simulations

I Calculate the candidate policy for this grid
I Iterations

I simulate nsim trajectories controlled with the candidate policy
of the current grid

I for each trajectory and each instant, calculate the distance
between the estimated filter and its projection on the current
grid and add the estimated filter in the next grid if this
distance exceeds a certain threshold

I Estimate R̂ by Monte Carlo on the new grid and restart
dynamic programming to update the candidate policy
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Numerical results Performance of the candidate policy

Competing policies

I Gold Standard (unreachable) decisions based on perfect observation
of the mode at each measurement instant
I assign the correct treatment
I visits with fixed step

I Filter (only the first discretization is used) use filter to estimate the mode
I assign the treatment adapted to the most probable mode
I visits with fixed step

I Standard (reference hospital protocol) based on thresholds srel for relapse and srem for remission.

I As long as y ≤ srel , ` = ∅, r = 60 days
I If y > srel , ` = b (corresponding to the most frequent type of relapse 2) and

r = 15 days
I If at the next visit y has decreased, treatment b is maintained

with visits every 15 days until srem is reached
I Otherwise, ` = a with visits every 15 days
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Numerical results Performance of the candidate policy

Cost functions
The running cost c(x , a) has the form

c(x , a) = E[c̃(X0,A0,X1)|X0 = x ,A0 = a]

with

c̃(x , a, x ′) = CV + κ|ζ ′ − ζ0|r + βr1{m=0,` 6=∅}.

if m 6= 3, where
I x = (m, ζ), a = (`, r), x ′ = (m′, ζ ′)
I CV : fixed cost per visit emotional burden + medical costs

I β > 0: penalty for applying a treatment without disease side

effects

I κ|ζ ′ − ζ0|r : approximation of the time spent in the disease
and the severity of the disease

I M: death cost (paid only once if m = 3)
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Numerical results Performance of the candidate policy

Performance

Visit dates cost (stand. dev.) filtered cost (std)
optimal choice 136.23 (3.91) 134.74 (0.82)

candidate 15 days 213.92 (1.66) 215.16 (0.75)
policy 60 days 145.37 (4.94) 140.58 (0.99)

15 days 209.96 (2.38) 210.2 (0.72)
Filter 60 days 169.39 (6.76) 170.56 (2.15)
Gold 15 days 161.51 (0.04)

Standard 60 days 52.31 (0.82)
Standard 438.92 (20.42)

500 simulated patients, ∼ 100 grid points for Ω, ∼ 1000 grid points for Γ other
parameters calibrated on the clinical trial data
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Conclusion and perspectives

Summary

I first constructive result of an ε-optimal strategy for an impulse
control problem for PDMP with hidden jump times

I theoretical guarantees on the approximation of the value
function

I good numerical performance
I numerically intensive, and highly problem-dependent
I generalizable to a certain extent:

I not too many modes / variables, stay in low dimension
I not too many possible jumps between two observations
I generic deterministic flow between jumps (with a minimum regularity)

I generic jump intensity (with a minimum regularity), possible addition of
other boundary jumps
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Conclusion and perspectives

Ongoing work : ANR HSMM-INCA
with Alice Cleynen (CNRS) and Régis Sabbadin (Inrae)

Key step: estimate/simulate/discretize the filter
I exploration of other simulation-based methods: Monte Carlo

Tree Search, Particle Filter Aymar Thierry d’Argenlieu’s internship 2022

Learning parameters while optimizing
I reinforcement learning framework PhD thesis of Orlane Le Quellennec 2022-2025

Towards more realistic models
I minimum duration of treatment once a treatment has started
I adapt the parameters to the number of relapses: resistance to

treatment
I allow patient-specific parameters
I . . .
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