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Introduction : generative approach

training generating

● Energy based models (RBMs, Generative Convnets)
● Generative Adverarial Network (GAN)
● Variational AutoEncoder (VAE)
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Introduction : generative approach

The 1000 Genomes 
Project Consortium

MSA protein sequences

MNIST

CELEBA
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Energy based models (EBMs)
● Assign an energy

Observed 

parameters 

Unnormalized probability 

● Learning : adjust the parameters so that the dataset configurations are typical 
configurations of the model.

● Maximize the likelihood: 
Gradient ascent

● Problem

latent 

Is in generally impossible to compute  exactly

We need Monte Carlo Sampling
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Energy based models (EBMs)
● Restricted Boltzmann Machines

● Deep Boltzmann Machines

● Generative ConvNets
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Why Restricted Boltzmann Machines (RBMs)?
In this talk we focus on RBM for the following reason:

● It is an Ising model: a canonical model for statistical physicists
● We can write explicitly the probability distribution which give us tools to study it
● It relies on a simple shallow neural network that can be looked into: can it be 

used to extract dataset features (interpretability) ?
● It can model complex dataset : it can be shown in the binary case that it can 

overfit anything…

Reasons to not use it:
● The training can be (very) capricious for complicated reasons
● Generate new data can be long … (How long?)
● So far, no implementation of a convolutional RBM has been made usable in practice
● … 
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RBM (biased) Historical events
Machine Learning aspects

● It was introduced by Smolenski and popularized by Hinton ~80/90
 → introducing the Contrastive Divergence it was proved to be “practical”

● It was getting popular as a pre-training tools for deep-network
● Then, the interest for RBMs slowly decreases around ~2010
● The rise of GAN/VAE alternative achieve to out-faschion RBM

    Statistical Physics aspects
● Many works on RBM in ~2010 anaylising the phase diagram of RBM
● Works on the learning dynamics
● Works on message-passing learning algorithm
● ...
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Restricted Boltzmann Machine
Energy of a configuration

Hidden 
layer

Visible
layer

Smolensky (1989) 

Visible  : data

Hidden : “Neurons”  → features extracted
(interpretability!)
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Restricted Boltzmann Machine
Energy of a configuration

Hidden 
layer

Visible
layer

Smolensky (1989) 

Visible  : data

Hidden : “Neurons”  → features extracted
(interpretability!)

Sequencing context: Tubiana, Cocco, Monasson, Elife (2019); Shimagaki, Weigt, PRE (2019), Yelmen et al., PLoS 

genetics (2021) ;  Bravi et al. PloS CB (2021); Bravi et al. Cell Systems (2021); ⇒ Tubiana’s talk
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Training vs. Sampling and RBM
Learning Generating

Parameter
fitting

Sampling new 
configurations

Quenched 
parameters
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Gibbs Sampling

Gibbs sampling of a trained RBM
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Learning an RBM
● Gibbs equilibrium distribution

● Dataset  are the typical samples of p(v) 

● Maximize the log-likelihood

● Gradient ascent
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● One can extract the point correlations of our data up to any order !

On the interpretability (I)

Once we integrate out the hidden variables:

Effective model for the problem
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● It can be shown that when the RBM starts to learn features of the data, the system 
suffers a phase order transition from a paramagnetic phase to a ferromagnetic phase

On the interpretability (II)

[Decelle, Fissore, Furtlehner J. of stat phys (2018)]

Highest eigenvalue of wij

1/
“N

oi
se

” cr
iti

ca
l li

ne

Phase diagram
Para: high temperature (low variance)
Ferro: strong eigenmode - low noise

Nb of updatesHighest eigenvalue of wij
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● The eigenvectors wi  of matrix w align with the important directions of the dataset: 

On the interpretability (II)

CPF protein

Work in collaboration with 
R. Vanderhaegen, A. Decelle,
A. Carbone

[Decelle, Fissore, Furtlehner J. 
of stat phys (2018)]
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On the gradient

M
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initialization

Ns parallel 
Markov chains

Measure  ⇒ r.h.s gradient
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On the gradient
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Measure  ⇒ r.h.s gradientinitialization

Ns parallel 
Markov chains

initialization

Ns parallel 
Markov chains

R.h.s gradient will be correctly 
computed if the simulations thermalize 
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On the gradient

M
on

te
 C

ar
lo

initialization

Ns parallel 
Markov chains

initialization

Ns parallel 
Markov chains

Measure  ⇒ r.h.s gradient

R.h.s gradient will be correctly 
computed if the simulations thermalize 

Let’s choose good starting point and
approximate with k~O(10) steps
● Contrastive divergence (CD)  [Hinton 

(2002)]   Init – dataset 
● Persistence contrastive divergence (PCD) 

[Tieleman (2008)]  Init – previous last 
point  

● Mean field (TAP) [Gabrié, Tramel, and 
Krzakala (2015)]

● Simulated annealing, Parallel Tempering, …
Or
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Equilibrium vs. Non-eq. regimes

● Non-equilibrium

● Equilibrium

Training Sampling

● “Learns the dynamics”

● Learns a good model for 
the data

Decelle, Furtlehner, Seoane
ArXiv:2105.13889 

(NeurIPS2021)
See Decelle’s poster

Decelle, Furtlehner, Seoane
ArXiv:2105.13889 

(NeurIPS2021)
See Decelle’s poster
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Non-equilibrium regime
Rdm - 10
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Non-equilibrium regime

Training using CD: chain initialisation 
at the dataset

If we sample the RBM from:
➔ random NOTHING
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Non-equilibrium regime

Training using CD: chain initialisation 
at the dataset

If we sample the RBM from:
➔ random NOTHING
➔ the dataset we do not get 

anything new



  24 / 45

Non-equilibrium regime

Training using Mean Field dynamics
 
If we sample the RBM :

➔ Heat bath dynamics 
NOTHING

➔ With MF good data at t~k 
and it does not change 
anymore

With HB MCMC dynamics

With MF dynamics
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Non-equilibrium 
regime
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Decelle, Furtlehner, Seoane
arXiv:2105.13889 
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Non-equilibrium regime : generation
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Best quality samples are obtained at tMCMC ~ k  
Decelle, Furtlehner, Seoane
arXiv:2105.13889 
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Equilibrium regime

pa
ra

m
et

er
s u

pd
at

es

Dynamics are much faster
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Equilibrium vs. Non-eq. regimes

Training

Decelle, Furtlehner, Seoane
ArXiv:2105.13889 

(NeurIPS2021)
See Decelle’s poster

Decelle, Furtlehner, Seoane
ArXiv:2105.13889 

(NeurIPS2021)
See Decelle’s poster

EquilibriumNon-equilibrium

● “Learns the dynamics”

● Advantage: Optimal for data 
generation 

 → random noise initialization

● Drawbacks: 
• Unpredictable if not controlled
• not a good model for the data
• Extremely slow dynamics

Nijkamp, Hill, Han, Wu, Zhu. 
NIPS 2019, AAAI 2020. 

● Learns the (unnormalized) 
prob. Distribution of the data

● Advantage: 
• Fits a good model for the data
• Sampling is stable

● Drawbacks: 
• Very slow training: need large k
• Generating new configurations can 

become prohibitive 

BM: Muntoni, Pagnani, 
Martin Weigt, Zamponi (2021)
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Equilibration: how long? Easy : MNIST

Mixing time

● Grows with the 
learning updates

● Always over 50

Literature k~10
Always out-of-equilibrium regime !Decelle, Furtlehner, Seoane

arXiv:2105.13889 
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Equilibration: how long? Hard : GENE

The thermalisation time jumps suddenly 
beyond 105 MCMC steps.  

The equilibrium regime is beyond 
our reach...

?
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What does it happen?

Highest eigenvalue of wij

1/
“N

oi
s

e”

cr
iti

ca
l li

ne

Phase diagram : i-th eigenvector 
of the W matrix 
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?

What does it happen?
: i-th eigenvector 
of the W matrix 
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What does it happen?

As learning advances we start to have metastable states

Ising 
model

1.
51

 "
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Structured datasets We do the PCA of the data and project the 
data long the first 2 eigenvectors

MNIST GENE PROTEIN FAMILY

Clusterized datasets
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● Standard RBM training procedure fails completely 
to fit such dataset

● Yet, this simple low dimensional dataset can be 
trained analytically

➔ We can have a perfect model w, q, h to 
test the biased sampling 

Step back : high dimensional clusters along 1D 
We feed the RBM with points belonging to different clusters (in high dimensions) but
Separated only in one

PCA

proj0

pr
oj

1
hi

st

[Decelle, Furtlehner, PRL 2021]

[Bereux, Decelle, Furtlehner, Seoane, In preparation]
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Problems of the standard MCMC sampling

Projection of the first eigenvector 
of the W matrix (normalized)
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Problems of the standard MCMC sampling

Projection of the first eigenvector 
of the W matrix (normalized)
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The Tethered Monte Carlo approach (I)
[ Fernandez, Martin-Mayor, Yllanes - Nuclear physics (2009),  
Martin-Mayor, Seoane, Yllanes, Journal of Statistical Physics (2011), 
Fernández, Martín-Mayor, Seoane, Verrocchio, PRL (2012) ]

● Run K simulations at       , with i=1,…,K fixed
● We break the metastability: fast thermalisation
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The Tethered Monte Carlo approach (II)
[ Fernandez, Martin-Mayor, Yllanes - Nuclear physics (2009),  
Martin-Mayor, Seoane, Yllanes, Journal of Statistical Physics (2011), 
Fernández, Martín-Mayor, Seoane, Verrocchio, PRL (2012) ]

1) Compute  2) Integrate it numerically

3) Extract 
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The Tethered Monte Carlo approach (II)
[ Fernandez, Martin-Mayor, Yllanes - Nuclear physics (2009),  
Martin-Mayor, Seoane, Yllanes, Journal of Statistical Physics (2011), 
Fernández, Martín-Mayor, Seoane, Verrocchio, PRL (2012) ]

1) Compute  2) Integrate it numerically

3) Extract 

Once having p(m), we can use inverse 
sampling for sample generation!

[Bereux, Decelle, Furtlehner, Seoane, In preparation]
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Learning with TMCMC 
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Learning with TMCMC 
Generalization to higher number of conserved observables is straigtforward...
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Conclusions
● RBM have a major advantage in terms of interpretability of the 

extracted patterns, but training is very unstable following the 
standard recipes.

● Instability is a consequence of the nonequilibrium sampling 
during the sampling and can be controlled and taken in advance 
to generate good samples with short trainings.

● In order to fit a good model for the data, the sampling during the 
learning must equilibrate:
– Datasets without structure : mixing time grows with Nb. Updates
– Structured datasets: thermalisation is hampered by coexistence of 

states  biased sampling →

Decelle, Furtlehner, Seoane
ArXiv:2105.13889 
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Parameters MNIST
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RBM: learning and phase transition
We can confirm experimentally that the divergence of the mixing time correspond 
to the 2nd order phase transition

Nb of updates
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