

Revisiting the training of RBMs

Beatriz Seoane

Theoretical Physics, UCM Madrid

Beatriz Seoane

Theoretical Physics, UCM Madrid

In collaboration with

Aurélien DecelleCyril Furtlehner(UCM)(Tau team, Université Paris-Saclay)

Nicolas Bereux

Introduction : generative approach

• Variational AutoEncoder (VAE)

Introduction : generative approach

Energy based models (EBMs)

• Learning : adjust the parameters so that the dataset configurations are typical configurations of the model.

$$L = \prod_{m=1}^{m} p\left(v^{(m)}\right)$$

Gradient ascent

 $\nabla_{\theta}L$

• Problem $Z = \sum_{m{v}, m{h}} p(m{v}, m{h})$ Is in generally impossible to compute exactly We need Monte Carlo Sampling

Energy based models (EBMs)

Restricted Boltzmann Machines

• Deep Boltzmann Machines

• Generative ConvNets

Why Restricted Boltzmann Machines (RBMs)?

In this talk we focus on RBM for the following reason:

- It is an *Ising model*: a canonical model for statistical physicists
- We can write explicitly the probability distribution which give us tools to study it
- It relies on a simple shallow neural network that can be looked into: can it be used to extract dataset features (interpretability) ?
- It can model complex dataset : it can be shown in the binary case that it can overfit anything...

Reasons to not use it:

- The training can be (very) capricious for complicated reasons
- Generate new data can be long ... (How long?)
- So far, no implementation of a convolutional RBM has been made usable in practice

RBM (biased) Historical events

Machine Learning aspects

- It was introduced by Smolenski and popularized by Hinton ~80/90
 → introducing the Contrastive Divergence it was proved to be "practical"
- It was getting popular as a pre-training tools for deep-network
- Then, the interest for RBMs slowly decreases around ~2010
- The rise of GAN/VAE alternative achieve to out-faschion RBM

Statistical Physics aspects

- Many works on RBM in ~2010 anaylising the <u>phase diagram of RBM</u>
- Works on the learning dynamics
- Works on message-passing learning algorithm

```
•
```

Restricted Boltzmann Machine

Smolensky (1989)

Energy of a configuration

$$E[\boldsymbol{v}, \boldsymbol{h}; \boldsymbol{w}, \boldsymbol{\eta}, \boldsymbol{\theta}] = -\sum_{ia} v_i w_{ia} h_a - \sum_i \eta_i v_i - \sum_a \theta_a h_a$$

Visible : data

Hidden : "Neurons" → **features extracted** (interpretability!)

Restricted Boltzmann Machine

Smolensky (1989)

$$E[\boldsymbol{v},\boldsymbol{h};\boldsymbol{w},\boldsymbol{\eta},\boldsymbol{\theta}] = -\sum_{ia} v_i w_{ia} h_a - \sum_i \eta_i v_i - \sum_a \theta_a h_a$$

Hidden : "Neurons" → **features extracted** (interpretability!)

Sequencing context: Tubiana, Cocco, Monasson, *Elife (2019)*; Shimagaki, Weigt, *PRE (2019)*, Yelmen *et al.*, *PLoS genetics (2021)*; *Bravi* et al. *PloS CB (2021)*; *Bravi* et al. *Cell Systems (2021)*; *→ Tubiana's talk* 10 / 45

Training vs. Sampling and RBM

Gibbs sampling of a trained RBM

(0 450	1	12	Ç a	1	(2)	33		54	1
			53	6.4	10		54	1.12	2.0	5-
50	0 - 1	3	1.2	24	0	-	1	£	1	
	-21	1	1.1		5	-	1	23		
100	0 - 🥸	4	32			5	ά.	\mathbf{x}		63
	1	5	52		14	È.	15	5		To.
150	0 - SQ	10	1		12		H.	34	1.	1
		9	2	3.4	22	14	2		×,	
200	0 - E		171		1			1	13	
25/		12	19	35	2	1.	1	7.	2	23
25	6	6	1		2	52	X	37	1	
	0	50)	100), 11	150	2	00	25	50

Learning an RBM

• Gibbs equilibrium distribution

$$p[\boldsymbol{v}, \boldsymbol{h} | \boldsymbol{w}, \boldsymbol{\eta}, \boldsymbol{\theta}] = \frac{\exp(-E[\boldsymbol{v}, \boldsymbol{h}; \boldsymbol{w}, \boldsymbol{\eta}, \boldsymbol{\theta}])}{Z} \quad \text{with } Z = \sum_{\{\boldsymbol{v}, \boldsymbol{h}\}} e^{-E[\boldsymbol{v}, \boldsymbol{h}]}$$

- Dataset $S = \{ \boldsymbol{v}^{(1)}, \cdots, \boldsymbol{v}^{(M)} \}$ are the **typical samples** of $p(\boldsymbol{v})$
- Maximize the log-likelihood $\mathcal{L}(\boldsymbol{w}, \boldsymbol{\eta}, \boldsymbol{\theta} | S) = \sum_{1}^{M} \ln p(\boldsymbol{v} = v^{(m)} | \boldsymbol{w}, \boldsymbol{\eta}, \boldsymbol{\theta})$

• Gradient ascent
$$\frac{\partial \mathcal{L}}{\partial w_{ia}} = \langle v_i h_a \rangle_{\mathcal{D}} - \langle v_i h_a \rangle_{\mathcal{H}}$$
$$\frac{\partial \mathcal{L}}{\partial \eta_i} = \langle v_i \rangle_{\mathcal{D}} - \langle v_i \rangle_{\mathcal{H}} \text{ and } \frac{\partial \mathcal{L}}{\partial \theta_a} = \langle h_a \rangle_{\mathcal{D}} - \langle h_a \rangle_{\mathcal{H}} \quad 13 / 45$$

On the interpretability (I)

• One can extract the point correlations of our data up to any order !

Once we integrate out the hidden variables:

$$E(v;\theta) = -\log\left(\sum_{\boldsymbol{h}} e^{-E[\boldsymbol{v},\boldsymbol{h};\boldsymbol{w},\boldsymbol{\eta},\boldsymbol{\theta}]}\right)$$

$$E(v) = -E_0 - \sum_i H_i v_i - \sum_{i,j} J_{i,j}^{(2)} v_i v_j - \sum_{i,j,k} J_{ijk}^{(3)} v_i v_j v_k \cdots - \sum_{j_1 \cdots j_n} J_{j_1 \cdots j_n}^{(n)} v_{j_1} \cdots v_{j_n} - \cdots$$

Effective model for the problem

On the interpretability (II)

• It can be shown that when the RBM starts to learn features of the data, the system suffers a **phase order transition** from a paramagnetic phase to a ferromagnetic phase

[Decelle, Fissore, Furtlehner J. of stat phys (2018)]

<u>**Para</u>**: high temperature (low variance) <u>**Ferro**</u>: strong eigenmode - low noise</u>

On the interpretability (II)

• The eigenvectors \boldsymbol{w}_i of matrix $\boldsymbol{\omega}$ align with the important directions of the dataset:

$$m_i = \langle \boldsymbol{v} \cdot \boldsymbol{w}_i \rangle_{\mathcal{D}} \neq 0$$

[Decelle, Fissore, Furtlehner J. of stat phys (2018)]

CPF protein

Work in collaboration with R. Vanderhaegen, A. Decelle, A. Carbone

Monte Carlo

On the gradient

R.h.s gradient will be correctly computed if the <u>simulations thermalize</u>

 $k \sim n \tau_{\text{mixing}}$

N_s parallel Markov chains

 $\langle \cdots \rangle_{\mathcal{H}}$

initialization

$$\frac{\partial \mathcal{L}}{\partial w_{ia}} = \langle v_i h_a \rangle_{\mathcal{D}} - \langle v_i h_a \rangle_{\mathcal{H}}$$
$$\frac{\partial \mathcal{L}}{\partial \eta_i} = \langle v_i \rangle_{\mathcal{D}} - \langle v_i \rangle_{\mathcal{H}}$$
$$\frac{\partial \mathcal{L}}{\partial \theta_a} = \langle h_a \rangle_{\mathcal{D}} - \langle h_a \rangle_{\mathcal{H}}$$

Measure \Rightarrow r.h.s gradient

On the gradient

R.h.s gradient will be correctly computed if the <u>simulations thermalize</u>

 $k \sim n \tau_{\text{mixing}}$

N_s parallel Markov chains

 $\langle \cdots \rangle_{\mathcal{H}}$

initialization

 $\frac{\partial \mathcal{L}}{\partial w_{ia}} = \langle v_i h_a \rangle_{\mathcal{D}} - \langle v_i h_a \rangle_{\mathcal{H}}$ $\frac{\partial \mathcal{L}}{\partial \eta_i} = \langle v_i \rangle_{\mathcal{D}} - \langle v_i \rangle_{\mathcal{H}} \quad \text{for even of }$

Let's choose good starting point and approximate with k~O(10) steps

- Contrastive divergence (CD) [Hinton (2002)] Init – dataset
- Persistence contrastive divergence (PCD) [*Tieleman (2008)*] Init – previous last point
- Mean field (TAP) [Gabrié, Tramel, and Krzakala (2015)]

Or

• Simulated annealing, Parallel Tempering, ...

Rdm - 10

CD-100 random start								
0								
4 新安美丽教习世家深秋安军兵主								
14 3 4 4 4 4 4 6 6 6 9 9 9 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								
41								
69								
118 the let at a so the 20 to 64 the factor for								
201 4 6 2 0 5 5 6 2 6 6 6 6 6								
342 Way 4 C 5 th 2 m th 1 - 04 D 4								
582 Wei 4 0 m to 24 m O (10 11 3								
2862								
4866								
8272								
14063								
23907								
40642 9 / S 3 D 9 4 5 4 8 4 (
69091 Y / C S S S 4 6 0 8 4 3								
117456								
199675 7 5 新命令书 7 86 金色7								
1								

Training using CD: chain initialisation at the dataset

If we sample the RBM from:

→ random NOTHING

Training using CD: chain initialisation at the dataset

If we sample the RBM from:

- → random NOTHING
- the dataset we do not get anything new

1921314	4 林中的有效历史发展了来自己的主
1921314	
1921314	10 18 15 19 76 19 19 19 19 19 19 19 19 19
1921314	14 14 US 60 TO 10
1921314	
1921314	
1921314	
1921314	
1921314	2011
1921314	<u></u>
1921314	「「「「「「「」」ではない。
1921314	<u>2024</u> (4) 4) 4) 4) 5) 7) 10 (2) (2) 10 (2) 10 (2) 10 (2) 10 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
1928314	
171 3 4	1083 4 4 /
17234	2862 441 23449 6 2094
3 4	4866 4 54 / 5. 4 19 4 5 6 12 0 9 4
1	8272 4 P 1 2 5 4 4 P B 10 D B 4
	14063 S / 2 3 4 4 5 6 10 0 5 4
	23907
	40642
연습니다. 관람은 영향	69091
	117456
.0	199675 7 5 P 4 6 7 9 9 10 6 6 7
0	11-1-1-15日本的现在分子与10月前日

117456 199675 CD-100 random start

Training using Mean Field dynamics

If we sample the RBM :

- Heat bath dynamics
 NOTHING
- With MF good data at t~k and it does not change anymore

With HB MCMC dynamics

张安建的现在分词参加	
2 2 2 2 2 2 3 2 4 5 4 5 6 7 5 7 5	84254
<u></u>	<i>28823</i>
8396833888	83335
89939888889	99833
10000 3 3 3 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3	36363

With MF dynamics

793417231786111

Decelle, Furtlehner, Seoane arXiv:2105.13889

25 / 45

Non-equilibrium regime : generation

Decelle, Furtlehner, Seoane arXiv:2105.13889

Equilibrium regime

Dynamics are much faster

Equilibrium vs. Non-eq. regimes

Decelle, Furtlehner, Seoane <u>ArXiv:2105.13889</u> (NeurIPS2021) See Decelle's poster

Non-equilibrium $k < t_{\text{therm}}$

- "Learns the dynamics"
- Advantage: Optimal for data generation
 - → random noise initialization

Nijkamp, Hill, Han, Wu, Zhu. NIPS 2019, AAAI 2020.

BM: Muntoni, Pagnani, Martin Weigt, Zamponi (2021)

• Drawbacks:

· Unpredictable if not controlled

- not a good model for the data
- Extremely slow dynamics

Training

 ∇LL

Equilibrium $k > t_{\text{therm}}$

 Learns the (unnormalized) prob. Distribution of the data

• Advantage:

- Fits a good model for the data
- Sampling is stable

• Drawbacks:

- Very slow training: need large k
- Generating new configurations can become prohibitive 28 / 45/

Equilibration: how long? Easy : MNIST

Equilibration: how long? Hard : GENE

The thermalisation time jumps suddenly beyond 10⁵ MCMC steps.

The equilibrium regime is beyond our reach...

What does it happen?

$$E[\boldsymbol{v},\boldsymbol{h}] = -\sum_{ia} v_i \boldsymbol{w}_{ia} h_a - \sum_i \eta_i v_i - \sum_a \theta_a h_a$$

: *i*-th eigenvector $m_i = \langle \boldsymbol{v} \cdot \boldsymbol{w}_i \rangle_{\mathcal{D}} \neq 0$ of the W matrix

What does it happen?

 $\underline{t_{\text{age}}} = 144$ As learning advances we start to have metastable states 3 2 m_1 Ising $\mathcal{H} = -J\sum \sigma_i \sigma_j - h\sum^n \sigma_j,$ $^{-1}$ -2 model i=1 m_0 $\langle i,j \rangle$ (a) (c) m т (b` h a) 0 -50 (c)0 \sim -100 0 ----h $(\underline{w})^{-150}_{-200}$ -150 $T_{\rm c}$ Tて 3 -300 0 -350 -400 -450 -33/45 -0.6 -0.2 -0.4 0.0 m 0.2 0.6 0.8 0.4

Structured datasets

We do the PCA of the data and project the data long the first 2 eigenvectors

Clusterized datasets 34/45

Step back : high dimensional clusters along 1D

We feed the RBM with points belonging to different clusters (in high dimensions) but Separated only in one

- Standard RBM training procedure fails completely to fit such dataset
- Yet, this simple low dimensional dataset can be trained analytically [Decelle, Furtlehner, PRL 2021]
 - We can have a perfect model ω , θ , η to test the biased sampling

[Bereux, Decelle, Furtlehner, Seoane, *In preparation*]

Problems of the standard MCMC sampling

36 / 45

Problems of the standard MCMC sampling

of the W matrix (normalized)

The Tethered Monte Carlo approach (I)

[Fernandez, Martin-Mayor, Yllanes - Nuclear physics (2009), Martin-Mayor, Seoane, Yllanes, Journal of Statistical Physics (2011), Fernández, Martín-Mayor, Seoane, Verrocchio, PRL (2012)]

$$Z = \sum_{\boldsymbol{v},\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})} = \sqrt{\frac{N}{2\pi}} \int_{-\infty}^{\infty} d\hat{m} \sum_{\boldsymbol{v},\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})} e^{-N(\hat{m}-m_0(\boldsymbol{v}))^2/2} = \int_{-\infty}^{\infty} d\hat{m} e^{-N\Omega(\hat{m})}$$

$$\langle O(\boldsymbol{v}, \boldsymbol{h}) \rangle = \frac{\sum_{\boldsymbol{v}, \boldsymbol{h}} O e^{-E(\boldsymbol{v}, \boldsymbol{h})}}{\sum_{\boldsymbol{v}, \boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}} = \int_{-\infty}^{\infty} d\hat{m} \, \langle O \rangle_{\hat{m}} \, e^{-N\Omega(\hat{m})}$$

$$\hat{m}_{i}^{15}$$

$$\langle O(\boldsymbol{v}, \boldsymbol{h}) \rangle_{\hat{m}} = \frac{\sum_{\boldsymbol{v}, \boldsymbol{h}} O \ \omega(\hat{m}, \boldsymbol{v}, \boldsymbol{h})}{\sum_{\boldsymbol{v}, \boldsymbol{h}} \omega(\hat{m}, \boldsymbol{v}, \boldsymbol{h})}$$

$$\omega(\hat{m}, \boldsymbol{v}, \boldsymbol{h}) = e^{-E(\boldsymbol{v}, \boldsymbol{h})} e^{-N(\hat{m} - m_0(\hat{v}))^2/2}$$

- Run *K* simulations at \hat{m}_i , with *i*=1,...,*K* fixed
- We break the metastability: fast thermalisation 38 / 45

The Tethered Monte Carlo approach (II)

[Fernandez, Martin-Mayor, Yllanes - Nuclear physics (2009), Martin-Mayor, Seoane, Yllanes, Journal of Statistical Physics (2011), Fernández, Martín-Mayor, Seoane, Verrocchio, PRL (2012)]

The Tethered Monte Carlo approach (II)

[Fernandez, Martin-Mayor, Yllanes - Nuclear physics (2009), Martin-Mayor, Seoane, Yllanes, Journal of Statistical Physics (2011), Fernández, Martín-Mayor, Seoane, Verrocchio, PRL (2012)]

[Bereux, Decelle, Furtlehner, Seoane, In preparation]

Learning with TMCMC

 \hat{m}_i **►**t

$$\frac{\partial \mathcal{L}}{\partial w_{ia}} = \langle v_i h_a \rangle_{\mathcal{D}} - \langle v_i h_a \rangle_{\mathcal{H}}$$
$$\frac{\partial \mathcal{L}}{\partial \eta_i} = \langle v_i \rangle_{\mathcal{D}} - \langle v_i \rangle_{\mathcal{H}}$$
$$\frac{\partial \mathcal{L}}{\partial \theta_a} = \langle h_a \rangle_{\mathcal{D}} - \langle h_a \rangle_{\mathcal{H}}$$

 $\langle O(\boldsymbol{v}, \boldsymbol{h}) \rangle_{\mathcal{H}} = \int_{-\infty}^{\infty} d\hat{m} \, \langle O \rangle_{\hat{m}} \, e^{-N\Omega(\hat{m})}$

Learning with TMCMC

Generalization to higher number of conserved observables is straigtforward...

$$\omega(\hat{m}_{1}, \hat{m}_{2}, \boldsymbol{v}, \boldsymbol{h}) = e^{-E(\boldsymbol{v}, \boldsymbol{h})} e^{-N(\hat{m}_{2} - m_{0}(\hat{v}))^{2}/2} e^{-N(\hat{m}_{2} - m_{1}(\hat{v}))^{2}/2}$$

$$\Omega'(\hat{m}) \rightarrow \boldsymbol{\nabla}\Omega = \left(\langle \hat{m}_{0} - m_{0} \rangle_{\hat{m}_{0}, \hat{m}_{1}} \langle \hat{m}_{1} - m_{1} \rangle_{\hat{m}_{0}, \hat{m}_{1}} \right)$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.$$

Conclusions

Decelle, Furtlehner, Seoane <u>ArXiv:2105.13889</u>

- RBM have a major advantage in terms of interpretability of the extracted patterns, but training is very unstable following the standard recipes.
- Instability is a consequence of the nonequilibrium sampling during the sampling and can be controlled and taken in advance to generate good samples with short trainings.
- In order to fit a good model for the data, the sampling during the learning must equilibrate:
 - Datasets without structure : mixing time grows with Nb. Updates
 - Structured datasets: thermalisation is hampered by coexistence of states → biased sampling

Parameters MNIST

- Number of hidden nodes: $N_h = 500$
- Learning rate: $\alpha = 0.01$
- Minibatch size: $n_{mb} = 500$
- no ℓ_2 regularization of momentum.
- The gradient is centered according to [1]
- The visible biases are initialized to match the empirical frequency of the training dataset:

$$\eta_i = \log\left(\frac{\bar{m}_i}{1 - \bar{m}_i}\right) \text{ where } \bar{m}_i = \frac{1}{M} \sum_m s_i^{(m)} \tag{1}$$

- The number of MC chains used for the negative term was always equal to n_{mb}
- The number of MC steps for the negative chains is indicated by the variables $t_{\rm GL}$ and can vary.

RBM: learning and phase transition

We can confirm experimentally that the divergence of the mixing time correspond to the 2nd order phase transition

