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Molecular dynamics

Simulation of protein folding (Courtesy of K. Schulten’s group)
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Molecular dynamics
Molecular dynamics consists in simulating on the computer the
evolution of atomistic systems, as a numerical microscope:

• Understand the link bewteen macroscopic properties and
microscopic ingredients

• Explore matter at the atomistic scale
• Simulate new materials, new molecules
• Interpret experimental results

Applications: biology, chemistry, materials science

Molecular dynamics comes of age:

• 1/4 of CPU time worldwide is devoted to computations at the
molecular scale

• 2013 Chemistry Nobel prize: Arieh Warshel, Martin Karplus
and Michael Levitt. “Today the computer is just as important a

tool for chemists as the test tube. Simulations are so realistic that

they predict the outcome of traditional experiments.”
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Challenges
Main challenges:

• Improved models (force fields, coarse-grained force fields):
polarisability, water, chemical reactions

• Improved sampling methods (access long time scales):
thermodynamic quantities, and dynamical properties

• Incorporate data: Bayesian approaches, data sciences

Spatial parallelism is very ef-
fective, but temporal reach of
heroic brute force MD is limited
to 1µs or less.

Courtesy of Danny Perez (LANL)
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Langevin and over-damped Langevin dynamics
The basic modeling ingredient in molecular dynamics: a potential
function V which associates to a configuration x = (x1, ..., xNatom

)
in R

d (d = 3Natom) an energy V (x) ∈ R. Let us also introduce the
inverse temperature: β−1 = kBT .

The Langevin dynamics writes:
{

dX t = M−1P t dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t .

The over-damped Langevin dynamics writes:

dX t = −∇V (X t) dt +
√

2β−1dW t .

These dynamics are both ergodic wrt the canonical measure:
limt→∞

1

t

∫ t

0
ϕ(X s)ds =

∫
Rd ϕdµ where

µ(dx) = Z−1 exp(−βV (x))dx .
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Thermodynamic and dynamical quantities

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt µ of some
observables): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M∑

m=1

F((Xm
t )t≥0).

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and µ is a multimodal measure.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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Challenges

Examples of hot topics in mathematics for MD:

• Sampling of reactive trajectories, rare event sampling (A. Guyader,

C. Hartmann, TL, E. Vanden Eijnden, J. Weare, ...)

• Sampling of probability measures on manifolds, constrained
MD (P. Breiding, P. Diaconis, J. Goodman, TL, ...)

• Sampling of non equilibrium stationary state, non-reversible
dynamics (J. Bierkens, G. Stoltz, ...)

• Towards better force fields (G. Csanyi, C. Ortner, A.V. Shapeev, ...)

• Effective dynamics, Mori-Zwanzig (T. Hudson, F. Legoll, TL, W. Zhang, ...)

Today:

• Free energy adaptive biasing algorithms

• Sampling of metastable dynamics
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Free energy and adaptive biasing techniques
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Adaptive biasing techniques

We suppose in this part that we know a slow variable of
dimension 1: ξ(X t), where ξ : Rd → T is a so-called reaction
coordinate.

This reaction coordinate will be used to bias the dynamics
(adaptive importance sampling technique).

For example, in the 2D simple examples: ξ(x , y) = x .
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Adaptive biasing techniques
Let us introduce two probability measures associated to µ and ξ:

• The image of the measure µ by ξ:

ξ∗µ (dz) = exp(−βA(z)) dz

where the free energy A is defined by:

A(z) = −β−1 ln

(∫

Σ(z)
e−βV δξ(x)−z(dx)

)
,

with Σ(z) = {x , ξ(x) = z} is a (smooth) submanifold of Rd ,
and δξ(x)−z(dx) dz = dx .

• The probability measure µ conditioned to ξ(x) = z :

µΣ(z)(dx) =
exp(−βV (x)) δξ(x)−z(dx)

exp(−βA(z)) .
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Adaptive biasing techniques
In the simple case ξ(x , y) = x , we have:

• The image of the measure µ by ξ:

ξ∗µ (dx) = exp(−βA(x)) dx

where the free energy A is defined by:

A(x) = −β−1 ln

(∫

Σ(x)
e−βV (x ,y)dy

)
,

and Σ(x) = {(x , y), y ∈ R}.
• The probability measure µ conditioned to ξ(x , y) = x :

µΣ(x)(dy) =
exp(−βV (x , y)) dy

exp(−βA(x)) .
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Adaptive biasing techniques

The bottom line of adaptive methods is the following: for “well
chosen” ξ the potential V − A ◦ ξ is “less rugged” than V . Indeed,
by construction ξ∗ exp(−β(V − A ◦ ξ)) = 1T.

Problem: A is unknown ! Idea: use a time dependent potential of
the form

Vt(x) = V (x)− At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:

• build a dynamics which goes quickly to equilibrium,

• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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Free energy biased dynamics (1/2)
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Free energy biased dynamics (2/2)
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Updating strategies

How to update At ? Two methods depending on wether A′
t

(Adaptive Biasing Force) or At (Adaptive Biasing Potential) is
approximated.
For the Adaptive Biasing Force (ABF) method, the idea is to use
the formula

A′(z) =

∫

Σ(z)

(∇V · ∇ξ
|∇ξ|2 − β−1

div

( ∇ξ
|∇ξ|2

))
e−βV δξ(x)−z(dx)

∫

Σ(z)
e−βV δξ(x)−z(dx)

=

∫

Σ(z)
f dµΣ(z) = Eµ(f (X )|ξ(X ) = z).

The mean force A′(z) is the average of f with respect to µΣ(z).
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The ABF method
In the simple case ξ(x , y) = x , remember that

A(x) = −β−1 ln

(∫

Σ(x)
e−βV (x ,y)dy

)
,

so that

A′(x) =

∫

Σ(x)
∂xV e−βV (x ,y) dy

∫

Σ(x)
e−βV (x ,y) dy

=

∫

Σ(x)
∂xV dµΣ(x)

where µΣ(x) is the prob meas µ conditioned to ξ(x , y) = x .
Notice that actually, whatever At is,

A′(z) =

∫

Σ(z)
f e−β(V−At◦ξ) δξ(x)−z(dx)

∫

Σ(z)
e−β(V−At◦ξ) δξ(x)−z(dx)

.
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The ABF method
Thus, we would like to simulate:

{
dX t = −∇(V − A ◦ ξ)(X t) dt +

√
2β−1dW t ,

A′(z) = Eµ (f (X )|ξ(X ) = z)

but A is unknown...
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The ABF method
The ABF dynamics is then:

{
dX t = −∇(V − At ◦ ξ)(X t) dt +

√
2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .
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The ABF method
The ABF dynamics is then:

{
dX t = −∇(V − At ◦ ξ)(X t) dt +

√
2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:





∂tψ = div
(
∇(V − At ◦ ξ)ψ + β−1∇ψ

)
,

A′
t(z) =

∫

Σ(z)
f ψ δξ(x)−z(dx)

∫

Σ(z)
ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx .

18 / 68



Molecular dynamics Free energy and ABF QSD and accelerated dynamics Conclusion

The ABF method
The ABF dynamics is then:

{
dX t = −∇(V − At ◦ ξ)(X t) dt +

√
2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:





∂tψ = div
(
∇(V − At ◦ ξ)ψ + β−1∇ψ

)
,

A′
t(z) =

∫

Σ(z)
f ψ δξ(x)−z(dx)

∫

Σ(z)
ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx .

Questions: Does A′
t converge to A′ ? What did we gain compared

to the original gradient dynamics ?
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Back to the 2D example
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A toy example

Influence of the solvation on a dimer conformation [Dellago, Geissler]
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Compact state. Stretched state.

The particles interact through a pair potential: truncated LJ for all
particles except the two monomers (black particles) which interact
through a double-well potential. A slow variable is the distance
between the two monomers. −→ simulation
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Longtime convergence and entropy (1)

Recall the original gradient dynamics:

dQt = −∇V (Qt) dt +
√

2β−1dW t .

The associated (linear) Fokker-Planck equation writes:

∂tφ = div
(
∇Vφ+ β−1∇φ

)
.

where Qt ∼ φ(t,q) dq.

The metastable behaviour of Qt is related to the multimodality of
µ, which can be quantified through the rate of convergence of φ to
φ∞ = Z−1 exp(−βV ).

A classical approach for partial differential equations (PDEs):
entropy techniques.
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Longtime convergence and entropy (2)

Notice that the Fokker-Planck equation rewrites

∂tφ = β−1
div

(
φ∞∇

(
φ

φ∞

))
.

Let us introduce the entropy:

E (t) = H(φ(t, ·)|φ∞) =

∫
ln

(
φ

φ∞

)
φ.

We have (Csiszár-Kullback inequality):

‖φ(t, ·)− φ∞‖L1 ≤
√

2E (t).
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Longtime convergence and entropy (3)

dE

dt
=

∫
ln

(
φ

φ∞

)
∂tφ

= β−1

∫
ln

(
φ

φ∞

)
div

(
φ∞∇

(
φ

φ∞

))

= −β−1

∫ ∣∣∣∣∇ ln

(
φ

φ∞

)∣∣∣∣
2

φ =: −β−1I (φ(t, ·)|φ∞).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: ∀φ pdf,

H(φ|φ∞) ≤ 1

2R
I (φ|φ∞)

then E (t) ≤ E (0) exp(−2β−1Rt) and thus φ converges to φ∞
exponentially fast with rate β−1R .

Metastability ⇐⇒ small R
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Convergence of ABF (1)
A convergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008]: Recall the
ABF Fokker-Planck equation:





∂tψ = div
(
∇(V − At ◦ ξ)ψ + β−1∇ψ

)
,

A′
t(z) =

∫
f ψ δξ(x)−z(dx)

∫
ψ δξ(x)−z(dx)

.

Suppose:

(H1) “Ergodicity” of the microscopic variables: the conditional
probability measures µΣ(z) satisfy a LSI(ρ),

(H2) Bounded coupling:
∥∥∇Σ(z)f

∥∥
L∞

<∞,
then

‖A′
t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:
• the rate r of convergence of ψ =

∫
ψ δξ(x)−z(dx) to ψ∞,

• the LSI constant ρ (the real limitation).
24 / 68
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Convergence of ABF (2)

In summary:

• Original gradient dynamics: exp(−β−1Rt) where R is the LSI
constant for µ;

• ABF dynamics: exp(−β−1ρt) where ρ is the LSI constant for
the conditioned probability measures µΣ(z).

If ξ is well chosen, ρ≫ R : the free energy can be computed very
efficiently.

Two ingredients of the proof:

(1) The marginal ψ(t, z) =
∫
ψ(t, x) δξ(x)−z(dx) satisfies a closed

PDE:
∂tψ = β−1∂zzψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with exponential speed
C exp(−4π2β−1t). (Here, r = 4π2).
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Convergence of ABF (3)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009]:

E = EM + Em

where
The total entropy is E = H(ψ|ψ∞),

The macroscopic entropy is EM = H(ψ|ψ∞),

The microscopic entropy is

Em =

∫
H
(
ψ(·|ξ(x) = z)

∣∣∣ψ∞(·|ξ(x) = z)
)
ψ(z) dz .

We already know that EM goes to zero: it remains only to consider
Em...
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Practical implementation of ABF
The estimate of the conditional average E(f (X t)|ξ(X t) = z) can
be done using two (complementary) approaches:

• Use empirical means over many replicas (interacting particle
system):

E(f (X t)|ξ(X t) = z) ≃
∑N

m=1
f (Xm,N

t ) δα(ξ(Xm,N
t )− z)

∑N
m=1

δα(ξ(Xm,N
t )− z)

.

This approach is easy to parallelize, flexible (selection
mechanisms) and efficient in cases with multiple reactive
paths.

• Use trajectorial averages along a single path:

E(f (X t)|ξ(X t) = z) ≃
∫ t

0
f (X s) δ

α(ξ(X s)− z) ds
∫ t

0
δα(ξ(X s)− z) ds

.

The longtime behavior is much more difficult to analyze.
27 / 68
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Other results and recent developments

Adaptive biasing techniques can be used whenever the sampling of
a multimodal measure is involved, for example for statistical
inference in Bayesian statistics [N. Chopin, TL, G. Stoltz, 2011].

Recent works:

• Non-gradient force fields [L. Maurin, P. Monmarché, TL, 2021]

• Efficiency of techniques which use trajectorial averages to learn
the bias (Wang Landau, metadynamics, SHUS) [M. Benaïm, G. Fort,

B. Jourdain, TL, P. Monmarché, G. Stoltz, P.A. Zitt, 2014-2021]

• Extension to Langevin dynamics [M. Benaïm, P. Monmarché, 2018]

• Computation of the collective variable using auto-encoders
[Z. Belkacemi, E. Gkeka, TL, G. Stoltz]

28 / 68



Molecular dynamics Free energy and ABF QSD and accelerated dynamics Conclusion

Metastability: the quasi-stationary distribution approach

C.R. Schwantes, D. Shukla, V.S.Pande, Biophysical Journal, vol. 110, 2016
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Metastability: a toy example

(a) V = −12.53 (b) V = −11.50 (c) V = −11.48 (d) V = −11.40

Figure: Low energy conformations of the 7 atoms Lennard-Jones cluster.

−→ simulation
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Two models for dynamics

The basic modeling ingredient in molecular dynamics: a potential
function V which associates to a configuration x = (x1, ..., xNatom

)
in R

d (d = 3Natom) an energy V (x) ∈ R.

From V , two kinds of dynamics are considered:

• Langevin and over-damped Langevin dynamics: Markov
processes with values in continuous state space

• kinetic Monte Carlo model or Markov state model (first order
kinetics): Markov processes with values in discrete state space
(jump Markov process)

Question: Can a mathematically rigorous link be made between
these two kinds of models ?
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The exit event

Let us focus on the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given an ensemble of subsets of Rd

(states). Let us consider one of them: S ⊂ R
d . The exit event

from S is given by
(τS ,X τS )

where τS = inf{t > 0, X t 6∈ S}.
Objective: build a jump Markov model to simulate the exit event
(τS ,X τS ).

This is useful theoretically (justification of Markov state models and
Eyring-Kramers laws) and numerically (accelerated dynamics à la

Voter).
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Kinetic Monte Carlo
Kinetic Monte Carlo (or Markov state) models are built as follows:

• define exit regions from S: ∂S = ∪J
j=1

∂Sj

• associate a rate kj with an exit through ∂Sj

and then (jump Markov model)
• the exit time τkMC

S is exponentially distributed with parameter∑J
j=1

kj

• the exit region is I kMC
S with law P(I kMC

S = i) = ki∑J
j=1 kj

• I kMC
S and τkMC

S are independent random variables

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4
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Eyring-Kramers laws

Formulas for transition rates. Let us introduce the local minima
(zj)j=1,...,J of V on ∂S , and associated exit regions ∂Si . The
parameters kj are computed using the Eyring-Kramers formula
(Harmonic Transition State Theory):

kHTST
j = νj e

−β[V (zj)−V (x1)]

where νj is an explicit prefactor and x1 = argminS V .

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4
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A theoretical question

Question: can we relate the exit event (τS ,X τS ) for the original
dynamics with the exit event (τkMC

S , I kMC
S ) for the jump Markov

process?

Two steps:

• Introduce the Quasi-Stationary Distribution

• Consider the small temperature regime β → ∞
(semi-classical limit)
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Step 1: The Quasi-Stationary Distribution

Definition of the QSD: A probability measure ν with support S is a
QSD for the Markov process (X t)t≥0 iff for all t > 0,

X 0 ∼ ν =⇒ L(X t |τS > t) = ν

Existence, uniqueness, convergence: Assume the state is bounded
in positions. For the Langevin and the overdamped Langevin
dynamics, there exists a unique QSD ν in S. Moreover, for any X 0

in S,
lim
t→∞

L(X t |τS > t) = ν.

Remark: Quantitative definition of a metastable exit:
exit time≫ local equilibration time
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Fundamental properties of the QSD

Assume X 0 ∼ ν, then:

• the first exit time τS is exponentially distributed since:

P
ν(τS > s + t) = P

ν(τS > s + t|τS > s)Pν(τS > s)

= P
ν(τS > t)Pν(τS > s)

• and τS is independent of the first hitting point X τS since:

P
ν(X τS ∈ A, τS > s) = P

ν(X τS ∈ A|τS > s)Pν(τS > s)

= P
ν(X τS ∈ A)Pν(τS > s)

Consequence: Starting from ν, the exit event from S can be exactly
written as one jump of a kinetic Monte Carlo model with rates

kj =
P
ν(X τS ∈ ∂Sj)

Eν(τS)
.
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Step 2: The small temperature regime
One has explicit formulas for E(τS) and the distribution of X τS .
The first eigenstate (λ1, u1) of the Fokker-Planck operator with
Dirichlet boundary conditions on ∂S satisfies (for the overdamped
Langevin dynamics):

{
div (∇Vu1) + β−1∆u1 = −λ1u1 on S,

u1 = 0 on ∂S.

Then, ν = u1(x)dx∫
S
u1

,

E
ν(τS) =

1

λ1

and

P
ν(X τS ∈ ∂Si ) = −

∫
∂Si

∂nu1 dσ

βλ1

∫
S u1(x) dx

.

Thus, ki = −
∫
∂Si

∂nu1 dσ

β
∫
S u1(x) dx

. Can we then show that ki ≃ kHTST
i ?
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Justifying Eyring-Kramers laws
Theorem [Di Gesu, TL, Le Peutrec, Nectoux, 2019]

Under some geometric assumptions, starting from the QSD, in the
limit β → ∞, the exit rates for the overdamped Lang dyn are

ki = ν̃OL
i e

−β[V (zi )−V (x1)] (1 + O(β−1))

where

ν̃OL
i =

√
β

2π
∂nV (zi)

√
det(∇2V )(x1)√
det(∇2V|∂S)(zi )

.

The proof is based on tools from semi-classical analysis and
properties of the low-lying spectrum of the Witten Laplacians on
0-forms and 1-forms.

Among the geometric assumptions, one imposes some kind of
“separation” between the saddle points in terms of Agmon
distances, which appears to be necessary numerically.
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Generalizations and perspectives

If the state is metastable, the QSD is a good intermediate between
continuous-state space dynamics and jump Markov models.

The mathematical analysis gives the proper geometric setting under
which the kinetic Monte Carlo model can be built and the
Eyring-Kramers formulas can be used to parameterize it.

Recent works:

• QSD for Langevin dynamics [Guillin, TL, Ramil, Reygner, Wu]

• Saddle points on ∂S [TL, Le Peutrec, Nectoux]

Open questions:

• Small temperature regime on the Langevin dynamics

• Non-reversible dynamics
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From theory to algorithms

A.F. Voter, Annu. Rev. Mater. Res., vol. 32, 2002.
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How to sample efficiently the exit event?

If the process remains sufficiently long in a state, the exit event can
be modeled by one jump of a Markov state model. This can be
used to simulate efficiently the exit event: accelerated dynamics à

la A.F. Voter.

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4

Two steps:

• Estimate the decorrelation time, namely the time to reach the
QSD

• Use the underlying jump Markov process to efficiently sample
the exit event
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Decorrelation time
How long should we wait in practice so that L(X t |τS > t) is close
to the QSD ν?

• Theoretically: exponential decay
‖L(X t |τS > t)− ν‖TV ≤ C (L(X 0)) exp (−(λ2 − λ1)t);

• Numerically: simulate L(X t |τS > t) via interacting particle
system (Fleming-Viot particle system), and test stationarity to
estimate the convergence time to the QSD (Gelman-Rubin
convergence diagnostic).
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z3

z4

S

∂S1

∂S2
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The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX k
t = −∇V (X k

t ) dt +
√

2β−1dW k
t

until one of them, say X 1

t , exits;
2. Kill the process that exits;
3. With uniform probability 1/(N − 1), randomly choose one of

the survivors, X 2

t , . . . ,X
N
t , say X 2

t ;
4. Branch X 2

t , with one copy persisting as X 2

t , and the other
becoming the new X 1

t .

It is known that the empirical distribution [Villemonais]

µt,N ≡ 1

N

N∑

k=1

δ
X

k
t

satisfies:
lim

N→∞
µt,N = L(X t |t < τS).
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Accelerated dyamics

Once the QSD has been reached, there are three ideas to efficiently
sample (τS ,X τS ):

• use parallel architectures to accelerate the sampling: parallel
replica, parsplicing

• raise the minimum of the potential inside the state S (but not
on ∂S): hyperdynamics

• raise the temperature: temperature accelerated dynamics
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The Parallel Replica Algorithm

Perform many independent exit events in parallel [Voter, 1998]

Two steps:

• Distribute N independent initial conditions in S according to
the QSD ν ;

• Evolve N replicas from these initial conditions, consider the
first exiting replica, and multiply the first exit time by the
number of replicas.

S
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The Parallel Replica Algorithm

Why is it consistent?

• Exit time is independent of exit point so that

X I0

τ
I0
S

L
= X 1

τ1
S

where I0 = argmini (τ
i
S).

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(τ1

S , . . . , τ
N
S )

L
= τ1

S .

Remark: For this algorithm, one just needs two properties: τS is
exponentially distributed, and independent of the exit point X τS .
The Eyring-Kramers formulas are not used.
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The generalized Parallel Replica algorithm
[Binder, Hédin, TL, Simpson]

1. Run a reference walker, using standard MD.

2. Each time the reference walker enters a state, start a
Fleming-Viot particle process (with N replicas simulated in
parallel) with initial condition the entering point.

3. If the reference walker exits before the Fleming Viot particle
process reaches stationarity go back to 1. Else go to the
parallel step.

4. Parallel step: Starting from the end points of the Fleming-Viot
particle process (approximately i.i.d. with law the QSD), run
independent MD and consider the first exit event. Multiply the
first exit time by N and go back to 1, using the first exit point
as initial condition.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.
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The generalized Parallel Replica algorithm

• The algorithm does not require a partition of the state space
but only an ensemble of states.

• The time to reach the QSD is estimated each time the process
enters a new state (it depends on the state and on the initial
condition within the state).
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Numerical results

We tested the generalized Parallel Replica algorithm on biological
systems [Hédin, TL]:

• Conformational equilibrium of the alanine dipeptide

• Dissociation of the FKBP-DMSO protein-ligand system

Main differences with materials science: definition of the states
using collective variables, the states do not define a partition, much
more rugged landscapes.

Current implementation within OpenMM, see
https://gitlab.inria.fr/parallel-replica
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Alanine dipeptide (1/5)

Definition of ParRep domains based on a free energy surface: we
study the transition time from C7eq (outside the red rectangle) to

C7ax (inside the red rectangle).
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Alanine dipeptide (2/5)

Cumulative distribution function of the transition time.
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Alanine dipeptide (3/5)

Convergence of the mean transition time.
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Alanine dipeptide (4/5)

Distribution of the correlation times computed by FV.
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Alanine dipeptide (5/5)

tol WT(s) tsim(ns) Speed(ns/day) Eff. speedup (Eff./Max)

0.01 6015 10008 143752 156 70%
0.025 5239 10103 166609 181 80%
0.05 4973 10032 174296 189 84%

Effective speed-up as a function of the tolerance, for N = 224
replicas run in parallel (speed of a reference Langevin dynamics is
921 ns/day).
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FKBP-DMSO (1/4)

FKBP-DMSO complex,
corresponding to the RCSB-PDB entry “1D7H”.
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FKBP-DMSO (2/4)

DMSO in its binding cavity ; distances used to define the cavity.
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FKBP-DMSO (3/4)

Cumulative distribution function of the dissociation times.
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FKBP-DMSO (4/4)

TOL WT(s) tsim(ns) Speed (ns/day) Eff. speedup (Eff./Max)

0.01 85142 403.5 409.4 79.5 56.8%
0.025 79574 457.6 496.8 96.5 68.9%
0.05 84455 482.2 493.4 95.8 68.4%

Effective speed-up as a function of the tolerance, for N = 140
replicas run in parallel (speed of a reference Langevin dynamics is
5.15 ns/day).
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The Parallel Trajectory Splicing algorithm

Precompute the exit events [Perez, Cubuk, Waterland, Kaxiras, Voter, 2015]

Algorithm:

• Simulate in parallel short trajectories which start from the
QSD in a state, and end at the QSD in a state.

• Glue together these short trajectories to build the full
dynamics.
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Hyperdynamics (1/2)

Raise the potential in S to reduce the exit time [Voter, 1997]

Two steps:

• Equilibrate on the biased potential V + δV ;

• Wait for an exit and multiply the exit time τ δVS by the boost

factor B = 1

τδVS

∫ τδVS
0

exp(β δV (X t)) dt.
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Hyperdynamics (2/2)
Why is it consistent ?

Assumptions on δV : (i) δV = 0 on ∂S and (ii) δV is sufficiently
small so that the Theorem above applies.

Recall the formula for the exit rates:

ki = ν̃OL
i e

−β[V (zi )−V (x1)] (1 + O(β−1))

where ν̃OL
i =

√
β
2π
∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S)(zi )
.

One easily check that ki/
∑J

j=1
kj is independent of δV and

∑J
j=1

kj(V + δV )
∑J

j=1
kj(V )

=

√
det(∇2(V + δV ))(x1)

det(∇2(V ))(x1)
e
βδV (x1)(1 + O(β−1))

=

∫
S
exp(−βV )∫

S
exp(−β(V + δV ))

(1 +O(β−1)) ≃ B
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Temperature Accelerated Dynamics (1/2)

Increase the temperature to reduce the exit time [Sorensen, Voter, 2000]

Algorithm:

• Observe the exit events from S at high temperature ;

• Extrapolate the high temperature exit events to low
temperature exit events.
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Temperature Accelerated Dynamics (2/2)
Recall that, starting from the QSD, the exit event from a given
state S can exactly be modelled using a kinetic Monte Carlo model
with rates

ki = ν̃OL
i e

−β[V (zi )−V (x1)] (1 + O(β−1))

where ν̃OL
i =

√
β
2π
∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S)(zi )
.

Thus,

k loi
khii

≃
√
βlo

βhi
exp(−(βlo − βhi )(V (zi)− V (x1))).

Algorithm: observe exit events at high temperature, extrapolate the
rates to low temperature, stop when the extrapolated event will not
modify anymore the low temperature exit event.

Remark: TAD can be seen as a smart saddle point search method.
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Generalizations and perspectives

• The parallel replica is a very versatile algorithm: it applies e.g.

to non reversible dynamics, discrete-in-time dynamics,
continuous-time Markov Chain [Aristoff, Plechac, Wang]. It does not
require estimates of the exit rates.

• Hyper and TAD are more efficient, but require the
temperature to be sufficiently small so that estimates of the
rates by the Eyring-Kramers formulas hold true.

All these techniques require “good” metastable states:
exit time > convergence time to the QSD.
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Conclusion

There are mathematical characterizations of good coarse-graining
representations (spectral gaps, convergence times vs exit times).

Could we use those characterizations together with advanced
learning techniques (auto-encoder, sparse methods) to get better
coarse-grained descriptions?

• Identify slow variables

• Sparse representation of the committor function

• Identify metastable states
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