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Generative Modeling using Generative Adversarial Networks

Progress on face generation using GANs (source: www.medium.com)

Applications: inverse problems (denoising, inpainting, super-resolution),
compression, structure prediction (proteins & molecules) and neural network
pretraining.
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Generative Modeling

Massive advances in generative modeling driven by VAEs (Kingma & Welling,
2014; Rezende, Mohamed & Wiestra, 2014), GANs (Goodfellow et al., 2014),
autoregressive models (van den Oord et al., 2016).

Score-based generative models aka denoising diffusion models were proposed by
Sohl-Dickstein et al. (2015) but have only become popular recently (Ho et al.,
2020; Song et al., 2021).

Score-based generative models exhibit SOTA performance on several audio and
image synthesis tasks; see e.g. (Ho et al., NeurIPS 2020), (Song et al., ICLR
2021) & (Dhariwal & Nichol, arXiv:2105.05233).

Score-based algorithms are SOTA when solving Bayesian inverse problems for
imaging; see e.g. (Laumont et al., 2020; Kadkhodaie & Simoncelli, 2020;
Kawar et al., 2021).
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Generative Modeling using Diffusion Models

Diffusion Models Beat GANs on Image Synthesis - OpenAI, 2021
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Markov chains 101

Consider a Markov chain with X0 ∼ p0 and Xk+1 ∼ pk+1|k(·|Xk) then

p(x0:N) = p0(x0)
N−1∏
k=0

pk+1|k(xk+1|xk)

One has the backward decomposition

p(x0:N) = pN(xN)
N−1∏
k=0

pk|k+1(xk |xk+1), for pk|k+1(xk |xk+1) =
pk(xk)pk+1|k(xk+1|xk)

pk+1(xk+1)

where pk(xk) denotes the marginal of Xk satisfying

pk(xk) =

∫
pk|k−1(xk |xk−1)pk−1(xk−1)dxk−1

One can sample from p(x0:N) by ancestral sampling

Sample XN ∼ pN(·) then Xk ∼ pk|k+1(·|Xk+1) for k = N − 1, ..., 0
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Application to Generative Modeling

For generative modeling, we let p0 = pdata and set pk+1|k such that pN ≈ pprior
for N � 1 where pprior = N (x ; 0d , Id) is a “prior” easy-to-sample density.

Pick for pk+1|k a MCMC kernel that is pprior-invariant so that pN(x) ≈ pprior(x)
for N large enough

Xk+1 = αXk +
√

1− α2 εk+1, εk+1 ∼ N (0d , Id);

i.e. add noise!

Use ancestral sampling but replace pN by pprior ≈ pN for new sample
generation, i.e.

Sample XN ∼ pprior(·) then Xk ∼ pk|k+1(·|Xk+1) for k = N − 1, ..., 0

Key Problem: One needs to approximate the backward transitions pk|k+1, i.e.
learn to denoise.
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Approximating Backward Transitions

We restrict ourselves to

pk+1|k(xk+1|xk) = N (xk+1; xk + γf (xk), 2γId),

Using pk ≈ pk+1, a Taylor expansion of log pk+1 at xk and f (xk) ≈ f (xk+1) for
||xk+1 − xk || = o(1)

pk|k+1(xk |xk+1) = pk+1|k(xk+1|xk) exp[log pk(xk)− log pk+1(xk+1)]

≈ N (xk ; xk+1 − γf (xk+1) + 2γ∇ log pk+1(xk+1)︸ ︷︷ ︸
“score”

, 2γId).

The score is not available but pk+1(xk+1) =
∫
p0(x0)pk+1|0(xk+1|x0)dx0 and we

have a Fisher’s like identity

∇ log pk+1(xk+1) = Ep0|k+1 [∇xk+1 log pk+1|0(xk+1|X0)].
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Estimating the Scores using Score Matching

The score can be estimated by regression, i.e.

sk+1 = arg mins Ep0,k+1 [||s(Xk+1)−∇xk+1 log pk+1|0(Xk+1|X0)||2].

In practice, we restrict ourselves to neural networks and estimate all scores
simultaneously i.e. sθ?(k, xk) ≈ ∇ log pk(xk) where

θ? ≈ arg minθ
N∑

k=1

Ep0,k [||sθ(k ,Xk)−∇xk log pk|0(Xk |X0)||2].

If pk+1|0(xk+1|x0) is not available, then use

∇ log pk+1(xk+1) = Epk|k+1 [∇xk+1 log pk+1|k(xk+1|Xk)].
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Recap

Use noisy samples from data to train a neural network such that

sθ?(k , xk) ≈ ∇ log pk(xk).

Generate new samples using XN ∼ pprior then

Xk = Xk+1−γf (Xk+1)+2γk+1sθ?(k +1,Xk+1)+
√

2γZk+1, Zk
i.i.d.∼ N (0d , Id).

We let {Yk}Nk=0 = {XN−k}Nk=0 which satisfies the forward recursion Y0 ∼ pprior

Yk+1 = Yk − γf (Yk) + 2γk+1sθ?(N − k ,Yk) +
√

2γZk+1.

Variational inference formulation in (Ho et al., 2020); i.e. minimize w.r.t. θ
KL(forward noising||backward denoisingθ).
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From Discrete to Continuous-Time (Song et al., 2021)

The dynamics pk+1|k(x ′|x) = N (x ′; x + γf (x), 2γId) is an Euler discretization
of

dXt = f (Xt)dt +
√
2dBt , X0 ∼ pdata.

For f (x) = 0, it is a Brownian motion (pprior(x) = N (x ; 0d , 2T )) and for
f (x) = αx an OU process (pprior(x) = N (x ; 0d , α−1Id)).

The reverse-time process (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] satisfies

dYt = {−f (Yt) + 2∇ log pT−t(Yt)}dt +
√
2dBt , Y0 ∼ pT .

The generative model (Yt)t∈[0,T ] satisfies

dYt = {−f (Yt) + 2∇ log sθ∗(T − t,Yt)}dt +
√
2dBt , Y0 ∼ pprior.
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From Discrete to Continuous-Time

Assume there exists M ≥ 0 such that for any t ∈ [0,T ] and x ∈ Rd

||sθ?(t, x)−∇ log pt(x)|| ≤ M,

with sθ? ∈ C ([0,T ]× Rd ,Rd) and regularity conditions on pdata and its
gradients.

Then there exist 0 ≥ Bα,Cα,Dα <∞ s.t. for any N and {γk}Nk=1 the following
hold:

For α > 0, ||L(X0)− pdata|| ≤ Bα exp[−α1/2T ] + Cα(M + γ̄1/2) exp[DαT ]

For α = 0, ||L(X0)− pdata|| ≤ B0(T−1 + T−1/2) + C0(M + γ̄1/2) exp[D0T ];

where T =
∑N

k=1 γk , γ̄ = supk∈{1,...,N} γk

First term on r.h.s. bound is error between pT and pprior and decreases with T .
Second term is error between continuous-time processes and approximation,
increases with α and T .
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When Diffusion Models Fail

Illustration of failure on toy 2-D example: N is too small so pN is very different from
pprior. Hence the reverse diffusion initialized according to pprior provides samples at
time 0 very different from pdata
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Revisiting Generative Modeling using Schrödinger Bridges

Consider a reference density p(x0:N), find π?(x0:N) such that

π? = arg min{KL(π||p) : π0 = pdata, πN = pprior}.

Using notation µ(x0:N) := µ0,N(x0, xN)µ|0,N(x1:N−1|x0, xN), one has

KL(π||p) = KL(π0,N |p0,N) + Eπ0,N [KL(π|0,N ||p|0,N)]

so π?(x0:N) = πs,?(x0, xN)p|0,N(x1:N−1|x0, xN) where πs,?(x0, xN) solves

πs,? = arg min{KL(πs||p0,N) : πs0 = pdata, π
s
N = pprior}.

If pN|0(xN |x0) = N (xN ; x0, σ
2), this is an entropy-regularized OT problem

πs,? = arg min{Eπs [||X0 − XN ||2]− 2σ2H(πs) : πs0 = pdata, π
s
N = pprior}.

Schrödinger Bridge can be solved using Iterative Proportional Fitting
(Schrödinger 1932; Fortet, 1940; Sinkhorn, 1967; Kullback, 1968): Plus ça
change, plus c’est la même chose.
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Solving the Schrödinger Bridge Problem

Iterative Proportional Fitting (IPF): set π(0) = p and for n ≥ 1

Q(n) := π(2n+1) = arg min{KL(π||π(2n)), πN = pprior},
P(n) := π(2n+2) = arg min{KL(π||π(2n+1)), π0 = pdata}.

Alternating projections Q(n) with marginal pprior and P(n) with marginal pdata
converge towards the Schrödinger bridge (Fortet, 1940; Kullback, 1968;
Rüschendorf, 1995; Léger, 2021; De Bortoli et al., 2021).
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Solving the Schrödinger Bridge Problem

First IPF step requires solving π(1) = arg min{KL(π||π(0)), πN = pprior} but as
π(0) = p

KL(π||π(0)) = KL(πN |pN) + EπN
[KL(π|N ||p|N)]

so

π(1)(x0:N) = pprior(xN)p(x0:N−1|xN) = pprior(xN)
∏0

k=N−1pk|k+1(xk |xk+1)

Approximation to first iteration of IPF corresponds to existing Score-Based
Generative models!

Second IPF step requires solving π(2) = arg min{KL(π||π(1)), π0 = pdata} but

KL(π||π(1)) = KL(π0|π(1)
0 ) + Eπ0 [KL(π|0||π

(1)
|0 )]

so

π(2)(x0:N) = pdata(x0)π(1)(x1:N |x0) = pdata(x0)
∏N

k=1π
(1)
k+1|k(xk+1|xk)
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Solving the Schrödinger Bridge Problem

In 1st iter, the backward dynamics of the forward process π(0) = p is initialized
by pprior at time N to define the backward process π(1).

In 2nd iter, the forward dynamics of the backward process π(1) is initialized by
pdata at time 0 to define the forward process π(2).

In 3rd iteration, the backward dynamics of the forward process π(2) is initialized
by pprior at time N to define the backward process π(3).

Loosely speaking, we use score matching ideas at each iteration to learn the
scores of the forward or backward process.
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Continuous-Time IPF

IPF can be formulated in continuous time

Π? = arg min{KL(Π||P) : Π ∈ P(C),Π0 = pdata,ΠT = pprior}.

Similarly, we define the IPF (Π(n)) recursively Π0 = P using

Π(2n+1) = arg min{KL(Π||Π(2n)) : Π ∈ P(C),ΠT = pprior},
Π(2n+2) = arg min{KL(Π||Π(2n+1)) : Π ∈ P(C),Π0 = pdata}.

Under regularity conditions, then

(Π(2n+1))R : dY(2n+1)
t = b

(n)
T−t(Y

(2n+1)
t )dt +

√
2dBt ,Y

(2n+1)
0 ∼ pprior;

Π(2n+2) : dX(2n+2)
t = f

(n+1)
t (X(2n+2)

t )dt +
√
2dBt ,X

(2n+2)
0 ∼ pdata;

for b(n)t (x) = −f (n)t (x) + 2∇ log p
(n)
t (x), f (n+1)

t (x) = −b(n)t (x) + 2∇ log q
(n)
t (x),

with f
(0)
t (x) = f (x), and p

(n)
t , q(n)t the densities of Π

(2n)
t and Π

(2n+1)
t .
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Illustration of Diffusion Schrödinger Bridge

Revisiting 2-D toy example with Diffusion Schrödinger Bridge. After 5 iterations, we
obtain a satisfactory generative model.

A. Doucet Generative Modeling 18 / 23



Applications: 2-D distributions

Data distributions pdata vs distribution at t = 0 for T = 0.2 after 1 and 20 DSB
steps
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Applications: MNIST

Generated samples (N = 12) and two-dimensional visualization of samples (red)
compared to original MNIST data (blue) using pre-trained VAE (d = 784)
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Applications: Datasets Interpolation

First row: Swiss-roll to S-curve (2D). Step 9 of DSB with T = 1 (N = 50). From
left to right: t = 0, 0.4, 0.6, 1. Second row: EMNIST to MNIST. Step 10 of DSB
with T = 1.5 (N = 30). From left to right: t = 0, 0.4, 1.25, 1.5.
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Discussion

Generative modeling can be reformulated as a Schrödinger Bridge problem.

Diffusion Schrödinger Bridge approximates its solution using (discretized)
forward-backward diffusions and score matching ideas.

Experiments show it can speed up Score-Based Generative Models and is
complementary to alternative acceleration techniques.

Applicable to numerous optimal transport problems and Bayesian inverse
problems.

How does it scale with dimension? What are the statistical properties of score
matching? Why does it work?
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