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Generative Modeling using Generative Adversarial Networks

Progress on face generation using GANs (source: www.medium.com)

o Applications: inverse problems (denoising, inpainting, super-resolution),
compression, structure prediction (proteins & molecules) and neural network
pretraining.
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Generative Modeling

o Massive advances in generative modeling driven by VAEs (Kingma & Welling,
2014; Rezende, Mohamed & Wiestra, 2014), GANs (Goodfellow et al., 2014),
autoregressive models (van den Oord et al., 2016).

o Score-based generative models aka denoising diffusion models were proposed by
Sohl-Dickstein et al. (2015) but have only become popular recently (Ho et al.,
2020; Song et al., 2021).

o Score-based generative models exhibit SOTA performance on several audio and
image synthesis tasks; see e.g. (Ho et al., NeurlPS 2020), (Song et al., ICLR
2021) & (Dhariwal & Nichol, arXiv:2105.05233).

o Score-based algorithms are SOTA when solving Bayesian inverse problems for
imaging; see e.g. (Laumont et al., 2020; Kadkhodaie & Simoncelli, 2020;
Kawar et al., 2021).
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Generative Modeling using Diffusion Models

Diffusion Models Beat GANs on Image Synthesis - OpenAl, 2021
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Markov chains 101

o Consider a Markov chain with Xo ~ po and Xiy1 ~ pryaji(-[Xk) then

N—1
P(xo:n) = Po(xo) H Pr1k (Xk1[Xk)
k=0
@ One has the backward decomposition
o Pr(Xi) Pr k (Xk1 | Xk)
p(xon) = p(xn) T Prikss Oklxesn), for prges (xelxrn) =
k=0 Pit1(Xk41)

where pi(xx) denotes the marginal of X satisfying

pr(xx) = /Pk|k—1(Xk|Xk71)Pk71(Xk71)ka71

o One can sample from p(xo.n) by ancestral sampling

Sample Xy ~ pn(-) then Xy ~ pyjps1(-|Xks1) for k=N —1,...,0
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Application to Generative Modeling

o For generative modeling, we let po = pdata and set pj 1)« such that py ~ pprior
for N >> 1 where pyrior = N(x; 04, Ig) is a "prior” easy-to-sample density.

o Pick for pyy1jx a MCMC kernel that is pyrior-invariant so that py(x) ~ pprior(X)
for N large enough

Xir1 = aXi +V1—0a? €1, €1 ~N(0qg, ly);
i.e. add noise!

o Use ancestral sampling but replace py by pprior = pn for new sample
generation, i.e.

Sample Xy ~ pprior(-) then Xy ~ pjiq1(-[Xkr1) for k=N —-1,...,0

o Key Problem: One needs to approximate the backward transitions pyx1, i.e.
learn to denoise.

A. Doucet Generative Modeling 6/23



Approximating Backward Transitions

o We restrict ourselves to

Priaik (et X)) = N (et 3 + 7F (%), 2v1a),

o Using px = pk+1, a Taylor expansion of log prt1 at xx and f(xx) & f(xk4+1) for
X1 — x|| = o(1)

Prik+1(Xk| Xk41) = Pr1]k (Xk41|%ic) exp[log pi(xk) — log pri (Xi+1)]
~ N (xi; X1 — vF(Xkr1) 4+ 27 Vlog prra (Xes 1), 271a)-
———

“score”

o The score is not available but pii1(xit1) = [ Po(X0)Prt1jo(Xks1/%0)dxo and we
have a Fisher's like identity

Vlog pii1(Xk+1) = Epgyys [Viia 108 Prcrjo (k1] Xo)]-
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Estimating the Scores using Score Matching

o The score can be estimated by regression, i.e.

Skt1 = arg ming Epg o [lIs(Xes1) = Vg l0g Prcrajo(Xe11X0)[1%]-

o In practice, we restrict ourselves to neural networks and estimate all scores
simultaneously i.e. sps (k, xx) = V log px(xk) where

N

6" ~ arg ming ) Ep, ,[|[56(k, Xk) — Vs, log pijo (Xl Xo)I]-
k=1

o If priijo(Xk+1/x0) is not available, then use

Vlog pi+1(xk+1) = Ep, .y [Viaiia 108 Prga i (1 Xk )]-
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o Use noisy samples from data to train a neural network such that
so+ (k, x) ~ V log pi(xk)-
o Generate new samples using Xy ~ pprior then
X = Xir1—vF(Xes1) + 29150 (k+ 1, Xes1) + V27 Zkr1,  Ze = N(0a, la).
We let {Yk},’yzo = {XN_k},’y:O which satisfies the forward recursion Yy ~ pprior
Yirr = Y = (Vi) + 2vi150+ (N = K, Yie) + /27 Zies1.

o Variational inference formulation in (Ho et al., 2020); i.e. minimize w.r.t. 6
KL(forward noising||backward denoisingy).
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From Discrete to Continuous-Time (Song et al., 2021)

o The dynamics pyy1x(X'|x) = N(X'; x + vf(x),27lg) is an Euler discretization
of
dX¢ = f(X;)dt + v2dBy,  Xo ~ paata-

o For f(x) =0, it is a Brownian motion (pprior(x) = N (x;04,2T)) and for
f(x) = ax an OU process (pprior(x) = N (x; 04, " 1y)).

o The reverse-time process (Yt):epo, 7] = (X7—t)te[o, 7] Satisfies

dYe = {—=F(Y:) + 2V log pr_e(Ye) }dt + V2dB,, Yo ~ pr.

o The generative model (Y¢).c[o, 7] satisfies

AY, = {—F(Y:) + 2V log sp- (T — t,Y)}dt + V2dB:, Yo ~ Pprior-
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From Discrete to Continuous-Time

o Assume there exists M > 0 such that for any t € [0, T] and x € R
|Iso+ (t,x) — Vlog pe(x)|| < M,

with sg« € C([0, T] x RY R9) and regularity conditions on pyata and its
gradients.

@ Then there exist 0 > B,, Cy, Dy < 00 s.t. for any N and {74}, the following
hold:

For a > 0, ||£(X0) — pdatal| < Ba exp[—ozl/2 T+ CG(M+ ﬁl/z)exp[Da T]
For o = 0, ||£(X0) — Pdatal| < Bo(T ™ + T_l/z) + Go(M + f_y1/2)exp[D0 T];

N —
where T =37, ) Yk, ¥ = SUPkeq,.. v} Yk

o First term on r.h.s. bound is error between pr and pyrior and decreases with T.
Second term is error between continuous-time processes and approximation,
increases with o and T.
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When Diffusion Models Fail
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Illustration of failure on toy 2-D example: N is too small so py is very different from
Pprior- Hence the reverse diffusion initialized according to pprior provides samples at
time 0 very different from pyata

A. Doucet Generative Modeling 12/23



Revisiting Generative Modeling using Schrodinger Bridges

o Consider a reference density p(xo.n), find 7 (xo.n) such that
7 = arg min{KL(7||p) : o = Pdatas TN = Pprior }-

o Using notation pu(xo:n) := po,n (X0, Xn)tj0,n (X1:n—1|X0, X ), One has
KL(7||p) = KL(mo,n|Po,n) + Exrg o [KL((0,w][Pj0,w)]

so ™ (xo.n) = ™% (X0, X ) Pjo,n(X1:n—1|X0, Xn) Where 7% (xo, xn) solves
7% = arg min{KL(7®||po,n) : 5 = Pdatas TN = Pprior }-
o If pyjo(xn|x0) = N (xn; xo,02), this is an entropy-regularized OT problem
7% = arg min{E[||Xo — Xn||*] — 202H(7®) : 7§ = Pdatas T = Pprior }-

o Schrédinger Bridge can be solved using Iterative Proportional Fitting
(Schrédinger 1932; Fortet, 1940; Sinkhorn, 1967; Kullback, 1968): Plus ¢a
change, plus c'est la méme chose.
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Solving the Schrédinger Bridge Problem

o lterative Proportional Fitting (IPF): set 7(0) = p and for n > 1

QM = 7C1) = arg min{KL(x||x?"), 7y = Porior }»

P = 72m+2) — 5rg min{KL(7||7®"*Y), 76 = pyata}-

P(ET+1)

Alternating projections Q(™ with marginal Pprior and P(" with marginal pgata
converge towards the Schrédinger bridge (Fortet, 1940; Kullback, 1968;
Riischendorf, 1995; Léger, 2021; De Bortoli et al., 2021).
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Solving the Schrédinger Bridge Problem

o First IPF step requires solving 7(!) = arg min{KL(7||7(®), 7n = pprior} but as
©) _
@ =p
KL(r|[7(®) = KL(mn|pn) + By [KL(mjw|Pi)]
so

0
77(1)(X0:N) = pprior(XN)p(XO:N—1|XN) = pprior(XN)Hk:N_lpk|k+1(Xk|Xk+1)

o Approximation to first iteration of IPF corresponds to existing Score-Based
Generative models!

o Second IPF step requires solving 7(® = arg min{KL(7||7™), 7y = pgata} but
1 1
KL(r||7®) = KL(mo|m§")) + By [KL(p][75")]
so

73 (x0:n) = Pdata(x0) M (x1:n[30) = Pdata(Xo)HQI:17T;(<1le|k(Xk+1|Xk)
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Solving the Schrédinger Bridge Problem

o In 1st iter, the backward dynamics of the forward process 7(® = p is initialized
by pprior at time N to define the backward process aON

o In 2nd iter, the forward dynamics of the backward process 7(1) is initialized by
Pdata at time 0 to define the forward process (2.

o In 3rd iteration, the backward dynamics of the forward process 7(?) is initialized
by Pprior at time N to define the backward process 7).

o Loosely speaking, we use score matching ideas at each iteration to learn the
scores of the forward or backward process.
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Continuous-Time IPF

o IPF can be formulated in continuous time
M* = arg min{KL(N||P) : N € P(C), Mo = pdatas T = Pprior }-
Similarly, we define the IPF (M(") recursively N° = P using

N7 = arg min{KL(M||N?") : N € P(C), N7 = Pprior }»
NG+2) = arg min{KL(N|IN™Y) : N € P(C), Mo = paara}-

o Under regularity conditions, then

(Cr)R av@ ) = b7 (Y2 )dt + V2dB,, Y6 ~ porir;
N2 ax @ = (D XED)de 1 vV2dB, XE ~ pagta

for b (x) = —£" (x) + 2V log pi" (x), £ (x) = —b{"(x) + 2V log ¢;") (x),
with £ (x) = f(x), and p{”, ¢{” the densities of " and M™Y.
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lllustration of Diffusion Schrodinger Bridge
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Revisiting 2-D toy example with Diffusion Schrodinger Bridge. After 5 iterations, we
obtain a satisfactory generative model.
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Applications: 2-D distributions

Iteration 20

"- - .| 1 &
,:EK’T“‘-%-"’Y" 1

Data distributions pyaia vs distribution at t = 0 for T = 0.2 after 1 and 20 DSB
steps
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DSB 1

DSB 8

Generated samples (N = 12) and two-dimensional visualization of samples (red)
compared to original MNIST data (blue) using pre-trained VAE (d = 784)
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First row: Swiss-roll to S-curve (2D). Step 9 of DSB with T =1 (N = 50). From
left to right: t = 0,0.4,0.6,1. Second row: EMNIST to MNIST. Step 10 of DSB
with T = 1.5 (N = 30). From left to right: t =0,0.4,1.25,1.5.



Discussion

o Generative modeling can be reformulated as a Schrédinger Bridge problem.

o Diffusion Schrodinger Bridge approximates its solution using (discretized)
forward-backward diffusions and score matching ideas.

o Experiments show it can speed up Score-Based Generative Models and is
complementary to alternative acceleration techniques.

o Applicable to numerous optimal transport problems and Bayesian inverse
problems.

o How does it scale with dimension? What are the statistical properties of score
matching? Why does it work?

A. Doucet Generative Modeling 22/23



References

o V. De Bortoli, J. Thornton, J. Heng & A. Doucet, Diffusion Schrédinger bridge
with applications to score-based generative modeling. arXiv:2106.01357.

@ J. Ho, A. Jain and P. Abbeel, Denoising diffusion probabilistic models. NeurlPS
2020.

o J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan and S. Ganguli, Deep
unsupervised learning using nonequilibrium thermodynamics, ICML 2015.

o Y. Song, J. Sohl-Dickstein, D.P. Kingma, A.Kumar, S. Ermon and B. Poole,

Score-based generative modeling through stochastic differential equations, ICLR
2021.

A. Doucet Generative Modeling 23 /23



