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I-a) Introduction to machine 
learning for climate dynamics 

and weather forecast
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Earth observation satellites

Atmosphere, ocean and land are the most observed physical systems 



Example of ECMWF 
ECMWF = European Center for Medium-Range Weather Forecasts

P. Bauer et al, 2020, the ECMWF scalability programme



Jet stream dynamics

Higher troposphere wind speed. (NASA/Goddard Space Flight Center 
Scientific Visualization Studio, MERRA reanalysis dataset)
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Ocean dynamics

Ocean surface flows.  
(Perpetual ocean, NASA Goddard visualization, data from ECCO2 MIT/JPL project)
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Machine learning at ECMWF: A roadmap for the next 10 years, P. Dueben et al, 2021

Machine learning and deep neural networks enter in many 
different ways for both weather forecast and climate dynamics.



High level objectives of the roadmap for 
machine learning at ECMWF

Machine learning at ECMWF: A roadmap for the next 10 years, P. Dueben et al, 2021



Predicting heat waves with a 
deep neural network
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• Plasim and CESM climate models.


• We use summer (JJA) data: 8 maps/day, 90 days/year, 1000 year = 720 000 
maps.


• For Plasim data, each field has a resolution , restricted to  
above  North. 

64 × 128 25 × 128
30o

Surface temperature ( colors) and 500 hPa geopotential height ( lines) anomaliesTs, Zg,



Heat wave definition
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•  field at time , or  fields at time .


• : time and space averaged surface temperature anomaly within  days: 




• . A heat wave occurs if .


• We have a classification problem for the data . We want to learn the 
probability  that  given that  (committor function).


• 5% most extreme events: . 2.5% most extreme events: 
. 1.25% most extreme events: . 

X(t) = Ts t X(t) = (Ts, Zg) t

Y(t) τ

Y(t) =
1
D ∫

t+τ+D

t+τ

1
|𝒜 | ∫𝒜

Ts( ⃗r, u) d ⃗r du,

and Z(t) = 1 if Y(t) > a, and Z(t) = 0 otherwise

Z(t) ∈ {0,1} Z = 1

(X, Z)
q(x) Z = 1 X = x

a = a5 = 3.08 K
a = a2.5 = 3.7 K a = a1.25 = 4.23 K



Machine learning for climate 
applications: a regime of lack of data

Days ahead of the heat wave start
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1,000 years of data

200 years of data

100 years of data

The observation dataset is way too small for good machine learning predictions

CNN classification of 
2-week heatwaves  
days ahead of time

τ

.  The  input  consists  of 
(t2m,zg500,mrso)  with  resolution 
(18,42,3). filtering applied to mrso 
(no part of the map is set to zero. We 
were using out-of-the-box CNN
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Machine learning, climate, 
and weather forecast models
• The Earth (atmosphere, ocean, land, etc.) is the most observed 

system with an exponentially growing dataset.


• Those observations are coupled to physical models through 
data assimilation techniques (a very old and very smart machine 
learning scheme for physically based data integration).


• Machine learning and deep neural networks enter in many 
different ways for both weather forecast and climate dynamics.


• For many (not all) of these problems, machine learning should 
be performed in a regime of lack of data. This is key for 
understanding.



I-b) Introduction to 
climate extreme events 

and rare event algorithms
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The few most extreme climate events 
have more impact than all the others

We need to study extremely rare events.  
This is a serious scientific challenge.

Annual deaths by major climate related disaster 
(CRED, UNISDR, 2018) 
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What is the probability (return time) 
of the 2003 Europe heatwave ?

July 20 2003-August 20 2003 
land surface temperature 
minus the average for the 
same period for years 2001, 
2 0 0 2 a n d 2 0 0 4 ( T E R R A 
MODIS).
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Why are return times so hard to estimate?  
i) lack of observation data, ii) model biases,  

iii) because of rareness, gathering good model statistics is too costly. 



 Potential impacts of global 
warming and extreme events

Maximal wet bulb temperature (red color =31-32°C), in 2070, with the RCP8.5 scenario. 

(Kang, Elfatih and Eltahir, 2018)

Hundreds of thousands of people leave now in areas of the world that will 
become inhabitable before the end of the century if we do not halt global 
warmings. Thinking of these phenomena in a classical economic framework 
does not make any sense.



Three key problems in the study 
of climate extreme events

• The historical records are way too short to make any meaningful 
predictions for the rarest events (those that matter the most).


• Climate models are wonderful tools, but they have biases. The 
more precise, the more computationally costly. 


• Because they are too rare, the most extreme events cannot be 
computed using direct numerical simulations (the needed 
computing times are often unfeasible).


The practical questions: How to sample the probability and 
dynamics of rare events in complex models? How to build 
effective models which are relevant for estimating the 
probability of rare events?
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How to study a 10 000 year heat 
wave with a 200 year simulation ?

• Because they are too rare, extreme events cannot be 
computed using direct numerical simulations (the needed 
computing times are often unfeasible).


• Rare event algorithms: Kahn and Harris (1953).


• Statistical mechanics: diffusion Monte-Carlo, Wang Landau 
algorithms, go with the winners, etc.  

• Applied Mathematics: Chandler, Vanden-Eijnden, Schuss, Del 
Moral, Dupuis, Lelièvre, Guyader, etc.


• For turbulence and climate applications: J. Weare and D. Abbot, 
R. Grauer and T. Grafke, E. Vanden-Eijnden, Lyon group, etc.
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How to compute extremely 
rare trajectories ?
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Aim: compute extremely rare trajectories from the point  to 
the rare event set . 

x
ℬ

Most of the times, trajectories that start from  end in .

The probability to reach  may be  or .

x 𝒜
ℬ 10−3 10−20



The Adaptive Multilevel Splitting 
(AMS) rare event algorithm

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

Probability estimate: 
              

where  is the clone number 
and  is the iteration number.

̂p = (1 − 1/N)K,
N

K

Cérou, Guyader (2007). Cérou, Guyader, Lelièvre, and Pommier (2011). 
PDEs: Rolland, Bouchet et Simonnet (2016) - TAMS: Lestang et al (2018) 
Atmosphere turbulent jets: Rolland, Bouchet et Simonnet (2019 and 2021).

S t r a t e g y : e n s e m b l e 
computation, selection, pruning  
and cloning.
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II-a) Rare event algorithms 
to study extreme heat 

waves with climate models

Francesco Ragone 
RMI, Bruxelles, Belgium

Jeroen Wouters 
University of Reading, UK21



Jet stream dynamics

Higher troposphere wind speed. (NASA/Goddard Space Flight Center 
Scientific Visualization Studio, MERRA reanalysis dataset)
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General Circulation Model 
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• P l a s i m a n d C E S M 
climate models.


• G l o b a l . C o u p l e d 
atmosphere/land/ocean/
vegetation.

Surface temperature ( colors) and 500 hPa 
geopotential height ( lines) anomalies

Ts,
Zg,



Long lasting summer heat waves 

We will study extremes of the time averaged temperature: 

                     

•  one week, a few weeks, a month, or a season.


• Scandinavia, Europe, France, Alberta, Russia, …


• Climate models (CESM or PLASIM) or reanalysis datasets.

a =
1
T ∫

T

0
dt ∫𝒟

dr Temp(r, t)

T =

𝒟 =

24
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The Giardina—Kurchan (Del-Moral
—Garnier) rare event algorithm

• With , we sample the tilted path-distribution





• We simulate an ensemble of  trajectories . At each time step , each 
trajectory can be killed or cloned according to the weights


 


• Algorithm: Giardina et al. 2006. Mathematical aspects: Del Moral's book (2004).

A[X](t) =
1

|𝒜 | ∫𝒜
dr TS(r, t)

P̃k ({X(t)}0≤t≤T) =
1

exp(Tλ(k))
P0 ({X(t)}0≤t≤T) exp [k∫

T

0
A[X](t) dt] .

N xn(t) ti = iτ

1
Wi(k)

exp (k∫
ti

ti−1

A[xn](t) dt) with Wi(k) =
N

∑
n=1

exp (k∫
ti

ti−1

A[xn](t) dt) .
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Genealogical algorithm: selecting, 
killing and cloning trajectories

(from Bouchet, Jack, Lecomte, Nemoto, 2016)
26
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The trajectory statistics 
is tilted towards the 
events of interest.

Sample paths of the Giardina Kurchan algorithm



Return time plot computed using 
a rare event algorithm (PLASIM)

At a fixed numerical cost, we can study events which 
are several orders of magnitude rarer.
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Extremes of 90-day Europe heat waves

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 

PLASIM model.

No seasonal cycle. 
Del-Moral—Garnier (or Giardina—
Kurchan) algorithm. 
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GCModel - No algorithm

With a rare event 
algorithm



Oversampling of extreme events 
using a rare event algorithm (CESM)

With a rare event algorithm, we get several hundreds more 
heat waves, for a fixed return times

F. Ragone, and F. Bouchet,  
GRL, 2021. 

CESM model 

With seasonal cycle. 
Del-Moral—Garnier (or Giardina—
Kurchan) algorithm. 
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Heat wave dynamics 

Plasim heat wave 
over Scandinavia

29

500 hPa geopotential height and temperature anomalies



II-b) Heat wave dynamics 
and global teleconnection 

patterns for extremes

Francesco RagoneGeorge MiloshevichDario Lucente 30



Heat wave = unusual quasi stationary 
pattern + progressive Rossby wave
Hayashi spatio-temporal spectrum for eastward waves - CESM model 

(from the 500 hPa geopotential height over a latitudinal band )55o − 75oN

W
av

e 
nu

m
be

r

Period (day)
CESM Climatology CESM 30-day extreme heatwavesT =

W
av

e 
nu

m
be

r

Period (day)
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90 90

Unusual Quasi-stationary  
pattern 

Usual progressive  
Rossby waves



Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

D =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

D =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

D =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

D =

Extreme teleconnection patterns differ from teleconnections for typical fluctuations and 
are not characterized by a single wavenumber but are much constrained by geography.

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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2018 heat wave over Scandinavia

Temperature anomalies and 500 hPa geopotential height in July 2018 
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Era 5 reanalysis dataset



2018 heat wave over Scandinavia

Is this just by chance?  

How good are the models for 
predicting those patterns?

Observed in July 2018

Published in January 2018
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2018 heat wave over Scandinavia

Is this just by chance?  

How good are the models for 
predicting those patterns? 

CESM patterns (2020) are similar 
to Plasim ones (2018).

Observed in July 2018

Published in January 2018
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Teleconnection patterns for moderate 
heat waves over France - ERA5 

Temperature anomalies and 500 hPa 
geopotential height conditioned on 

moderate heat waves

ERA5 reanalysis

4-year return time. 

.


At day .
D = 14

τ = 0

Dashed = not statistically  
significant  for a t>2 student 
test. 

It is extremely difficult to have statistically significant patterns from reanalysis 
datasets. 39



Teleconnection patterns for 
moderate heat waves over France

For moderately extreme heat waves, CESM and ERA5 reanalysis dataset are 
qualitatively consistent.

Temperature anomalies and 500 hPa geopotential height conditioned on extreme 
heat waves with a 4-year return time, with , at day D = 14 τ = 0

CESM modelERA5 reanalysis
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2018 heat wave over Scandinavia

Conclusions: 
  
Cl imate models predict wel l 
moderately extreme teleconnection 
patterns. 

This is a hint that they might predict 
c o r r e c t l y m o r e e x t r e m e 
teleconnection patterns and that 
what we observed is not a 
coincidence.  

Observed in July 2018

Published in January 2018
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III) Predicting heat waves 
(committor functions) with 

deep neural networks
With P. Abry, P. Borgnat, V. Jacques-Dumas, G. Miloshevich, and F. Ragone
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Valerian Jacques-Dumas George Miloshevich



Predicting heat waves with a 
deep neural network - 1) Data

43

• Plasim and CESM climate models.


• We use summer (JJA) data: 8 maps/day, 90 days/year, 1000 year = 720 000 
maps.


• For Plasim data, each field has a resolution , restricted to  
above  North. 

64 × 128 25 × 128
30o

Surface temperature ( colors) and 500 hPa geopotential height ( lines) anomaliesTs, Zg,



Heat wave definition
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•  field at time , or  fields at time .


• : time and space averaged surface temperature anomaly within  days: 




• . A heat wave occurs if .


• We have a classification problem for the data . We want to learn the 
probability  that  given that  (committor function).


• 5% most extreme events: . 2.5% most extreme events: 
. 1.25% most extreme events: . 

X(t) = Ts t X(t) = (Ts, Zg) t

Y(t) τ

Y(t) =
1
D ∫

t+τ+D

t+τ

1
|𝒜 | ∫𝒜

Ts( ⃗r, u) d ⃗r du,

and Z(t) = 1 if Y(t) > a, and Z(t) = 0 otherwise

Z(t) ∈ {0,1} Z = 1

(X, Z)
q(x) Z = 1 X = x

a = a5 = 3.08 K
a = a2.5 = 3.7 K a = a1.25 = 4.23 K



Predicting heat waves with a 
deep neural network 

Observing the temperature and geopotential height at 500 hPa today, what is 
the probability to observe a -day heat wave starting  days from now?D τ
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Machine learning for 
extreme heat waves

• Supervised learning from 1,000 years of climate model 
data (720 000 couples ).


• We use undersampling to deal with class imbalance.


• We use transfer learning between return levels , first 
training a deep neural network for less rare events, and 
then transferring to learn rarer events with less data.

(X, Z)

a
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Predicting heat waves

Predictability,  day ahead, for a 14-day heatwave from the temperature and GPH fieldsτ

V. Jacques-Dumas, F. Ragone, F. Bouchet, P. Borgnat and P. Abry, 2021, sub. to IEEE TPAMI + ArXiv

Heat waves over France 
D = 14

We have very interesting prediction capabilities up to 15 days ahead of time for 
-day heatwaves  D = 14
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The Normalized and Positively 
oriented logarithmic score 

• In order to test the efficiency of the probabilistic prediction of the 
probabilistic classification, we use the logarithmic score 

.


• We define a normalized and positively oriented logarithmic score


 ,


where  and  are such that  for the prediction according to 
the climatology (prediction using no information on the state ) and 

 for perfect prediction. 

𝔼 {log [pYn (Xn)]}

NP log = a𝔼 {log [pYn (Xn)]} + b

a b NP log = 0
X

NP log = 1



Machine learning for climate 
applications: a lack of data regime

Days ahead of the heat wave start
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1,000 years of data

200 years of data

100 years of data

The observation dataset is way too small for good machine learning prediction

CNN classification of 
2-week heatwaves  
days ahead of time

τ

.  The  input  consists  of 
(t2m,zg500,mrso)  with  resolution 
(18,42,3). filtering applied to mrso 
(no part of the map is set to zero. We 
were using out-of-the-box CNN
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Which is the optimal 
dataset geographical area?
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Days ahead of the heat wave start

CNN classification of 
2-week heatwaves  
days ahead of time

τ

The best performance is obtained for an area of an intermediate size.  
This also points to a regime of lack of data for optimal learning.

Small area 
(Europe)

Intermediate 
size area 
(Europe+North 
Atlantic)

Large area (North 
hemisphere mid-
latitudes)



Conclusions: predicting heat 
waves with deep neural networks
• Prediction of heat waves is an example of a probabilistic 

classification problem.


• We use off-the-shelf CNN algorithms, adapted to this 
situation (probabilistic scores, undersampling, transfer 
learning).


• Two-week heat waves can be efficiently predicted up to 
15 days ahead. 


• We are clearly in a regime of lack of data for an optimal 
prediction.



IV) Coupling Rare Event 
Algorithms with Machine 

Learning

52



The Adaptive Multilevel Splitting 
(AMS) rare event algorithm

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

Probability estimate: 
              

where  is the clone number 
and  is the iteration number.

̂p = (1 − 1/N)K,
N

K

Cérou, Guyader (2007). Cérou, Guyader, Lelièvre, and Pommier (2011). 
PDEs: Rolland, Bouchet et Simonnet (2016) - TAMS: Lestang et al (2018) 
Atmosphere turbulent jets: Rolland, Bouchet et Simonnet (2019 and 2021).

Strategy: selection, pruning  and 
cloning.

53

 is the score (sélection) function 𝒬



1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

The Adaptive 
Multilevel Splitting 

algorithm

 is the score (sélection) function 𝒬
The efficiency of the algorithm depends on the choice of the 

score function.

The optimal score function is the committor function. 

Committor functions are optimal score 
functions for rare event algorithms



The score function is the 
key practical problem  

• With a poor score function, rare event algorithms are 
useless. 


• How to build good score functions?


• Running a rare event algorithm !!


• One needs one algorithm to improve the algorithm 
efficiency: use  an adaptive strategy. 


• Examples: Wang Landau algorithm, multi canonical 
methods, adaptive importance sampling, etc.



Coupling rare event algorithms with data 
based learning of committor functions

Machine Learning

Rare Event Algorithm 

Optimal score 
functionDataDirect 

sampling

One example: Bouchet, Jack, Lecomte, Nemoto, PRE, 2016

(Committor function)

(For  in dimension 1)X



Coupling rare event algorithms with data-
based learning of committor functions

Machine Learning

Rare Event Algorithm 

Optimal score 
functionDataDirect 

sampling

Bouchet, Jack, Lecomte, Nemoto, PRE, 2016

,

with  in dimension 1.





with  

dXt = − X3
t dt + 2ϵdWt

Xt

G(h) = lim
T→+∞

1
T

log 𝔼 exp (∫
T

0
λ(Xt)dt)

λ(x) = x(x + 1)



Committor function

•  is a Markov process. , B are subsets of the phase space.


• For a given sample path , the first hitting time  is 



• The committor function q(x) of the sets  and  is defined as the probability that 
a trajectory starting at the point x reaches the set B before the set A  

   

• How to estimate the committor function? With a rare event algorithm!

{X(t)}−∞≤t<+∞ A

{X(t)}−∞≤t<+∞ τA
τA = inf{t |X(t) ∈ A} .

A B

q(x) = ℙx (τB < τA) .



Committor function for a 
simple gradient dynamics 

   and        dXt = − ∇V(Xt)dt + 2ϵdWt X = (x, y)

Potential V Committor function q



Coupling rare event algorithms with data 
based learning of committor functions

Machine Learning

Rare Event Algorithm 

Optimal score 
functionDataDirect 

sampling

(Committor function)



Data-based learning of a 
committor function

   

• Our dataset is a trajectory  (or a set of 
trajectories) 


• Approach 1: direct learning as a probabilistic classification 
problem. We set  if  ,   otherwise. Then 
we have a probabilistic classification problem where  are the 
data and  the classes (see previous discussion using CNN).


• Approach 2: learn first a Markov chain from the data and then 
compute the committor function.

q(x) = ℙx (τB < τA) .

{Xn = X(tn)}1≤ n≤N

Yn = 1 τB < τA Yn = 0
X

Y



The analogue Markov chain
• We learn an approximate Markov chain on the set of the 

observed states .


• How to learn from the data an approximate transition probability 
from an observed state  to one of the other observed states ?

{Xn}1≤ n≤N

Xn

K nearest 
neighbors of  Xn

Images of the K 
nearest neighbors

Observed 
transitions

Transitions in the approximate 
Markov chain 

 if  is one of the images 
of the nearest neighbors, 0 otherwise

P(Xn, Xm) = 1/K Xm



Estimating committor functions 
from the analogue Markov chain
•  is the propagator of the analogue Markov chain:   


                  


•  is the solution of the linear problem:





We can estimate the committor function, based on data 
using dynamical informations. 

G

{
Gnj = 1

K if j − 1 is one of the analogues of n ,
Gnj = 0 otherwise .

q

qn = ∑
j

Gnjqj if n ∈ (A ∪ B)c, qn = 1 if n ∈ B , qn = 0 if n ∈ A .



With the learned score function the 
AMS algorithm is extremely efficient

   and        dXt = − ∇V(Xt)dt + 2ϵdWt X = (x, y)

Potential V Committor function q
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We have an impressive efficiency when learning from a dataset 

with only a few observed transitions

The three-well gradient dynamics:



With the learned score function the 
AMS algorithm is extremely efficient
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Dataset length (number of transitions)

We have an impressive efficiency when learning from a dataset 

with about 40 to 100 observed transitions

The Charney—DeVore model (6 dimension chaotic dynamics + noise)
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Coupling rare event algorithms with data 
based learning of committor functions

Machine Learning

Rare Event Algorithm 

Optimal score 
functionDataDirect 

sampling

(Committor function)

Work in progress for climate models!



Conclusion: Coupling machine 
learning with rare event algorithms
• We can learn committor functions from dynamical datasets either 

using the definition, or first learning an approximate Markov 
dynamics.


• The analogue Markov chain does not require an impossible 
discretization of the phase space, and can use any kind of 
dynamical data, including short trajectories.


• Using learned committor functions is much more efficient than using 
user-defined score functions with the AMS rare event algorithm.


• The range of applicability of this approach, in terms of system 
dimension and complexity, is a key question for the future.

D.  Lucente, J. Rolland, C. Herbert and F. Bouchet, to be posted on ArXiv this week



II) Abrupt climate changes
• II a) Instantons and Arrhenius law for Jupiter’s 

troposphere abrupt transitions.


F. Bouchet, J. Rolland, and E. Simonnet, PRL, 2019: 
instantons and Arrhenius law.


F. Bouchet, J. Rolland, and E. Simonnet, JAS, 2021: 
multistability with symmetry breaking and instantons.


• II b) Discontinuous transitions to superrotation 
on planetary atmospheres. 

C. Herbert, R. Caballero and F. Bouchet, JAS, 2019: 
study of abrupt transitions, negative feedbacks and 
the robustness of the bistability range.
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V) Large deviation theory and other 
applications (more theoretical works)

• III a) Path large deviations for kinetic theories.


F. Bouchet, J. Stat. Phys., 2020: path large deviations for the 
Boltzmann equation and the irreversibility paradox.


O. Feliachi and F. Bouchet, sub. to J. Stat. Phys., 2020: path large 
deviations for the plasma and the Vlasov equation.


• III b) Rare events for the Solar System (planet collisions). 

F. Bouchet and E. Woillez, PRL, 2020.
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GDR « Theoretical challenges 
for climate sciences »

• Identify and work on key theoretical issues that need to be solved 
for improving the quantitative predictions in climate sciences. 

• A multidisciplinary consortium: climate sciences, mathematics, 
physics, computer sciences, statistical physics, data sciences.  

• Examples : i) How to reduce the uncertainty about climate sensitivity? ii) 
How to reduce uncertainty when quantifying probabilities of climate 
extreme events? iii) How to integrate data and theoretical constraints, 
using machine learning, to build the next generation of climate models? 
iv) How to make quantitative the study of future and past climate? v) 
How to build effective coarse-grained descriptions of climate 
processes?



Conclusions
• We can use rare event algorithms to gather an amazing statistics for extreme heat 

waves with Plasim (PNAS, 2018), and CESM (GRL, 2021). 


• The dynamical mechanism is a quasi-stationary non zonal global patterns, 
which are much affected by topography and oceans (PNAS, 2018, GRL 2021).


• Models reproduce correctly those extreme teleconnection patterns for 
moderate extremes. We need model and rare event algorithms to study more 
extreme heat waves teleconnection patterns. 

• Machine learning has the potential to give meaningful statistical predictions for 
long-lasting heat wave up to 2 weeks ahead of time (Sub. to IEEE TPAMI, 2021).


• The coupling of learned committor functions with rare-event algorithms is 
extremely efficient for toy model (Arxiv, 09-2021). Work in progress for climate 
models.

Please join us to study climate extreme events  
The scientific questions are fascinating!
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