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|-a) Introduction to machine
learning for climate dynamics
and weather forecast
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Atmosphere, ocean and land are the most observed physical systems




Sustained performance (TFLOPS) / Archive size PBytes

Example of ECMWF

ECMWF = European Center for Medium-Range Weather Forecasts
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Jet stream dynamics

The Polar Jet Stream

NASA/Goddard Space Flight Center Scientific
Visualization Studio

Higher troposphere wind speed. (NASA/Goddard Space Flight Center
Scientific Visualization Studi<5), MERRA reanalysis dataset)




Ocean dynamics

Ocean surface flows.
(Perpetual ocean, NASA Goddard visualiz6ation, data from ECCO2 MIT/JPL project)




Many application areas for machine learning across ECMWF
Hydrology models and Gravity wave
identification of human influence drag emulation
Automated quality Clustering and categorisation for Hybrid ML/conventional Pollution anomaly detection
control of analysis predictability and model errors land-surface models and pollution downscaling
Anomaly Radiation ML preconditioning Learn forecasts Feature
detection emulation from observations detection

Observations Data assimilation Numerical weather Post-processin
- —> - . s

ecPoint precipitation

post-processing

Post-processing for extreme

predictions in Copernicus

forecasts and dissemination

&~ High-performance and (big) data processing infrastructure ———————

ML preconditioning Bias correction Optimise CliMetLab Precipitation
for 4D-Var and model learning data access downscaling
Use land surface observations Bias correction and gap filling Anomaly detection and Fuse observations and predictions
and data assimilation for aerosol observations workflow for IT infrastructure for sea ice products
Mapping of non-Gaussian to Gaussian Optimise chillers Ensemble
distributions for data assimilation for HPC post-processing

Machine learning at ECMWEF: A roadmap for the next 10 years, P. Dueben et al, 2021

Machine learning and deep neural networks enter in many
different ways for both weather forecast and climate dynamics.



High level objectives of the roadmap for

Objective 1

Explore machine
learning applications
across the weather
and climate prediction
workflow and apply
them to improve
model efficiency and
prediction quality.

Obijective 2

Expand software
and hardware
infrastructure

for machine learning.

Obijective 3

Foster collaborations
between domain and
machine learning
experts with the
vision of merging

the two communities.

machine learning at ECMWF

Obijective 4

Develop customised
machine learning
solutions for Earth
system sciences

that can be applied to
various applications
and at scale on
current and future
supercomputing
infrastructure.

Objective 5

Train staff and
Member

and Co-operating
State users and
organise scientific
meetings

and workshops.

Machine learning at ECMWEF: A roadmap for the next 10 years, P. Dueben et al, 2021



Predicting heat waves with a
deep neural network

Surface temperature (1, colors) and 500 hPa geopotential height (Z,, lines) anomalies

e Plasim and CESM climate models.

* \We use summer (JJA) data: 8 maps/day, 90 days/year, 1000 year = 720 000
maps.

e For Plasim data, each field has a resolution 64 X 128, restricted to 25 X 128
above 30°? North.



Heat wave definition

X(1) = T, field at time ¢, or X(¢) = (T, Zg) fields at time 7.

Y(?): time and space averaged surface temperature anomaly within 7 days:

1 t+t+D 1
Y1) = —J —[ T.(r,u) dr du,
D 7 | A | A

and Z(t) =1 1f Y(r) > a, and Z(t) = 0 otherwise
Z(t) € {0,1}. A heat wave occursif Z = 1.

We have a classification problem for the data (X, Z). We want to learn the
probability g(x) that Z = 1 given that X = x (committor function).

5% most extreme events: a = a5 = 3.08 K. 2.5% most extreme events:
a=a,s=3.7 K.1.25% most extreme events: ¢ = a, ,s = 4.23 K.
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Machine learning for climate
applications: a regime of lack of data

0.5

CNN classification of

2-week heatwaves 7
days ahead of time

=
=
Ca

1,000 years of data

-
w

=
N

100 years of data

as . The input consists of
(t2m,zg500,mrso) with resolution
(18,42,3). filtering applied to mrso
(no part of the map is set to zero. We

were using out-of-the-box CNN
=18x42

Prediction skill (NP-log score)
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Days ahead of the heat wave start

The observation dataset is way too small for good machine learning predictions



Machine learning, climate,
and weather forecast models

 The Earth (atmosphere, ocean, land, etc.) is the most observed
system with an exponentially growing dataset.

* Those observations are coupled to physical models through
data assimilation techniques (a very old and very smart machine
learning scheme for physically based data integration).

e Machine learning and deep neural networks enter in many
different ways for both weather forecast and climate dynamics.

* For many (not all) of these problems, machine learning should
be performed in a regime of lack of data. This is key for
understanding.



|-b) Introduction to
climate extreme events
and rare event algorithms



The few most extreme climate events
have more impact than all the others

Annual deaths by major climate related disaster
(CRED, UNISDR, 2018)
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We need to study extremely rare events.
This Is a serious scientific challenge.



What is the probability (return time)
of the 2003 Europe heatwave ?

July 20 2003-August 20 2003
land surface temperature
, . " 8® minus the average for the
= E W S R " i . S8 same period for years 2001,

Temperature anomaly °C

2002 and 2004 (TERRA
MODIS).

Why are return times so hard to estimate?
i) lack of observation data, ii) model biases,
ili) because of rareness, gathering:good model statistics is too costly.



Potential impacts of global
warming and extreme events
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Maximal wet bulb temperature (red color =31- 32°C) in 2070, with the RCP8.5 scenario.
(Kang, Elfatih and Eltahir, 2018)

Hundreds of thousands of people leave now in areas of the world that will
become inhabitable before the end of the century if we do not halt global
warmings. Thinking of these phenomena in a classical economic framework
does not make any sense.



Three key problems in the study
of climate extreme events

 The historical records are way too short to make any meaningful
predictions for the rarest events (those that matter the most).

e Climate models are wonderful tools, but they have biases. The
more precise, the more computationally costly.

e Because they are too rare, the most extreme events cannot be
computed using direct numerical simulations (the needed
computing times are often unfeasible).

The practical questions: How to sample the probability and
dynamics of rare events in complex models? How to build
effective models which are relevant for estimating the
probability of rare events?

17



How to study a 10 000 year heat
wave with a 200 year simulation ?

e Because they are too rare, extreme events cannot be
computed using direct numerical simulations (the needed
computing times are often unfeasible).

 Rare event algorithms: Kahn and Harris (1953).

e Statistical mechanics: diffusion Monte-Carlo, Wang Landau
algorithms, go with the winners, etc.

e Applied Mathematics: Chandler, Vanden-Eijnden, Schuss, Del
Moral, Dupuis, Lelievre, Guyader, etc.

 For turbulence and climate applications: J. Weare and D. Abbot,
R. Grauer and T. Grafke, E. Vanden-Eijnden, Lyon group, etc.

18



How to compute extremely
rare trajectories ?

PR

Aim: compute extremely rare trajectories from the point x to
the rare event set .

Most of the times, trajectories that start from x end in .
The probability to reach % may be 107> or 107,

19



The Adaptive Multilevel Splitting
(AMS) rare event algorithm

Strategy: ensemble

computation, selection, pruning - _
and cloning. Probability estimate:

p=(1-1/N)~,
where N is the clone number
and K is the iteration number.

Cérou, Guyader (2007). Cérou, Guyader, Lelievre, and Pommier (2011).
PDEs: Rolland, Bouchet et Simonnet (2016) - TAMS: Lestang et al (2018)
Atmosphere turbulent jets: Rolland, Bouchet et Simonnet (2019 and 2021).
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lI-a) Rare event algorithms
to study extreme heat
waves with climate models

Francesco Ragone Jern Wouters
RMI, Bruxelles, Belgium 27 University of Reading, UK



Jet stream dynamics

The Polar Jet Stream

NASA/Goddard Space Flight Center Scientific
Visualization Studio

Higher troposphere wind speed. (NASA/Goddard Space Flight Center
Scientific Visualization Studig, MERRA reanalysis dataset)




General Circulation Model

e Plasim and CESM

I5 climate models.

1° e Global. Coupled

p atmosphere/land/ocean/
vegetation.

-10

-15

Surface temperature (1, colors) and 500 hPa
geopotential height (Zg, lines) anomalies
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Long lasting summer heat waves

We will study extremes of the time averaged temperature:

1

T
a= —J dr J dr Temp(r, 1)
1) D

e T = one week, a few weeks, a month, or a season.

e & = Scandinavia, Europe, France, Alberta, Russia, ...

 Climate models (CESM or PLASIM) or reanalysis datasets.

24



The Giardina— Kurchan (Del-Moral
— Garnier) rare event algorithm

1
, With A[X](?) = EJ dr T(r, ), we sample the tilted path-distribution
o

~ 1 d
B, ({X(t)}ogg> = oo ({X(t)}ogg> exp kL A[X1(0) dt| -

We simulate an ensemble of N trajectories x, (). At each time step ¢, = iz, each
trajectory can be killed or cloned according to the weights

t N t
W,-l(k) exp (k‘; Alx,](2) dt) with Wi(k) = Z exp (kL Alx,](2) dt) :

i—1 n=1 i—1

e Algorithm: Giardina et al. 2006. Mathematical aspects: Del Moral's book (2004).

25



Genealogical algorithm: selecting,
Killing and cloning trajectories

2 :
(a) u\
_ i L The trajectory statistics
1 “"“M’w is tilted towards the

events of interest.

29.0 292 294 206 298  30.0

(from Bouchet, Jack, Lecomte, Nemoto, 2016)

20



Return time plot computed using
a rare event algorithm (PLASIM)
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PLASIM model.

No seasonal cycle.
Del-Moral—Garnier (or Giardina—
Kurchan) algorithm.

F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

At a fixed numerical cost, we can study events which
are several ordersof magnitude rarer.



Oversampling of extreme events
using a rare event algorithm (CESM)

103 -
| Heat waves with a
| 25-year return time
AN CESM model

With seasonal cycle.
Del-Moral—Garnier (or Giardina—
Kurchan) algorithm.
1(;‘(')?)3" Wa"ei’ Witt(‘_a F. Ragone, and F. Bouchet,
-year return time GRL, 2021.

Number of heat waves
S\ 3

10

“ 50 100 150 200 250 300
Noj algorithm k  With the rare event algorithm

Number of observed heat waves for 1,000 of simulations

With a rare event algorithm, we get several hundreds more
heat waves, for a fixed return times



Heat wave dynamics

Plasim heat wave
over Scandinavia

500 hPa geopotential height and temperature anomalies

29



lI-b) Heat wave dynamics
and global teleconnection
patterns for extremes

A g
i

Dario Lucente George Miloshevich Francesco Ragone



Heat wave = unusual quasi stationary
pattern + progressive Rossby wave

Hayashi spatio-temporal spectrum for eastward waves - CESM model
(from the 500 hPa geopotential height over a latitudinal band 55° — 75°N)

Wave number

10 - 10 -
720
630
540 qh, [
Q
450 &
- .
wo = Usual progressive
~ Rossby waves
- 270 )
=
- 180
e Unusual Quasi-stationary
Lo pattern
1 — : \Y% 1 b _
90 10 1 90 10 1
Period (day) Period (day)

CESM Climatology CESM 1 = 30-day extreme heatwaves
31



Extreme teleconnection pattern

-3 -2 -1 0 1 2

Extreme teleconnection patterns
= conditional averages with

1 (P 1
— | df——| dr Tg(r,0) > 2K
DJ, ||y

and D = 40 days.

Plasim model.
Summer Scandinavian heat
waves.
F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

500 hPa geopotential height and temperature anomalies
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Extreme teleconnection pattern

-3 -2 -1 0 1 2

Extreme teleconnection patterns
= conditional averages with

1 (P 1
— | df——| dr Tg(r,0) > 2K
DJ, ||y

and D = 40 days.

Plasim model.
Summer Scandinavian heat
waves.
F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

500 hPa geopotential height and temperature anomalies
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Extreme teleconnection pattern

-3 -2 -1 0 1 2

Extreme teleconnection patterns
= conditional averages with

1 (P 1
— | df——| dr T4(r,0) > 2K
DJ, |41,

and D = 40 days.

Plasim model.
Summer Scandinavian heat
waves.
F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

500 hPa geopotential height and temperature anomalies
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Extreme teleconnection pattern

Extreme teleconnection patterns
= conditional averages with

1 (P 1
— | df——| dr Tg(r,0) > 2K
DJ, ||y

and D = 40 days.

Plasim model.
Summer Scandinavian heat
waves.
F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns differ from teleconnections for typical fluctuations and
are not characterized by a single wavenumber but are much constrained by geography.



2018 heat wave over Scandinavia

Era 5 reanalysis dataset

150 100 50 0 50 100 150
Temperature anomalies and 500 hPa geopotential height in July 2018
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2018 heat wave over Scandinavia

Published in January 2018

2150 100 50 0 50 100

Observed in July 2018

Is this just by chance?

How good are the models for
predicting those patterns?
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2018 heat wave over Scandinavia

Published in January 2018

2150 100 50 0 50 100

Observed in July 2018

Is this just by chance?

How good are the models for
predicting those patterns?

CESM patterns (2020) are similar
to Plasim ones (2018).
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Teleconnection patterns for moderate
heat waves over France - ERAS

v

20° N

10

17 ERADS reanalysis
% =N\ cwf  4-year return time.
D = 14.
At day 7 = 0.

Dashed = not statistically
significant for a t>2 student
test.

Temperature anomalies and 500 hPa
geopotential height conditioned on

20° N moderate heat waves

40° W

It is extremely difficult to have statistically significant patterns from reanalysis

datasets. 39



Teleconnection patterns for
moderate heat waves over France

ERADS reanalysis CESM model

20° N ) A ] 20°N
7 / -~ ," S
’ i . b "t

75K

3.5K

~0.5K

-4.5 K

20°N 20° N

40°W 20° W i 0° " 20;’ Ev 40° E 40°'W 20° W (;° 26°é 40° E
Temperature anomalies and 500 hPa geopotential height conditioned on extreme
heat waves with a 4-year return time, with D = 14, atday z = 0

-8.5 K

For moderately extreme heat waves, CESM and ERA5 reanalysis dataset are
qualitatively consistent.

40



2018 heat wave over Scandinavia

Published in January 2018

Observed in July 2018

Conclusions:

Climate models predict well
moderately extreme teleconnection
patterns.

This is a hint that they might predict
correctly more extreme
teleconnection patterns and that
what we observed is not a
coincidence.

41



lll) Predicting heat waves
(committor functions) with
deep neural networks

With P. Abry, P. Borgnat, V. Jacques-Dumas, G. Miloshevich, and F. Ragone

Valerian Jacques-Dumas George Miloshevich

42



Predicting heat waves with a
deep nheural network 1) Data

Surface temperature (1, colors) and 500 hPa geopotential height (Z,, lines) anomalies

e Plasim and CESM climate models.

* \We use summer (JJA) data: 8 maps/day, 90 days/year, 1000 year = 720 000
maps.

e For Plasim data, each field has a resolution 64 X 128, restricted to 25 X 128

above 30° North.
43



Heat wave definition

X(1) = T, field at time ¢, or X(¢) = (T, Zg) fields at time 7.

Y(?): time and space averaged surface temperature anomaly within 7 days:

1 t+t+D 1
Y1) = —J —[ T.(r,u) dr du,
D 7 | A | A

and Z(t) =1 1f Y(r) > a, and Z(t) = 0 otherwise
Z(t) € {0,1}. A heat wave occursif Z = 1.

We have a classification problem for the data (X, Z). We want to learn the
probability g(x) that Z = 1 given that X = x (committor function).

5% most extreme events: a = a5 = 3.08 K. 2.5% most extreme events:
a=a,s=3.7 K.1.25% most extreme events: ¢ = a, ,s = 4.23 K.
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Predicting heat waves with a
deep neural network

Observing the temperature and geopotential height at 500 hPa today, what is
the probability to observe a D-day heat wave starting v days from now?

64x64x2 1600
~ O3XOIX32 4oyaox32
13x64  5x5x64 .64
E '[[:..
\ convox9 64:0nv9x9, 64 dense
- ' pystride (1, 1)
conv12x12, 32ma.’(‘f°°2'2>2<25t"de (1,1) e
conv12x12, 32 stride (1, 1) stride (2, 2) atten dense

stride (1, 1)

Figure 2: Architecture of the CNN used to forecast extreme heatwaves.
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_ 112]100] 25 | 12
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(b) A MaxPool layer
(a) A Convolution layer 45



Machine learning for
extreme heat waves

Supervised learning from 1,000 years of climate model
data (720 000 couples (X, Z)).

We use undersampling to deal with class imbalance.

We use transfer learning between return levels a, first
training a deep neural network for less rare events, and
then transferring to learn rarer events with less data.
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Predicting heat waves

—$— 5% most extreme events
0 45 | —— 2.5% most extreme events
- —4— 1.25% most extreme events

0.30

0.15

Matthew correlation coefficient

0.00

Temporal shift 7 (in days)

0 3 6 9 12 15

Heat waves over France
D =14

Predictability, 7 day ahead, for a 14-day heatwave from the temperature and GPH fields

We have very interesting prediction capabilities up to 15 days ahead of time for

D = 14-day heatwaves

V. Jacques-Dumas, F. Ragone, F. Bouchet, P. Borgnat and P. Abry, 2021, sub. to IEEE TPAMI + ArXiv
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The Normalized and Positively
oriented logarithmic score

* In order to test the efficiency of the probabilistic prediction of the
probabilistic classification, we use the logarithmic score

E {log Py, (%,)] }

* We define a normalized and positively oriented logarithmic score

NP log = aE {log Py, (X,) } +b,

where a and b are such that NP log = 0 for the prediction according to
the climatology (prediction using no information on the state X) and
NP log = 1 for perfect prediction.



Machine learning for climate
applications: a lack of data regime

0.5

CNN classification of

1 2-week heatwaves 7
days ahead of time

i
SN

1,000 years of data

—
w

—
N

100 years of data

Prediction skill (NP-log score)

I
=

as . The input consists of
(t2m,zg500,mrso) with resolution

(18,42,3). filtering applied to mrso
(no part of the map is set to zero. We
were using out-of-the-box CNN

0.0
0 S 10 15 20 25 30

Days ahead of the heat wave start

The observation dataset is way too small for good machine learning prediction



Which is the optimal
dataset geographical area?

18x18 mall area
| (Europe)

CNN classification of

2-week heatwaves 7
days ahead of time

=
IS

&
03 4 Intermediate
| .. N size area
: o= w7 (Europe+North
02 S SR S e Atlantic)

20°N[ i

Prediction skill (NP-log score)

0.1 b
#| Large area (North
™ )| hemisphere mid-
0.0 latitudes)
0 o) 10 15 20 25 30

Days ahead of the heat wave start

The best performance is obtained for an area of an intermediate size.
This also points to a regime of lack of data for optimal learning.



Conclusions: predicting heat
waves with deep neural networks

 Prediction of heat waves is an example of a probabilistic
classification problem.

e We use off-the-shelf CNN algorithms, adapted to this
situation (probabilistic scores, undersampling, transfer
learning).

e Two-week heat waves can be efficiently predicted up to
15 days ahead.

e We are clearly in a regime of lack of data for an optimal
prediction.



V) Coupling Rare Event
Algorithms with Machine
Learning



The Adaptive Multilevel Splitting
(AMS) rare event algorithm

Strategy: selection, pruning and

cloning. Probability estimate:

0 p=(1-1UNK
\ where N is the clone number
and K is the iteration number.

1 branched on 2

\

QQy Q5 +—0 (Q is the score (sélection) function

Cérou, Guyader (2007). Cérou, Guyader, Lelievre, and Pommier (2011).
PDEs: Rolland, Bouchet et Simonnet (2016) - TAMS: Lestang et al (2018)
Atmosphere turbulent jets: Rolland, Bouchet et Simonnet (2019 and 2021).
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Committor functions are optimal score
functions for rare event algorithms

The Adaptive
Multilevel Splitting
A algorithm
‘ N = 3 trajectories
1 branched on 2 ™, . .
Q,Q, Qs
0, < Oy < Qs — @ is the score (sélection) function

The efficiency of the algorithm depends on the choice of the
score function.
The optimal score function is the committor function.



The score function is the
Key practical problem

With a poor score function, rare event algorithms are
useless.

How to build good score functions?
Running a rare event algorithm !!

One needs one algorithm to improve the algorithm
efficiency: use an adaptive strategy.

Examples: Wang Landau algorithm, multi canonical
methods, adaptive importance sampling, etc.



Coupling rare event algorithms with data
based learning of committor functions

i -
. — Data
sampling

/ Machine Learning
Optimal score

\ function
Rare Event Algorithm

(Committor function)

One example: Bouchet, Jack, Lecomte, Nemoto, PRE, 2016

(For X in dimension 1)



Coupling rare event algorithms with data-
based learning of committor functions

2.0

Rare Event Algorithm

dX, = — X3dr +/2edW,

with X, in dimension 1.

e Normal (V. = 20)
1.5} = = Normal (/N. = 100) 0 T
! 4_. s 4 Normal (NN = 200) _ G(h) = lim —logE |exp [ A(X)dt
' oo Feedback (N, = 20) T—+oo T 0

L3001 02 03 04 05 06 07  Wthi®=xx+D

€

Bouchet, Jack, Lecomte, Nemoto, PRE, 2016



Committor function
. @

1X(D)} _o<i<+o0 is @ Markov process. A, B are subsets of the phase space.

For a given sample path {X()}_, <4 the first hitting time 7, s
7, = Inf{z|X(¥) € A}.

The committor function g(x) of the sets A and B is defined as the probability that
a trajectory starting at the point x reaches the set B before the set A

qg(x) =P, (TB < TA) .

How to estimate the committor function? With a rare event algorithm!



Committor function for a
simple gradient dynamics

dX, = - VV(X))dr ++4/2¢dW, and X = (x,y)




Coupling rare event algorithms with data
based learning of committor functions

Direct Data Optimal score
sampling function

Rare Event Algorithm ] ]
(Committor function)



Data-based learning of a
committor function
glx) =P, (TB < TA) .

e Our dataset is a trajectory {X, = X(¢,)},< ,<y (Or a set of
trajectories)

e Approach 1: direct learning as a probabilistic classification

problem. We set Y, = 1 if 753 <14, Y, =0 otherwise. Then

we have a probabilistic classification problem where X are the
data and Y the classes (see previous discussion using CNN).

e Approach 2: learn first a Markov chain from the data and then
compute the committor function.



The analogue Markov chain

e We learn an approximate Markov chain on the set of the
observed states {X, } ;< <y

* How to learn from the data an approximate transition probability
from an observed state X, to one of the other observed states ?

Observed = X = ; "
transitions L X / %,anﬂ
Xn3 | n3+1
.K nearest % Xn, Images of the K
neighbors of A, ~.__ .\ X, +1 nearest neighbors
P(X,, X,) = 1/Kif X, is one of the images Transitions in the approximate

of the nearest neighbors, 0 otherwise Markov chain



Estimating committor functions
from the analogue Markov chain

e ( is the propagator of the analogue Markov chain:

G.. = 0 otherwise.

{G == if 7 — 1 is one of the analogues of 7,
nj

e ¢ is the solution of the linear problem:

qn=anqu‘ifn€(AUB)c,qn=1ianB,qn=Oifn€A.
J

We can estimate the committor function, based on data
using dynamical informations.



With the learned score function the
AMS algorithm is extremely efficient

The three-well gradient dynamics: dX, = — VV(X))dr +1/2e¢dW, and X = (x,y)
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We have an impressive efficiency when learning from a dataset
with only a few observed transitions



With the learned score function the
AMS algorithm is extremely efficient
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We have an impressive efficiency when learning from a dataset

with about 40 to 100 observed transitions



Coupling rare event algorithms with data
based learning of committor functions

. — Data
sampling

Work In progress for climate models!

/ Machine Learning
Optimal score

\ function
Rare Event Algorithm

(Committor function)




Conclusion: Coupling machine
learning with rare event algorithms

e We can learn committor functions from dynamical datasets either
using the definition, or first learning an approximate Markov
dynamics.

e The analogue Markov chain does not require an impossible
discretization of the phase space, and can use any kind of
dynamical data, including short trajectories.

e Using learned committor functions is much more efficient than using
user-defined score functions with the AMS rare event algorithm.

* The range of applicability of this approach, in terms of system
dimension and complexity, is a key question for the future.

. Lucente, J. Rolland, C. Herbert and F. Bouchet, to be posted on ArXiv this week



ll) Abrupt climate changes

* ||l a) Instantons and Arrhenius law for Jupiter’s
troposphere abrupt transitions.

|q4|2 25
20

F. Bouchet, J. Rolland, and E. Simonnet, PRL, 2019:
Instantons and Arrhenius law.

\Q2|2

F. Bouchet, J. Rolland, and E. Simonnet, JAS, 2021: .
Atmosphere jet

multistability with symmetry breaking and instantons.

instantons
* Il b) Discontinuous transitions to superrotation - |- ==
on planetary atmospheres. g —
< / fi
§ . /." ;": //'
C. Herbert, R. Caballero and F. Bouchet, JAS, 2019: T N Py
study of abrupt transitions, negative feedbacks and ) M |
the robustness of the bistability range. Forcing amplitude O,

Superrotating

- atmosphere hysteresis



V) Large deviation theory and other
applications (more theoretical works)

e |ll a) Path large deviations for kinetic theories.

F. Bouchet, J. Stat. Phys., 2020: path large deviations for the
Boltzmann equation and the irreversibility paradox.

O. Feliachi and F. Bouchet, sub. to J. Stat. Phys., 2020: path large
deviations for the plasma and the Vlasov equation.

e |ll b) Rare events for the Solar System (planet collisions).

F. Bouchet and E. Woillez, PRL, 2020. RESEARCH HIGHLIGHTS

Nature Reviews Physics | The path to the Solar system’s
16 July 2020 destabilization
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GDR « Theoretical challenges
for climate sciences »

e |dentify and work on key theoretical issues that need to be solved
for improving the quantitative predictions in climate sciences.

e A multidisciplinary consortium: climate sciences, mathematics,
physics, computer sciences, statistical physics, data sciences.

e Examples : i) How to reduce the uncertainty about climate sensitivity? ii)
How to reduce uncertainty when quantifying probabilities of climate
extreme events? iii) How to integrate data and theoretical constraints,
using machine learning, to build the next generation of climate models?
iv) How to make quantitative the study of future and past climate? v)
How to build effective coarse-grained descriptions of climate
processes?



Conclusions

* We can use rare event algorithms to gather an amazing statistics for extreme heat
waves with Plasim (PNAS, 2018), and CESM (GRL, 2021).

e The dynamical mechanism is a quasi-stationary non zonal global patterns,
which are much affected by topography and oceans (PNAS, 2018, GRL 2021).

* Models reproduce correctly those extreme teleconnection patterns for
moderate extremes. We need model and rare event algorithms to study more
extreme heat waves teleconnection patterns.

* Machine learning has the potential to give meaningful statistical predictions for
long-lasting heat wave up to 2 weeks ahead of time (Sub. to IEEE TPAMI, 2021).

* The coupling of learned committor functions with rare-event algorithms is
extremely efficient for toy model (Arxiv, 09-2021). Work in progress for climate
models.

Please join us to study climate extreme events
The scientific questions are fascinating!
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