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Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).

I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.

I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.

I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:

I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.

I Mainly one understands L(Vλ+1) by analogy with L(R).
I Many properties of L(R) (e.g., the perfect set property)

generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).

I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.

I One prediction is: L(R) satisfies the Ultrapower Axiom.
I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Outline

I Jackson’s analysis of projective sets does not extend to L(R).
I Missing a “global” theory of ultrafilters on ordinals.
I The Ultrapower Axiom serves this purpose in the inner models.
I Question: Does L(R) satisfy the Ultrapower Axiom?

I Analogy between determinacy and strongest large cardinals:
I Example: L(R) under ADL(R) vs. L(Vλ+1) under the axiom I0.
I Mainly one understands L(Vλ+1) by analogy with L(R).

I Many properties of L(R) (e.g., the perfect set property)
generalize to L(Vλ+1) with completely different proofs.

I What’s new: the analogy also makes predictions about L(R).
I Some of these predictions can be verified.
I One prediction is: L(R) satisfies the Ultrapower Axiom.

I Some consequences of UA can be shown to hold in L(R).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Background: a definable invariant of the continuum

I A structure N is interpretable in a structure M if there is a
surjection f :Mk → N such that the f -preimage of a
definable subset of N is definable over M.

I δ1ω denotes the minimum ordinal that is not interpretable in
(R,N,+,×); i.e., the sup of the definable prewellorders.

Note that ω1 ≤ |δ1ω| ≤ c.

Blanket assumption: The Axiom of Determinacy holds in L(R).

Theorem (Jackson)

In L(R), δ1ω = ℵε0 .

Here ε0 is the least ordinal α such that ωα = α.

Therefore in actuality, δ1ω = (ℵε0)L(R).
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Background: ultrafilters under AD

The proof of Jackson’s theorem requires a detailed analysis of the
intricate cardinal structure of L(R) below δ1ω. This ultimately
reduces to a classification of the ultrafilters on ordinals below δ1ω.

Theorem

In L(R), the following hold:

I Every ultrafilter is countably complete.
I (Solovay) ℵ1 is measurable.

I The club filter is the unique normal ultrafilter on ℵ1.

I (Solovay) ℵ2 is measurable.
I The ω-club filter and the ω1-club filter are the only normal

ultrafilters on ℵ2.

I (Martin) ℵn is singular for 3 ≤ n ≤ ω.

I (Kunen, Martin) ℵω+1 and ℵω+2 are measurable.

I (Jackson) ℵω·2+1 is measurable, but ℵω·3+1 is singular.
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Ultrafilters in inner models

Two ultrafilters U and W are equivalent if there exist A ∈ U and
B ∈W such that (A,U ∩ P(A)) ∼= (B,W ∩ P(B)).

Theorem (??)

In L(R), every ultrafilter on ℵ1 is equivalent to an iterated product
of the closed unbounded filter.

This calls to mind:

Theorem (Kunen)

If U is a normal ultrafilter, then in the inner model L[U], every
countably complete ultrafilter is isomorphic to an iterated product
of U ∩ L[U].

Actually the first theorem can be proved using the second.
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Ultrapower terminlogy

Suppose U is an ω1-complete ultrafilter

I MU denotes the ultrapower of the universe by U

I jU : V → MU denotes the associated elementary embedding

Since U is ω1-complete, MU is wellfounded. So without loss of
generality, MU is transitive.

If P and Q are transitive models of ZFC, j : P → Q is an
ultrapower embedding if there is some U ∈ P such that
Q = (MU)P and j = (jU)P .
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The Ultrapower Axiom (UA)

Ultrapower Axiom (UA)

For any ultrapower embeddings j0 : V → M0 and j1 : V → M1,
there are ultrapower embeddings i0 : M0 → N and i1 : M1 → N
such that i0 ◦ j0 = i1 ◦ j1.
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Why UA?

I The Ultrapower Axiom is an instance of the central
Comparison Lemma of inner model theory, yet it can be
stated without reference to fine structure.

I As a consequence, UA holds in all known canonical inner
models of ZFC, and arguably in any inner model built by
anything like the current methodology.
I If there is a canonical inner model with a supercompact

cardinal, then UA should be consistent with a supercompact
cardinal.

I The existence of a supercompact cardinal implies the existence
of a vast array of ultrapowers, and combined with UA, provides
a rich structure theory for the upper reaches of the universe of
sets.

I UA is equivalent to several natural combinatorial principles.

I Seems to yield an “optimal” theory of ω1-complete ultrafilters
(in the context of the Axiom of Choice).
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The Rudin-Froĺık order
I U lies below W in the Rudin-Froĺık order, denoted U ≤RF W ,

if jW = k ◦ jU for some ultrapower embedding k : MU → MW .

I By definition, UA holds iff the restriction of the Rudin-Froĺık
order to ω1-complete ultrafilters is directed.

I A nonprincipal ultrafilter W is irreducible if any nonprincipal
U ≤RF W is equivalent to W (in that jU = jW ).

Theorem (UA)

I Every ω1-complete ultrafilter W factors as an iteration:

V = M0

jU0−→ M1

jU1−→ · · ·
jUn−→ Mn+1 = MW

where for all k ≤ n, Uk is an irreducible ultrafilter of Mk .

I In fact, an ω1-complete ultrafilter can have only finitely many
Rudin-Froĺık predecessors up to equivalence.
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I U lies below W in the Rudin-Froĺık order, denoted U ≤RF W ,
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Rudin-Froĺık predecessors up to equivalence.

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Rudin-Froĺık order
I U lies below W in the Rudin-Froĺık order, denoted U ≤RF W ,
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Some irreducible ultrafilters

An ultrafilter U on a family of nonempty sets F is normal if every
choice function on F is constant on a set in U. If U is normal and
λ = minA∈U |A|, then MU is closed under λ-sequences.

Proposition

Normal ultrafilters are irreducible.

A uniform ultrafilter U on a cardinal κ is Dodd sound if the map
i : P(κ)→ MU given by i(A) = jU(A) ∩ [id]U belongs to MU .

Proposition

Dodd sound ultrafilters are irreducible.

Theorem (UA)

Normal ultrafilters and Dodd sound ultrafilters are wellordered by
the Mitchell order.
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Irreducible ultrafilters and UA

Theorem (UA)

Suppose U is an irreducible ultrafilter and λ = minA∈U |A|.
I MU is closed under λ-sequences unless λ is inaccessible.

I If λ is inaccessible, then (MU)<λ ⊆ MU and every A ⊆ MU

with |A| ≤ λ is covered by a set B ∈ MU with |B|MU ≤ λ.

Remark. The inaccessible case obviously raises some questions...

Corollary (UA)

A cardinal is strongly compact if and only if it is supercompact or a
measurable limit of supercompacts.

By a theorem of Menas, the least measurable limit of
supercompact cardinals is strongly compact but not supercompact,
so the corollary cannot be improved.
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The Lipschitz order

Suppose δ is an ordinal.

I A function f : P(δ)→ P(δ) is Lipschitz if for all x , y ⊆ δ and
α ≤ δ, if x ∩ α = y ∩ α, then f (x) ∩ α = f (y) ∩ α.

I For A,B ⊆ P(δ), set A ≤L B if A is Lipschitz reducible to B;
i.e., there is a Lipschitz f : P(δ)→ P(δ) with f −1[B] = A.

Theorem

The following hold in L(R):

I (Wadge) The subsets of P(ω) — i.e., “sets of reals” — are
semi-linearly ordered by Lipschitz reducibility: if A,B ⊆ R,
either A is reducible to B or B is reducible to P(ω) \ A.

I (Martin-Monk) ≤L is wellfounded on subsets of P(ω).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Lipschitz order

Suppose δ is an ordinal.

I A function f : P(δ)→ P(δ) is Lipschitz if for all x , y ⊆ δ and
α ≤ δ, if x ∩ α = y ∩ α, then f (x) ∩ α = f (y) ∩ α.

I For A,B ⊆ P(δ), set A ≤L B if A is Lipschitz reducible to B;
i.e., there is a Lipschitz f : P(δ)→ P(δ) with f −1[B] = A.

Theorem

The following hold in L(R):

I (Wadge) The subsets of P(ω) — i.e., “sets of reals” — are
semi-linearly ordered by Lipschitz reducibility: if A,B ⊆ R,
either A is reducible to B or B is reducible to P(ω) \ A.

I (Martin-Monk) ≤L is wellfounded on subsets of P(ω).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Lipschitz order

Suppose δ is an ordinal.

I A function f : P(δ)→ P(δ) is Lipschitz if for all x , y ⊆ δ and
α ≤ δ, if x ∩ α = y ∩ α, then f (x) ∩ α = f (y) ∩ α.

I For A,B ⊆ P(δ), set A ≤L B if A is Lipschitz reducible to B;
i.e., there is a Lipschitz f : P(δ)→ P(δ) with f −1[B] = A.

Theorem

The following hold in L(R):

I (Wadge) The subsets of P(ω) — i.e., “sets of reals” — are
semi-linearly ordered by Lipschitz reducibility: if A,B ⊆ R,
either A is reducible to B or B is reducible to P(ω) \ A.

I (Martin-Monk) ≤L is wellfounded on subsets of P(ω).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Lipschitz order

Suppose δ is an ordinal.

I A function f : P(δ)→ P(δ) is Lipschitz if for all x , y ⊆ δ and
α ≤ δ, if x ∩ α = y ∩ α, then f (x) ∩ α = f (y) ∩ α.

I For A,B ⊆ P(δ), set A ≤L B if A is Lipschitz reducible to B;
i.e., there is a Lipschitz f : P(δ)→ P(δ) with f −1[B] = A.

Theorem

The following hold in L(R):

I (Wadge) The subsets of P(ω) — i.e., “sets of reals” — are
semi-linearly ordered by Lipschitz reducibility: if A,B ⊆ R,
either A is reducible to B or B is reducible to P(ω) \ A.

I (Martin-Monk) ≤L is wellfounded on subsets of P(ω).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Lipschitz order

Suppose δ is an ordinal.

I A function f : P(δ)→ P(δ) is Lipschitz if for all x , y ⊆ δ and
α ≤ δ, if x ∩ α = y ∩ α, then f (x) ∩ α = f (y) ∩ α.

I For A,B ⊆ P(δ), set A ≤L B if A is Lipschitz reducible to B;
i.e., there is a Lipschitz f : P(δ)→ P(δ) with f −1[B] = A.

Theorem

The following hold in L(R):

I (Wadge) The subsets of P(ω) — i.e., “sets of reals” — are
semi-linearly ordered by Lipschitz reducibility: if A,B ⊆ R,
either A is reducible to B or B is reducible to P(ω) \ A.

I (Martin-Monk) ≤L is wellfounded on subsets of P(ω).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Lipschitz order

Suppose δ is an ordinal.

I A function f : P(δ)→ P(δ) is Lipschitz if for all x , y ⊆ δ and
α ≤ δ, if x ∩ α = y ∩ α, then f (x) ∩ α = f (y) ∩ α.

I For A,B ⊆ P(δ), set A ≤L B if A is Lipschitz reducible to B;
i.e., there is a Lipschitz f : P(δ)→ P(δ) with f −1[B] = A.

Theorem

The following hold in L(R):

I (Wadge) The subsets of P(ω) — i.e., “sets of reals” — are
semi-linearly ordered by Lipschitz reducibility: if A,B ⊆ R,
either A is reducible to B or B is reducible to P(ω) \ A.

I (Martin-Monk) ≤L is wellfounded on subsets of P(ω).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Lipschitz order

Suppose δ is an ordinal.

I A function f : P(δ)→ P(δ) is Lipschitz if for all x , y ⊆ δ and
α ≤ δ, if x ∩ α = y ∩ α, then f (x) ∩ α = f (y) ∩ α.

I For A,B ⊆ P(δ), set A ≤L B if A is Lipschitz reducible to B;
i.e., there is a Lipschitz f : P(δ)→ P(δ) with f −1[B] = A.

Theorem

The following hold in L(R):

I (Wadge) The subsets of P(ω) — i.e., “sets of reals” — are
semi-linearly ordered by Lipschitz reducibility: if A,B ⊆ R,
either A is reducible to B or B is reducible to P(ω) \ A.

I (Martin-Monk) ≤L is wellfounded on subsets of P(ω).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Lipschitz order

Suppose δ is an ordinal.

I A function f : P(δ)→ P(δ) is Lipschitz if for all x , y ⊆ δ and
α ≤ δ, if x ∩ α = y ∩ α, then f (x) ∩ α = f (y) ∩ α.

I For A,B ⊆ P(δ), set A ≤L B if A is Lipschitz reducible to B;
i.e., there is a Lipschitz f : P(δ)→ P(δ) with f −1[B] = A.

Theorem

The following hold in L(R):

I (Wadge) The subsets of P(ω) — i.e., “sets of reals” — are
semi-linearly ordered by Lipschitz reducibility: if A,B ⊆ R,
either A is reducible to B or B is reducible to P(ω) \ A.

I (Martin-Monk) ≤L is wellfounded on subsets of P(ω).

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



Ketonen reducibility

Let βκ(X ) denote the set of κ-complete ultrafilters on X .

Theorem (UA)

For any ordinal δ, (βω1(δ),≤L) is a wellorder.

I A Lipschitz f : P(δ)→ P(δ) is Ketonen if for all W ∈ βω1(δ),
f −1[W ] ∈ βω1(δ).

I U is Ketonen reducible to W ∈ βω1(δ), denoted U ≤k W , if
there is a Ketonen f : P(δ)→ P(δ) with U = f −1[W ].

Theorem

For all ordinals δ, (βω1(δ),≤k) is wellfounded.

Theorem

UA holds if and only if for all ordinals δ, (βω1(δ),≤k) is a wellorder.
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Ordinal definable ultrafilters

The linearity of Ketonen reducibility immediately yields:

Theorem (UA)

Every ω1-complete ultrafilter on an ordinal is ordinal definable.

By a strange coincidence, it is also possible to definably wellorder
the ultrafilters of L(R), although it is not clear whether Ketonen
reducibility works:

Theorem (Kunen)

In L(R), every ultrafilter on an ordinal is ordinal definable.
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The Ultrapower Axiom without choice

Question

Does the Ultrapower Axiom hold in L(R)?

I To make sense of the question, one needs an ultrapower-free
formulation of the Ultrapower Axiom.

UA1. For all ordinals δ, (βω1(δ),≤k) is a wellorder.

I Set U ≤RF W if for some ultrafilters (Wx)x∈X with pairwise
disjoint underlying sets, W = {

⋃
x∈X Ax : ∀Ux Ax ∈Wx}.

UA2. The Rudin-Froĺık order is directed on
⋃
δ∈Ord βω1(δ).

Theorem (ZF + DC)

UA1 and UA2 are equivalent.
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The Rudin-Froĺık order is directed on
⋃
δ∈Ord βω1(δ).

Theorem (ZF + DC)

UA1 and UA2 are equivalent.

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Ultrapower Axiom without choice

Question

Does the Ultrapower Axiom hold in L(R)?

I To make sense of the question, one needs an ultrapower-free
formulation of the Ultrapower Axiom.

UA1. For all ordinals δ, (βω1(δ),≤k) is a wellorder.

I Set U ≤RF W if for some ultrafilters (Wx)x∈X with pairwise
disjoint underlying sets, W = {

⋃
x∈X Ax : ∀Ux Ax ∈Wx}.
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The Kunen inconsistency

I The best evidence that L(R) satisfies UA comes from one of
the strongest theories known to man.

I Reinhardt proposed the principle: there is a nontrivial
elementary embedding from the universe of sets to itself.

Theorem (Kunen)

There is no elementary embedding from V to V except the
identity.

Kunen’s proof shows that for any ordinal α, there is no elementary
j : Vα+2 → Vα+2. So if j : Vβ → Vβ is elementary with critical
point κ, β < λ+ 2 where

λ = sup{κ, j(κ), j2(κ), j3(κ), . . . }

because j(λ) = sup{j(κ), j2(κ), j3(κ), . . . } = λ.
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Strategies and embeddings

The descriptive set theory of Vλ+1 assuming the existence of
various embeddings j : Vλ+1 → Vλ+1 bears a striking and
unexplained resemblance to classical descriptive set theory under
determinacy axioms.

Determinacy Elementary embeddings

Det(∆1
1) j : Vλ → Vλ

Det(Π1
1) Σ1-elementary j : Vλ+1 → Vλ+1

Det(Projective) Σn-elementary j : Vλ+1 → Vλ+1 for all n
Det(L(R)) j : L(Vλ+1)→ L(Vλ+1) with crit(j) < λ

The final embedding principle above is Woodin’s axiom I0.

Going forward: λ denotes an I0-cardinal, meaning there is an
elementary j : L(Vλ+1)→ L(Vλ+1) with crit(j) < λ.
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The inner model L(Vλ+1)

Theorem

In L(Vλ+1), the following hold:
I (Woodin) λ+ is measurable.

I (Cramer) There is a unique normal ultrafilter on λ+

concentrating on ordinals of countable cofinality.

I (Cramer) Every subset of Vλ+1 has the perfect set property.

ΘL(R) denotes the least ordinal not of the form {f (x) : x ∈ R}
where f ∈ L(R). To get ΘL(Vλ+1), replace Rs with Vλ+1s.

Theorem

I (Moschovakis) ΘL(R) is weakly inaccessible in L(R).

I (Woodin) ΘL(Vλ+1) is weakly inaccessible in L(Vλ+1).
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Small cardinals in L(Vλ+1)

The local theory of L(Vλ+1) remains a mystery in basic ways; an
analysis parallel to Jackson’s seems completely out of reach.

Question

In L(Vλ+1), do the following hold?

I λ++ is measurable.

I λ+++ is singular.

I λ+ → (λ+)ω.

I Any definable binary relation on Vλ+1 is uniformizable.

I Every subset of λ+ is definable over H(λ+) from parameters.
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The global theory of L(Vλ+1)

Theorem (Kunen)

In L(R), every ω1-complete filter on an ordinal below ΘL(R)

extends to an ω1-complete ultrafilter.

The proof uses that in L(R) there is an ω1-complete fine ultrafilter
on Pω1(R) induced by the Martin measure on the Turing degrees.
Although no analog of this is known for L(Vλ+1), one can prove:

Theorem

In L(Vλ+1), every λ+-complete filter on an ordinal below ΘL(Vλ+1)

extends to a λ+-complete ultrafilter.

The proof is by induction on λ+-complete filters ordered by
Ketonen reducibility.
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The global theory of L(Vλ+1), continued

An atom of a filter F is a set S such that F ∪ {S} generates an
ultrafilter; F is atomic if every F -positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

Extending this to arbitrary regular cardinals in L(R) is open,
arguably a reasonable test question for Jackson’s analysis.

Theorem

In L(Vλ+1), the club filter on any regular cardinal below ΘL(Vλ+1)

is atomic.

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The global theory of L(Vλ+1), continued

An atom of a filter F is a set S such that F ∪ {S} generates an
ultrafilter; F is atomic if every F -positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

Extending this to arbitrary regular cardinals in L(R) is open,
arguably a reasonable test question for Jackson’s analysis.

Theorem

In L(Vλ+1), the club filter on any regular cardinal below ΘL(Vλ+1)

is atomic.

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The global theory of L(Vλ+1), continued

An atom of a filter F is a set S such that F ∪ {S} generates an
ultrafilter; F is atomic if every F -positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

Extending this to arbitrary regular cardinals in L(R) is open,
arguably a reasonable test question for Jackson’s analysis.

Theorem

In L(Vλ+1), the club filter on any regular cardinal below ΘL(Vλ+1)

is atomic.

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The global theory of L(Vλ+1), continued

An atom of a filter F is a set S such that F ∪ {S} generates an
ultrafilter; F is atomic if every F -positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

Extending this to arbitrary regular cardinals in L(R) is open,
arguably a reasonable test question for Jackson’s analysis.

Theorem

In L(Vλ+1), the club filter on any regular cardinal below ΘL(Vλ+1)

is atomic.

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The global theory of L(Vλ+1), continued

An atom of a filter F is a set S such that F ∪ {S} generates an
ultrafilter; F is atomic if every F -positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

Extending this to arbitrary regular cardinals in L(R) is open,
arguably a reasonable test question for Jackson’s analysis.

Theorem

In L(Vλ+1), the club filter on any regular cardinal below ΘL(Vλ+1)

is atomic.

Gabriel Goldberg The Jackson analysis and the strongest hypotheses



The Ultrapower Axiom and L(Vλ+1)

I The α-th level of a wellfounded partial order P is the set of all
x ∈ P such that rankP(x) = α.

I P is linear iff each level of P has cardinality 1.

Theorem

In L(Vλ+1), for all ordinals δ, (βω1(δ),≤k) is almost linear: each of
its levels has cardinality less than λ.

I As a corollary, in L(Vλ+1), every ω1-complete ultrafilter on an
ordinal is almost ordinal definable in that it belongs to an
ordinal definable set of cardinality less than λ.

I Ketonen reducibility is not linear in L(Vλ+1): e.g., the normal
ultrafilter extending the ω-club filter is incomparable with any
normal ultrafilter extending the ω1-club filter.

Conjecture

In L(R), for all ordinals δ, every level of (βω1(δ),≤k) is finite.
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The Rudin-Keisler order and L(Vλ+1)

The Rudin-Keisler order is defined on ultrafilters U and W on sets
X and Y by setting U ≤RK W if there is a partition (Yx)x∈X of Y
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From L(Vλ+1) to L(R)

Until now, our insight into L(Vλ+1) has come from knowledge of
L(R), never the other way.

Theorem

In L(R), no ultrafilter on an ordinal has infinitely many
Rudin-Froĺık predecessors.

I An ultrafilter on a regular cardinal is seminormal if it extends
the closed unbounded filter.

I The structure of seminormal ultrafilters is a central question
in extending the Jackson analysis.

Theorem

In L(R), no ultrafilter on an ordinal has has infinitely many
seminormal Rudin-Keisler predecessors.

Proofs use Steel’s fine-structural analysis of HODL(R) below ΘL(R).
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Products of ultrafilters

If U and W are ultrafilters on X and Y , there are at least three
natural candidates for their product:

Cartesian product: U ×W is the filter on X × Y generated by
sets of the form A× B where A ∈ U and B ∈W .
Tensor product: for C ⊆ X × Y ,

C ∈ U nW ⇐⇒ ∀Ux ∀W y (x , y) ∈ C .

C ∈ U oW ⇐⇒ ∀W y ∀Ux (x , y) ∈ C .

I Note: U ×W is contained in both U nW and U oW .

I Usually, U ×W is not an ultrafilter and U nW 6= U oW , so
all three products are distinct.
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Products of ultrafilters, continued

In certain very special cases, however, U ×W is an ultrafilter.

Theorem (Blass)

If W is |U|-complete, U ×W is an ultrafilter

Since U ×W is contained in U nW and U oW , if U ×W is an
ultrafilter (i.e., is maximal), then U nW = U ×W = U oW .

Question

Suppose U nW = U oW . Must U ×W be an ultrafilter?

I U nW = U oW iff the ultrafilter quantifiers commute:

∀Ux ∀W y R(x , y) ⇐⇒ ∀W y ∀Ux R(x , y)
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Products and embeddings

From an elementary embeddings perspective:

I The ultrafilters Z extending U ×W represent amalgamatioins

MU
kU−→ MZ

kW←−− MW

such that kU ◦ jU = kW ◦ jW .

I The tensor products correspond to the amalgamations

MU
jU(jW )−−−−→ MUnW

jU�MW←−−−− MW

MU
jW �MU−−−−→ MUoW

jW (jU)←−−−− MW

I Quantifiers commute iff the associated ultrapowers do:

U nW = U oW ⇐⇒ jU(jW ) = jW � MU

⇐⇒ jW (jU) = jU � MW
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Products of ultrafilters, continued

Theorem (UA)

U ×W is an ultrafilter iff U nW = U oW.

Since this is such a “combinatorial” statement, it feels like the
theorem must be provable in ZFC.

Theorem (GCH)

U ×W is an ultrafilter iff U nW = U oW.

In ZF, one can prove U × U is never an ultrafilter, whereas Elliot
Glazer pointed out that in L(R), there is an ultrafilter U such that
U n U = U o U. So the equivalence fails in L(R). Still...

Theorem

In L(R), if U and W are ultrafilters on ordinals, U ×W is an
ultrafilter iff U nW = U oW.
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Products of ultrafilters, continued

Theorem

In L(R), if U and W are ultrafilters on ordinals, U ×W is an
ultrafilter iff U nW = U oW.

Proof.

I Fix U and W on δ with U nW = U oW .
I Fix A ⊆ δ × δ. Must show U ×W measures A.
I For some x ∈ R, A ∈ HODx .
I Ū = U ∩ HODx and W̄ = W ∩ HODx are in HODx .

I In HODx :
I Ū n W̄ = Ū o W̄ .
I (Steel) GCH holds! UA holds!
I By either of the previous theorems, Ū × W̄ is an ultrafilter.
I So Ū × W̄ measures A.

I This implies U ×W measures A.
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I Ū = U ∩ HODx and W̄ = W ∩ HODx are in HODx .

I In HODx :
I Ū n W̄ = Ū o W̄ .
I (Steel) GCH holds! UA holds!
I By either of the previous theorems, Ū × W̄ is an ultrafilter.
I So Ū × W̄ measures A.

I This implies U ×W measures A.
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I Ū = U ∩ HODx and W̄ = W ∩ HODx are in HODx .

I In HODx :
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I Ū = U ∩ HODx and W̄ = W ∩ HODx are in HODx .

I In HODx :
I Ū n W̄ = Ū o W̄ .
I (Steel) GCH holds! UA holds!
I By either of the previous theorems, Ū × W̄ is an ultrafilter.
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I Ū = U ∩ HODx and W̄ = W ∩ HODx are in HODx .

I In HODx :
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I Ū = U ∩ HODx and W̄ = W ∩ HODx are in HODx .

I In HODx :
I Ū n W̄ = Ū o W̄ .
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Conclusion

I The analogy between L(R) and L(Vλ+1) cuts both ways.

I There is evidence that UA holds in L(R).

Conjecture

The following hold in L(R):

I The club filter on any regular cardinal δ < ΘL(R) is atomic.

I Every level of the Ketonen order is finite.

I No ultrafilter on an ordinal has infinitely many Rudin-Keisler
predecessors.
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Thanks

Thanks!
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