The Jackson analysis and the strongest hypotheses

Gabriel Goldberg

UC Berkeley

2021

▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - ▶ The Ultrapower Axiom serves this purpose in the inner models.

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - ▶ The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - ▶ The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - ▶ The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:
 - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 .

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - ▶ The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:
 - ▶ Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 .
 - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$.

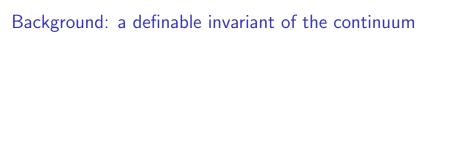
- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - ▶ The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:
 - **Example:** $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 .
 - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$.
 - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs.

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - ▶ The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:
 - **Example:** $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 .
 - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$.
 - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs.
- ▶ What's new: the analogy also makes predictions about $L(\mathbb{R})$.

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - ▶ The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:
 - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 .
 - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$.
 - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs.
- ▶ What's new: the analogy also makes predictions about $L(\mathbb{R})$.
 - Some of these predictions can be verified.

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:
 - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 .
 - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$.
 - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs.
- ▶ What's new: the analogy also makes predictions about $L(\mathbb{R})$.
 - Some of these predictions can be verified.
 - ▶ One prediction is: $L(\mathbb{R})$ satisfies the Ultrapower Axiom.

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - The Ultrapower Axiom serves this purpose in the inner models.
 - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:
 - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 .
 - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$.
 - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs.
- ▶ What's new: the analogy also makes predictions about $L(\mathbb{R})$.
 - Some of these predictions can be verified.
 - ▶ One prediction is: $L(\mathbb{R})$ satisfies the Ultrapower Axiom.
 - ▶ Some consequences of UA can be shown to hold in $L(\mathbb{R})$.



A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} .

- A structure N is interpretable in a structure M if there is a surjection f : M^k → N such that the f-preimage of a definable subset of N is definable over M.
- δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R}, \mathbb{N}, +, \times)$; i.e., the sup of the definable prewellorders.

- A structure N is interpretable in a structure M if there is a surjection f : M^k → N such that the f-preimage of a definable subset of N is definable over M.
- δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$.

- ▶ A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} .
- δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$.

Blanket assumption: The Axiom of Determinacy holds in $L(\mathbb{R})$.

- ▶ A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} .
- δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$.

Blanket assumption: The Axiom of Determinacy holds in $L(\mathbb{R})$.

Theorem (Jackson)

In
$$L(\mathbb{R})$$
, $\delta^1_\omega = \aleph_{\epsilon_0}$.

- ▶ A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} .
- δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$.

Blanket assumption: The Axiom of Determinacy holds in $L(\mathbb{R})$.

Theorem (Jackson)

In
$$L(\mathbb{R})$$
, $\delta^1_\omega = \aleph_{\epsilon_0}$.

Here ϵ_0 is the least ordinal α such that $\omega^{\alpha} = \alpha$.

- ▶ A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} .
- δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$.

Blanket assumption: The Axiom of Determinacy holds in $L(\mathbb{R})$.

Theorem (Jackson)

In
$$L(\mathbb{R})$$
, $\delta^1_\omega = \aleph_{\epsilon_0}$.

Here ϵ_0 is the least ordinal α such that $\omega^{\alpha} = \alpha$.

Therefore in actuality, $\delta^1_\omega = (\aleph_{\epsilon_0})^{L(\mathbb{R})}$.

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

In $L(\mathbb{R})$, the following hold:

Every ultrafilter is countably complete.

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

- Every ultrafilter is countably complete.
- ▶ (Solovay) \aleph_1 is measurable.

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

- Every ultrafilter is countably complete.
- ▶ (Solovay) \aleph_1 is measurable.
 - ▶ The club filter is the unique normal ultrafilter on \aleph_1 .

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

- Every ultrafilter is countably complete.
- ▶ (Solovay) \aleph_1 is measurable.
 - ▶ The club filter is the unique normal ultrafilter on \aleph_1 .
- ▶ (Solovay) \aleph_2 is measurable.

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

- Every ultrafilter is countably complete.
- ▶ (Solovay) \aleph_1 is measurable.
 - ▶ The club filter is the unique normal ultrafilter on \aleph_1 .
- ▶ (Solovay) \aleph_2 is measurable.
 - The ω -club filter and the ω_1 -club filter are the only normal ultrafilters on \aleph_2 .

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

- Every ultrafilter is countably complete.
- ▶ (Solovay) \aleph_1 is measurable.
 - ▶ The club filter is the unique normal ultrafilter on \aleph_1 .
- ▶ (Solovay) \aleph_2 is measurable.
 - The ω -club filter and the ω_1 -club filter are the only normal ultrafilters on \aleph_2 .
- ▶ (Martin) \aleph_n is singular for $3 \le n \le \omega$.

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

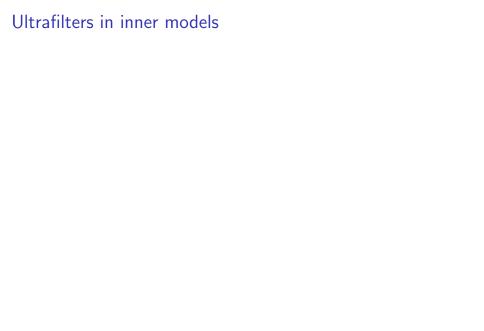
Theorem

- Every ultrafilter is countably complete.
- ▶ (Solovay) \aleph_1 is measurable.
 - ▶ The club filter is the unique normal ultrafilter on \aleph_1 .
- ▶ (Solovay) \aleph_2 is measurable.
 - ► The ω-club filter and the $ω_1$ -club filter are the only normal ultrafilters on \aleph_2 .
- ▶ (Martin) \aleph_n is singular for $3 \le n \le \omega$.
- ▶ (Kunen, Martin) $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$ are measurable.

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω .

Theorem

- Every ultrafilter is countably complete.
- ▶ (Solovay) \aleph_1 is measurable.
 - ▶ The club filter is the unique normal ultrafilter on \aleph_1 .
- ▶ (Solovay) \aleph_2 is measurable.
 - ► The ω-club filter and the $ω_1$ -club filter are the only normal ultrafilters on \aleph_2 .
- ▶ (Martin) \aleph_n is singular for $3 \le n \le \omega$.
- ▶ (Kunen, Martin) $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$ are measurable.
- ▶ (Jackson) $\aleph_{\omega \cdot 2+1}$ is measurable, but $\aleph_{\omega \cdot 3+1}$ is singular.



Ultrafilters in inner models

Two ultrafilters U and W are equivalent if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$.

Ultrafilters in inner models

Two ultrafilters U and W are equivalent if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$.

Theorem (??)

In $L(\mathbb{R})$, every ultrafilter on \aleph_1 is equivalent to an iterated product of the closed unbounded filter.

Ultrafilters in inner models

Two ultrafilters U and W are equivalent if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$.

Theorem (??)

In $L(\mathbb{R})$, every ultrafilter on \aleph_1 is equivalent to an iterated product of the closed unbounded filter.

This calls to mind:

Theorem (Kunen)

If U is a normal ultrafilter, then in the inner model L[U], every countably complete ultrafilter is isomorphic to an iterated product of $U \cap L[U]$.

Ultrafilters in inner models

Two ultrafilters U and W are equivalent if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$.

Theorem (??)

In $L(\mathbb{R})$, every ultrafilter on \aleph_1 is equivalent to an iterated product of the closed unbounded filter.

This calls to mind:

Theorem (Kunen)

If U is a normal ultrafilter, then in the inner model L[U], every countably complete ultrafilter is isomorphic to an iterated product of $U \cap L[U]$.

Actually the first theorem can be proved using the second.

Suppose U is an ω_1 -complete ultrafilter

Suppose U is an ω_1 -complete ultrafilter

- $ightharpoonup M_U$ denotes the ultrapower of the universe by U
- $ightharpoonup j_U:V o M_U$ denotes the associated elementary embedding

Suppose U is an ω_1 -complete ultrafilter

- $ightharpoonup M_U$ denotes the ultrapower of the universe by U
- $ightharpoonup j_U:V o M_U$ denotes the associated elementary embedding

Since U is ω_1 -complete, M_U is wellfounded. So without loss of generality, M_U is transitive.

Suppose U is an ω_1 -complete ultrafilter

- $ightharpoonup M_U$ denotes the ultrapower of the universe by U
- $ightharpoonup j_U:V o M_U$ denotes the associated elementary embedding

Since U is ω_1 -complete, M_U is wellfounded. So without loss of generality, M_U is transitive.

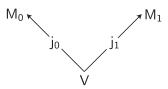
If P and Q are transitive models of ZFC, $j: P \to Q$ is an *ultrapower embedding* if there is some $U \in P$ such that $Q = (M_U)^P$ and $j = (j_U)^P$.

Ultrapower Axiom (UA)

For any ultrapower embeddings $j_0: V \to M_0$ and $j_1: V \to M_1$, there are ultrapower embeddings $i_0: M_0 \to N$ and $i_1: M_1 \to N$ such that $i_0 \circ j_0 = i_1 \circ j_1$.

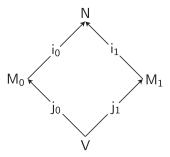
Ultrapower Axiom (UA)

For any ultrapower embeddings $j_0: V \to M_0$ and $j_1: V \to M_1$, there are ultrapower embeddings $i_0: M_0 \to N$ and $i_1: M_1 \to N$ such that $i_0 \circ j_0 = i_1 \circ j_1$.



Ultrapower Axiom (UA)

For any ultrapower embeddings $j_0: V \to M_0$ and $j_1: V \to M_1$, there are ultrapower embeddings $i_0: M_0 \to N$ and $i_1: M_1 \to N$ such that $i_0 \circ j_0 = i_1 \circ j_1$.



► The Ultrapower Axiom is an instance of the central *Comparison Lemma* of inner model theory, yet it can be stated without reference to fine structure.

- ► The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure.
- As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology.

- ► The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure.
- As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology.
 - ▶ If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal.

- ► The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure.
- As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology.
 - ▶ If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal.
 - The existence of a supercompact cardinal implies the existence of a vast array of ultrapowers, and combined with UA, provides a rich structure theory for the upper reaches of the universe of sets.

- ► The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure.
- As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology.
 - ▶ If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal.
 - ► The existence of a supercompact cardinal implies the existence of a vast array of ultrapowers, and combined with UA, provides a rich structure theory for the upper reaches of the universe of sets.
- UA is equivalent to several natural combinatorial principles.

- ➤ The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure.
- As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology.
 - ▶ If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal.
 - ► The existence of a supercompact cardinal implies the existence of a vast array of ultrapowers, and combined with UA, provides a rich structure theory for the upper reaches of the universe of sets.
- UA is equivalent to several natural combinatorial principles.
- Seems to yield an "optimal" theory of ω_1 -complete ultrafilters (in the context of the Axiom of Choice).

▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{RF} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$.

- ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{\mathsf{RF}} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$.
- ▶ By definition, UA holds iff the restriction of the Rudin-Frolík order to ω_1 -complete ultrafilters is directed.

- ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{\mathsf{RF}} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$.
- By definition, UA holds iff the restriction of the Rudin-Frolík order to ω₁-complete ultrafilters is directed.
- A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$).

- ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{\mathsf{RF}} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$.
- ▶ By definition, UA holds iff the restriction of the Rudin-Frolík order to ω_1 -complete ultrafilters is directed.
- A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$).

Theorem (UA)

- ▶ *U* lies below *W* in the *Rudin-Frolik* order, denoted $U \leq_{\mathsf{RF}} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$.
- ▶ By definition, UA holds iff the restriction of the Rudin-Frolík order to ω_1 -complete ultrafilters is directed.
- A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$).

Theorem (UA)

• Every ω_1 -complete ultrafilter W factors as an iteration:

$$V = M_0 \xrightarrow{j_{U_0}} M_1 \xrightarrow{j_{U_1}} \cdots \xrightarrow{j_{U_n}} M_{n+1} = M_W$$

where for all $k \leq n$, U_k is an irreducible ultrafilter of M_k .

- ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{RF} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$.
- ▶ By definition, UA holds iff the restriction of the Rudin-Frolík order to ω_1 -complete ultrafilters is directed.
- A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$).

Theorem (UA)

• Every ω_1 -complete ultrafilter W factors as an iteration:

$$V = M_0 \xrightarrow{j_{U_0}} M_1 \xrightarrow{j_{U_1}} \cdots \xrightarrow{j_{U_n}} M_{n+1} = M_W$$

where for all $k \leq n$, U_k is an irreducible ultrafilter of M_k .

In fact, an ω_1 -complete ultrafilter can have only finitely many Rudin-Frolík predecessors up to equivalence.

An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in U} |A|$, then M_U is closed under λ -sequences.

An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences.

Proposition

Normal ultrafilters are irreducible.

An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences.

Proposition

Normal ultrafilters are irreducible.

A uniform ultrafilter U on a cardinal κ is Dodd sound if the map $i: P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [\mathrm{id}]_U$ belongs to M_U .

An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences.

Proposition

Normal ultrafilters are irreducible.

A uniform ultrafilter U on a cardinal κ is Dodd sound if the map $i: P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [\mathrm{id}]_U$ belongs to M_U .

Proposition

Dodd sound ultrafilters are irreducible.

An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences.

Proposition

Normal ultrafilters are irreducible.

A uniform ultrafilter U on a cardinal κ is Dodd sound if the map $i: P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [\mathrm{id}]_U$ belongs to M_U .

Proposition

Dodd sound ultrafilters are irreducible.

Theorem (UA)

Normal ultrafilters and Dodd sound ultrafilters are wellordered by the Mitchell order.

An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences.

Proposition

Normal ultrafilters are irreducible.

A uniform ultrafilter U on a cardinal κ is Dodd sound if the map $i: P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [\mathrm{id}]_U$ belongs to M_U .

Proposition

Dodd sound ultrafilters are irreducible.

Theorem (UA)

Normal ultrafilters and Dodd sound ultrafilters are wellordered by the Mitchell order.

Irreducible ultrafilters and UA

Theorem (UA)

Suppose *U* is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$.

Irreducible ultrafilters and UA

Theorem (UA)

Suppose *U* is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$.

▶ M_U is closed under λ -sequences unless λ is inaccessible.

Irreducible ultrafilters and UA

Theorem (UA)

Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$.

- M_U is closed under λ -sequences unless λ is inaccessible.
- ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \le \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \le \lambda$.

Irreducible ultrafilters and UA

Theorem (UA)

Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$.

- M_U is closed under λ -sequences unless λ is inaccessible.
- ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \le \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \le \lambda$.

Remark. The inaccessible case obviously raises some questions...

Irreducible ultrafilters and UA

Theorem (UA)

Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$.

- M_U is closed under λ -sequences unless λ is inaccessible.
- ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \le \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \le \lambda$.

Remark. The inaccessible case obviously raises some questions...

Corollary (UA)

A cardinal is strongly compact if and only if it is supercompact or a measurable limit of supercompacts.

Irreducible ultrafilters and UA

Theorem (UA)

Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$.

- M_U is closed under λ -sequences unless λ is inaccessible.
- ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \le \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \le \lambda$.

Remark. The inaccessible case obviously raises some questions...

Corollary (UA)

A cardinal is strongly compact if and only if it is supercompact or a measurable limit of supercompacts.

By a theorem of Menas, the least measurable limit of supercompact cardinals is strongly compact but not supercompact, so the corollary cannot be improved.

Suppose δ is an ordinal.

Suppose δ is an ordinal.

▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$.

Suppose δ is an ordinal.

- ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$.
- ► For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$.

Suppose δ is an ordinal.

- ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$.
- ▶ For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$.

Theorem

Suppose δ is an ordinal.

- ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$.
- ▶ For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$.

Theorem

The following hold in $L(\mathbb{R})$:

Suppose δ is an ordinal.

- ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$.
- ▶ For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$.

Theorem

The following hold in $L(\mathbb{R})$:

▶ (Wadge) The subsets of $P(\omega)$ — i.e., "sets of reals" — are semi-linearly ordered by Lipschitz reducibility: if $A, B \subseteq \mathbb{R}$, either A is reducible to B or B is reducible to $P(\omega) \setminus A$.

Suppose δ is an ordinal.

- ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$.
- ► For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$.

Theorem

The following hold in $L(\mathbb{R})$:

- ▶ (Wadge) The subsets of $P(\omega)$ i.e., "sets of reals" are semi-linearly ordered by Lipschitz reducibility: if $A, B \subseteq \mathbb{R}$, either A is reducible to B or B is reducible to $P(\omega) \setminus A$.
- ▶ (Martin-Monk) \leq_L is wellfounded on subsets of $P(\omega)$.

Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X.

Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X.

Theorem (UA)

For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder.

Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X.

Theorem (UA)

For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder.

▶ A Lipschitz $f: P(\delta) \to P(\delta)$ is *Ketonen* if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$.

Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X.

Theorem (UA)

For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder.

- ▶ A Lipschitz $f: P(\delta) \to P(\delta)$ is *Ketonen* if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$.
- ▶ *U* is *Ketonen reducible* to $W \in \beta_{\omega_1}(\delta)$, denoted $U \leq_{\mathbb{k}} W$, if there is a Ketonen $f : P(\delta) \to P(\delta)$ with $U = f^{-1}[W]$.

Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X.

Theorem (UA)

For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder.

- ▶ A Lipschitz $f: P(\delta) \to P(\delta)$ is *Ketonen* if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$.
- ▶ *U* is *Ketonen reducible* to $W \in \beta_{\omega_1}(\delta)$, denoted $U \leq_{\mathbb{k}} W$, if there is a Ketonen $f : P(\delta) \to P(\delta)$ with $U = f^{-1}[W]$.

Theorem

For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is wellfounded.

Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X.

Theorem (UA)

For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder.

- ▶ A Lipschitz $f: P(\delta) \to P(\delta)$ is Ketonen if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$.
- ▶ U is Ketonen reducible to $W \in \beta_{\omega_1}(\delta)$, denoted $U \leq_{\mathbb{k}} W$, if there is a Ketonen $f : P(\delta) \to P(\delta)$ with $U = f^{-1}[W]$.

Theorem

For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is wellfounded.

Theorem

UA holds if and only if for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder.

The linearity of Ketonen reducibility immediately yields:

The linearity of Ketonen reducibility immediately yields:

Theorem (UA)

Every ω_1 -complete ultrafilter on an ordinal is ordinal definable.

The linearity of Ketonen reducibility immediately yields:

Theorem (UA)

Every ω_1 -complete ultrafilter on an ordinal is ordinal definable.

By a strange coincidence, it is also possible to definably wellorder the ultrafilters of $L(\mathbb{R})$, although it is not clear whether Ketonen reducibility works:

The linearity of Ketonen reducibility immediately yields:

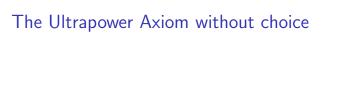
Theorem (UA)

Every ω_1 -complete ultrafilter on an ordinal is ordinal definable.

By a strange coincidence, it is also possible to definably wellorder the ultrafilters of $L(\mathbb{R})$, although it is not clear whether Ketonen reducibility works:

Theorem (Kunen)

In $L(\mathbb{R})$, every ultrafilter on an ordinal is ordinal definable.



Question

Question

Does the Ultrapower Axiom hold in $L(\mathbb{R})$?

► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.

Question

Does the Ultrapower Axiom hold in $L(\mathbb{R})$?

► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.

Question

Does the Ultrapower Axiom hold in $L(\mathbb{R})$?

➤ To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.

 UA_1 .

Question

Does the Ultrapower Axiom hold in $L(\mathbb{R})$?

► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.

UA₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder.

Question

- ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.
 - **UA**₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder.
- ▶ Set $U \leq_{\mathsf{RF}} W$ if for some ultrafilters $(W_x)_{x \in X}$ with pairwise disjoint underlying sets, $W = \{\bigcup_{x \in X} A_x : \forall^U x A_x \in W_x\}.$

Question

- ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.
 - **UA**₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder.
- ▶ Set $U \leq_{\mathsf{RF}} W$ if for some ultrafilters $(W_x)_{x \in X}$ with pairwise disjoint underlying sets, $W = \{\bigcup_{x \in X} A_x : \forall^U x \, A_x \in W_x\}$. **UA**₂.

Question

- ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.
 - **UA**₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder.
- ▶ Set $U \leq_{\mathsf{RF}} W$ if for some ultrafilters $(W_x)_{x \in X}$ with pairwise disjoint underlying sets, $W = \{\bigcup_{x \in X} A_x : \forall^U x A_x \in W_x\}.$
 - **UA**₂. The Rudin-Frolík order is directed on $\bigcup_{\delta \in \text{Ord}} \beta_{\omega_1}(\delta)$.

Question

Does the Ultrapower Axiom hold in $L(\mathbb{R})$?

► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.

 UA_1 . For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_{\Bbbk})$ is a wellorder.

▶ Set $U \leq_{\mathsf{RF}} W$ if for some ultrafilters $(W_x)_{x \in X}$ with pairwise disjoint underlying sets, $W = \{\bigcup_{x \in X} A_x : \forall^U x A_x \in W_x\}.$

UA₂. The Rudin-Frolík order is directed on $\bigcup_{\delta \in \text{Ord}} \beta_{\omega_1}(\delta)$.

Theorem (ZF + DC)

UA₁ and UA₂ are equivalent.

▶ The best evidence that $L(\mathbb{R})$ satisfies UA comes from one of the strongest theories known to man.

- ▶ The best evidence that $L(\mathbb{R})$ satisfies UA comes from one of the strongest theories known to man.
- Reinhardt proposed the principle: there is a nontrivial elementary embedding from the universe of sets to itself.

- ▶ The best evidence that $L(\mathbb{R})$ satisfies UA comes from one of the strongest theories known to man.
- Reinhardt proposed the principle: there is a nontrivial elementary embedding from the universe of sets to itself.

Theorem (Kunen)

There is no elementary embedding from V to V except the identity.

The Kunen inconsistency

- ▶ The best evidence that $L(\mathbb{R})$ satisfies UA comes from one of the strongest theories known to man.
- Reinhardt proposed the principle: there is a nontrivial elementary embedding from the universe of sets to itself.

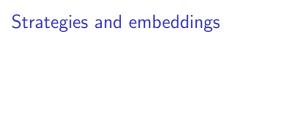
Theorem (Kunen)

There is no elementary embedding from V to V except the identity.

Kunen's proof shows that for any ordinal α , there is no elementary $j:V_{\alpha+2}\to V_{\alpha+2}$. So if $j:V_{\beta}\to V_{\beta}$ is elementary with critical point κ , $\beta<\lambda+2$ where

$$\lambda = \sup\{\kappa, j(\kappa), j^2(\kappa), j^3(\kappa), \dots\}$$

because
$$j(\lambda) = \sup\{j(\kappa), j^2(\kappa), j^3(\kappa), \dots\} = \lambda$$
.



The descriptive set theory of $V_{\lambda+1}$ assuming the existence of various embeddings $j:V_{\lambda+1}\to V_{\lambda+1}$ bears a striking and unexplained resemblance to classical descriptive set theory under determinacy axioms.

Determinacy Elementary embeddings

Determinacy	Elementary embeddings
$Det(\Delta^1_1)$	$j:V_{\lambda} o V_{\lambda}$

Determinacy	Elementary embeddings
$Det(\Delta^1_1)$	$j:V_{\lambda} o V_{\lambda}$
$Det(\Pi^1_1)$	Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$

Determinacy	Elementary embeddings
$Det(\Delta^1_1)$	$j:V_{\lambda} o V_{\lambda}$
$Det(\Pi^1_1)$	Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$
Det(Projective)	Σ_n -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ for all n

Determinacy	Elementary embeddings
$Det(\Delta^1_1)$	$j:V_{\lambda} o V_{\lambda}$
$Det(\Pi^1_1)$	Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$
Det(Projective)	Σ_n -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ for all n
$Det(\mathit{L}(\mathbb{R}))$	$j: \mathit{L}(V_{\lambda+1}) ightarrow \mathit{L}(V_{\lambda+1})$ with $crit(j) < \lambda$

The descriptive set theory of $V_{\lambda+1}$ assuming the existence of various embeddings $j:V_{\lambda+1}\to V_{\lambda+1}$ bears a striking and unexplained resemblance to classical descriptive set theory under determinacy axioms.

Determinacy	Elementary embeddings
$Det(\Delta^1_1)$	$j:V_{\lambda} o V_{\lambda}$
$Det(\Pi^1_1)$	Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$
Det(Projective)	Σ_n -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ for all n
$Det(\mathit{L}(\mathbb{R}))$	$j: \mathit{L}(V_{\lambda+1}) ightarrow \mathit{L}(V_{\lambda+1})$ with $crit(j) < \lambda$

The final embedding principle above is Woodin's axiom I_0 .

The descriptive set theory of $V_{\lambda+1}$ assuming the existence of various embeddings $j:V_{\lambda+1}\to V_{\lambda+1}$ bears a striking and unexplained resemblance to classical descriptive set theory under determinacy axioms.

Determinacy	Elementary embeddings
$Det(\Delta^1_1)$	$j:V_{\lambda} o V_{\lambda}$
$Det(\Pi^1_1)$	Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$
Det(Projective)	Σ_n -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ for all n
$Det(\mathit{L}(\mathbb{R}))$	$j: \mathit{L}(V_{\lambda+1}) ightarrow \mathit{L}(V_{\lambda+1})$ with $crit(j) < \lambda$

The final embedding principle above is Woodin's axiom l_0 .

Going forward: λ denotes an I_0 -cardinal, meaning there is an elementary $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ with $\mathrm{crit}(j) < \lambda$.

Theorem

Theorem

In $L(V_{\lambda+1})$, the following hold:

 \blacktriangleright (Woodin) λ^+ is measurable.

Theorem

- ▶ (Woodin) λ^+ is measurable.
 - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality.

Theorem

- ▶ (Woodin) λ^+ is measurable.
 - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality.
- (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property.

Theorem

In $L(V_{\lambda+1})$, the following hold:

- (Woodin) λ^+ is measurable.
 - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality.
- (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property.

 $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x): x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$.

Theorem

In $L(V_{\lambda+1})$, the following hold:

- (Woodin) λ^+ is measurable.
 - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality.
- (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property.

 $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x): x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$. To get $\Theta^{L(V_{\lambda+1})}$, replace \mathbb{R} s with $V_{\lambda+1}$ s.

Theorem

In $L(V_{\lambda+1})$, the following hold:

- (Woodin) λ^+ is measurable.
 - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality.
- ▶ (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property.

 $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x): x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$. To get $\Theta^{L(V_{\lambda+1})}$, replace \mathbb{R} s with $V_{\lambda+1}$ s.

Theorem

▶ (Moschovakis) $\Theta^{L(\mathbb{R})}$ is weakly inaccessible in $L(\mathbb{R})$.

Theorem

In $L(V_{\lambda+1})$, the following hold:

- (Woodin) λ^+ is measurable.
 - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality.
- ▶ (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property.

 $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x): x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$. To get $\Theta^{L(V_{\lambda+1})}$, replace \mathbb{R} s with $V_{\lambda+1}$ s.

Theorem

- ▶ (Moschovakis) $\Theta^{L(\mathbb{R})}$ is weakly inaccessible in $L(\mathbb{R})$.
- ▶ (Woodin) $\Theta^{L(V_{\lambda+1})}$ is weakly inaccessible in $L(V_{\lambda+1})$.

The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach.

The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach.

Question

The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach.

Question

In $L(V_{\lambda+1})$, do the following hold?

 $\triangleright \lambda^{++}$ is measurable.

The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach.

Question

- $\triangleright \lambda^{++}$ is measurable.
- $\triangleright \lambda^{+++}$ is singular.

The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach.

Question

- $\triangleright \lambda^{++}$ is measurable.
- λ^{+++} is singular.

The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach.

Question

- $\triangleright \lambda^{++}$ is measurable.
- $\triangleright \lambda^{+++}$ is singular.
- $\lambda^+ \to (\lambda^+)^\omega$.
- ▶ Any definable binary relation on $V_{\lambda+1}$ is uniformizable.

The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach.

Question

- $\triangleright \lambda^{++}$ is measurable.
- $\triangleright \lambda^{+++}$ is singular.
- $\lambda^+ \to (\lambda^+)^\omega.$
- ▶ Any definable binary relation on $V_{\lambda+1}$ is uniformizable.
- Every subset of λ^+ is definable over $H(\lambda^+)$ from parameters.

Theorem (Kunen)

In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter.

Theorem $\overline{(Kunen)}$

In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter.

The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees.

Theorem (Kunen)

In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter.

The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees. Although no analog of this is known for $L(V_{\lambda+1})$, one can prove:

Theorem (Kunen)

In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter.

The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees. Although no analog of this is known for $L(V_{\lambda+1})$, one can prove:

Theorem

In $L(V_{\lambda+1})$, every λ^+ -complete filter on an ordinal below $\Theta^{L(V_{\lambda+1})}$ extends to a λ^+ -complete ultrafilter.

Theorem (Kunen)

In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter.

The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees. Although no analog of this is known for $L(V_{\lambda+1})$, one can prove:

$\mathsf{Theorem}$

In $L(V_{\lambda+1})$, every λ^+ -complete filter on an ordinal below $\Theta^{L(V_{\lambda+1})}$ extends to a λ^+ -complete ultrafilter.

The proof is by induction on λ^+ -complete filters ordered by Ketonen reducibility.

The global theory of $L(V_{\lambda+1})$, continued

The global theory of $L(V_{\lambda+1})$, continued

An atom of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is atomic if every F-positive set contains an atom.

The global theory of $L(V_{\lambda+1})$, continued

An atom of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is atomic if every F-positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

The global theory of $L(V_{\lambda+1})$, continued

An atom of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is atomic if every F-positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

Extending this to arbitrary regular cardinals in $L(\mathbb{R})$ is open, arguably a reasonable test question for Jackson's analysis.

The global theory of $L(V_{\lambda+1})$, continued

An atom of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is atomic if every F-positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

Extending this to arbitrary regular cardinals in $L(\mathbb{R})$ is open, arguably a reasonable test question for Jackson's analysis.

Theorem

In $L(V_{\lambda+1})$, the club filter on any regular cardinal below $\Theta^{L(V_{\lambda+1})}$ is atomic.

▶ The α -th level of a wellfounded partial order \mathbb{P} is the set of all $x \in \mathbb{P}$ such that rank_{\mathbb{P}} $(x) = \alpha$.

- The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$.
- $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1.

- The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$.
- $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1.

Theorem

In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_{\mathbb{k}})$ is almost linear: each of its levels has cardinality less than λ .

- The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$.
- $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1.

Theorem

In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is almost linear: each of its levels has cardinality less than λ .

As a corollary, in $L(V_{\lambda+1})$, every ω_1 -complete ultrafilter on an ordinal is *almost* ordinal definable in that it belongs to an ordinal definable set of cardinality less than λ .

- The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$.
- $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1.

Theorem

In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_{\mathbb{k}})$ is almost linear: each of its levels has cardinality less than λ .

- As a corollary, in $L(V_{\lambda+1})$, every ω_1 -complete ultrafilter on an ordinal is *almost* ordinal definable in that it belongs to an ordinal definable set of cardinality less than λ .
- Netonen reducibility is *not* linear in $L(V_{\lambda+1})$: e.g., the normal ultrafilter extending the ω -club filter is incomparable with any normal ultrafilter extending the ω_1 -club filter.

- The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$.
- $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1.

Theorem

In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is almost linear: each of its levels has cardinality less than λ .

- As a corollary, in $L(V_{\lambda+1})$, every ω_1 -complete ultrafilter on an ordinal is *almost* ordinal definable in that it belongs to an ordinal definable set of cardinality less than λ .
- Netonen reducibility is *not* linear in $L(V_{\lambda+1})$: e.g., the normal ultrafilter extending the ω -club filter is incomparable with any normal ultrafilter extending the ω_1 -club filter.

Conjecture

In L(\mathbb{R}), for all ordinals δ , every level of $(\beta_{\omega_1}(\delta), \leq_{\mathbb{k}})$ is finite.

The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$.

The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$.

Theorem

In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors.

The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$.

Theorem.

In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors.

► The Rudin-Keisler order extends the Rudin-Frolík order.

The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$.

Theorem

In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors.

- ► The Rudin-Keisler order extends the Rudin-Frolík order.
- Recall: under UA, no ω_1 -complete ultrafilter has infinitely many Rudin-Frolík predecessors.

The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$.

Theorem

In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors.

- The Rudin-Keisler order extends the Rudin-Frolik order.
- ▶ Recall: under UA, no ω_1 -complete ultrafilter has infinitely many Rudin-Frolík predecessors.

Conjecture

In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Keisler predecessors.

Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way.

Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way.

Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way.

Theorem

In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors.

An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter.

Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way.

Theorem

In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors.

- ► An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter.
- The structure of seminormal ultrafilters is a central question in extending the Jackson analysis.

Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way.

Theorem

In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors.

- An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter.
- The structure of seminormal ultrafilters is a central question in extending the Jackson analysis.

Theorem

In $L(\mathbb{R})$, no ultrafilter on an ordinal has has infinitely many seminormal Rudin-Keisler predecessors.

Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way.

Theorem

In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors.

- ► An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter.
- The structure of seminormal ultrafilters is a central question in extending the Jackson analysis.

Theorem

In $L(\mathbb{R})$, no ultrafilter on an ordinal has has infinitely many seminormal Rudin-Keisler predecessors.

Proofs use Steel's fine-structural analysis of $HOD^{L(\mathbb{R})}$ below $\Theta^{L(\mathbb{R})}$.

If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product:

If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product:

Cartesian product: $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$.

If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product:

Cartesian product: $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$.

Tensor product: for $C \subseteq X \times Y$,

If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product:

Cartesian product: $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$.

Tensor product: for $C \subseteq X \times Y$,

$$C \in U \ltimes W \iff \forall^U x \forall^W y (x, y) \in C.$$

$$C \in U \rtimes W \iff \forall^W y \forall^U x (x, y) \in C.$$

If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product:

Cartesian product: $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$.

Tensor product: for $C \subseteq X \times Y$,

$$C \in U \ltimes W \iff \forall^{U} x \forall^{W} y (x, y) \in C.$$

$$C \in U \rtimes W \iff \forall^W y \forall^U x (x, y) \in C.$$

Note: $U \times W$ is contained in both $U \ltimes W$ and $U \rtimes W$.

If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product:

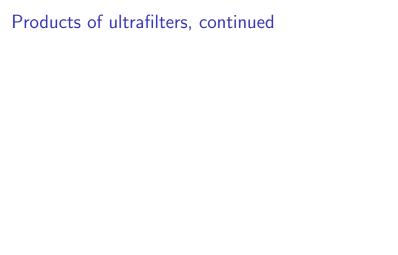
Cartesian product: $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$.

Tensor product: for $C \subseteq X \times Y$,

$$C \in U \ltimes W \iff \forall^{U} x \forall^{W} y (x, y) \in C.$$

$$C \in U \rtimes W \iff \forall^{W} y \forall^{U} x (x, y) \in C.$$

- Note: $U \times W$ is contained in both $U \ltimes W$ and $U \rtimes W$.
- ▶ Usually, $U \times W$ is not an ultrafilter and $U \ltimes W \neq U \rtimes W$, so all three products are distinct.



In certain very special cases, however, $U \times W$ is an ultrafilter.

In certain very special cases, however, $U \times W$ is an ultrafilter.

Theorem (Blass)

If W is |U|-complete, $U \times W$ is an ultrafilter

In certain very special cases, however, $U \times W$ is an ultrafilter.

Theorem (Blass)

If W is |U|-complete, $U \times W$ is an ultrafilter

Since $U \times W$ is contained in $U \ltimes W$ and $U \rtimes W$, if $U \times W$ is an ultrafilter (i.e., is maximal), then $U \ltimes W = U \times W = U \rtimes W$.

In certain very special cases, however, $U \times W$ is an ultrafilter.

Theorem (Blass)

If W is |U|-complete, $U \times W$ is an ultrafilter

Since $U \times W$ is contained in $U \ltimes W$ and $U \rtimes W$, if $U \times W$ is an ultrafilter (i.e., is maximal), then $U \ltimes W = U \times W = U \rtimes W$.

Question

Suppose $U \ltimes W = U \rtimes W$. Must $U \times W$ be an ultrafilter?

In certain very special cases, however, $U \times W$ is an ultrafilter.

Theorem (Blass)

If W is |U|-complete, $U \times W$ is an ultrafilter

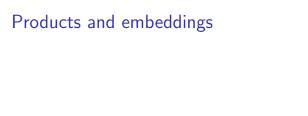
Since $U \times W$ is contained in $U \ltimes W$ and $U \rtimes W$, if $U \times W$ is an ultrafilter (i.e., is maximal), then $U \ltimes W = U \times W = U \rtimes W$.

Question

Suppose $U \ltimes W = U \rtimes W$. Must $U \times W$ be an ultrafilter?

 $V \ltimes W = U \rtimes W$ iff the ultrafilter quantifiers commute:

$$\forall^{U} x \forall^{W} y R(x, y) \iff \forall^{W} y \forall^{U} x R(x, y)$$



From an elementary embeddings perspective:

From an elementary embeddings perspective:

▶ The ultrafilters Z extending $U \times W$ represent amalgamations

$$M_U \xrightarrow{k_U} M_Z \xleftarrow{k_W} M_W$$

such that $k_U \circ j_U = k_W \circ j_W$.

From an elementary embeddings perspective:

▶ The ultrafilters Z extending $U \times W$ represent amalgamations

$$M_U \xrightarrow{k_U} M_Z \xleftarrow{k_W} M_W$$

such that $k_U \circ j_U = k_W \circ j_W$.

▶ The tensor products correspond to the amalgamations

$$M_U \xrightarrow{j_U(j_W)} M_{U \ltimes W} \xleftarrow{j_U \restriction M_W} M_W$$

$$M_U \xrightarrow{j_W \restriction M_U} M_{U \rtimes W} \xleftarrow{j_W(j_U)} M_W$$

From an elementary embeddings perspective:

▶ The ultrafilters Z extending $U \times W$ represent amalgamations

$$M_U \xrightarrow{k_U} M_Z \xleftarrow{k_W} M_W$$

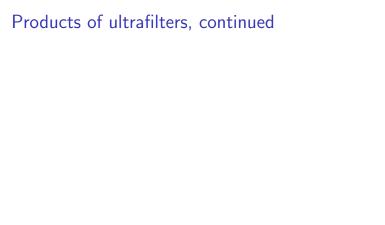
such that $k_U \circ j_U = k_W \circ j_W$.

▶ The tensor products correspond to the amalgamations

$$M_U \xrightarrow{j_U(j_W)} M_{U \ltimes W} \xleftarrow{j_U \upharpoonright M_W} M_W$$
$$M_U \xrightarrow{j_W \upharpoonright M_U} M_{U \rtimes W} \xleftarrow{j_W(j_U)} M_W$$

Quantifiers commute iff the associated ultrapowers do:

$$U \ltimes W = U \rtimes W \iff j_U(j_W) = j_W \upharpoonright M_U$$
$$\iff j_W(j_U) = j_U \upharpoonright M_W$$



Theorem (UA)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Theorem (UA)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC.

Theorem (UA)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC.

Theorem (GCH)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Theorem (UA)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC.

Theorem (GCH)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

In ZF, one can prove $U \times U$ is never an ultrafilter, whereas Elliot Glazer pointed out that in $L(\mathbb{R})$, there is an ultrafilter U such that $U \ltimes U = U \rtimes U$. So the equivalence fails in $L(\mathbb{R})$.

Theorem (UA)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC.

Theorem (GCH)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

In ZF, one can prove $U \times U$ is never an ultrafilter, whereas Elliot Glazer pointed out that in $L(\mathbb{R})$, there is an ultrafilter U such that $U \ltimes U = U \rtimes U$. So the equivalence fails in $L(\mathbb{R})$. Still...

Theorem (UA)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC.

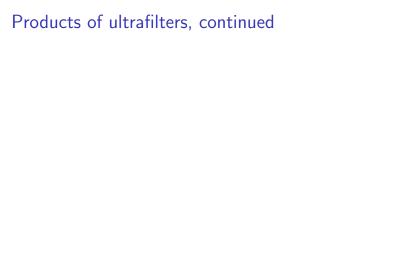
Theorem (GCH)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

In ZF, one can prove $U \times U$ is never an ultrafilter, whereas Elliot Glazer pointed out that in $L(\mathbb{R})$, there is an ultrafilter U such that $U \ltimes U = U \rtimes U$. So the equivalence fails in $L(\mathbb{R})$. Still...

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters **on ordinals**, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.



Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Proof.

▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in \mathsf{HOD}_x$.

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in HOD_x$.
 - $\bar{U} = U \cap \mathsf{HOD}_x$ and $\bar{W} = W \cap \mathsf{HOD}_x$ are in HOD_x .

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in \mathsf{HOD}_x$.
 - $lackbox{} ar{U} = U \cap \mathsf{HOD}_x$ and $ar{W} = W \cap \mathsf{HOD}_x$ are in HOD_x .
- ightharpoonup In HOD_x :

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in HOD_x$.
 - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x .
- ightharpoonup In HOD_x :
 - $\qquad \qquad \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in HOD_x$.
 - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x .
- ► In HOD_x:
 - $\qquad \qquad \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$
 - (Steel) GCH holds! UA holds!

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in HOD_x$.
 - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x .
- ► In HOD_x:
 - $\qquad \qquad \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$
 - (Steel) GCH holds! UA holds!
 - **>** By either of the previous theorems, $ar{U} imes ar{W}$ is an ultrafilter.

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in HOD_x$.
 - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x .
- ► In HOD_x:

 - (Steel) GCH holds! UA holds!
 - **>** By either of the previous theorems, $\bar{U} \times \bar{W}$ is an ultrafilter.
 - ▶ So $\bar{U} \times \bar{W}$ measures A.

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

- ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in \mathsf{HOD}_x$.
 - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x .
- ► In HOD_x:
 - $\qquad \qquad \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$
 - ► (Steel) GCH holds! UA holds!
 - **\rightarrow** By either of the previous theorems, $ar{U} imes ar{W}$ is an ultrafilter.
 - ► So $\bar{U} \times \bar{W}$ measures A.
- ▶ This implies $U \times W$ measures A.

▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways.

- ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways.
- ▶ There is evidence that UA holds in $L(\mathbb{R})$.

- ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways.
- ▶ There is evidence that UA holds in $L(\mathbb{R})$.

Conjecture

The following hold in $L(\mathbb{R})$:

- ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways.
- ▶ There is evidence that UA holds in $L(\mathbb{R})$.

Conjecture

The following hold in $L(\mathbb{R})$:

► The club filter on any regular cardinal $\delta < \Theta^{L(\mathbb{R})}$ is atomic.

- ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways.
- ▶ There is evidence that UA holds in $L(\mathbb{R})$.

Conjecture

The following hold in $L(\mathbb{R})$:

- ► The club filter on any regular cardinal $\delta < \Theta^{L(\mathbb{R})}$ is atomic.
- Every level of the Ketonen order is finite.

- ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways.
- ▶ There is evidence that UA holds in $L(\mathbb{R})$.

Conjecture

The following hold in $L(\mathbb{R})$:

- ► The club filter on any regular cardinal $\delta < \Theta^{L(\mathbb{R})}$ is atomic.
- Every level of the Ketonen order is finite.
- No ultrafilter on an ordinal has infinitely many Rudin-Keisler predecessors.

Thanks

Thanks!