The Jackson analysis and the strongest hypotheses Gabriel Goldberg UC Berkeley 2021 ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ The Ultrapower Axiom serves this purpose in the inner models. - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - Analogy between determinacy and strongest large cardinals: - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - Analogy between determinacy and strongest large cardinals: - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 . - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - Analogy between determinacy and strongest large cardinals: - ▶ Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 . - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$. - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - Analogy between determinacy and strongest large cardinals: - **Example:** $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 . - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$. - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs. - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - Analogy between determinacy and strongest large cardinals: - **Example:** $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 . - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$. - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs. - ▶ What's new: the analogy also makes predictions about $L(\mathbb{R})$. - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - ▶ The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - Analogy between determinacy and strongest large cardinals: - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 . - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$. - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs. - ▶ What's new: the analogy also makes predictions about $L(\mathbb{R})$. - Some of these predictions can be verified. - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - Analogy between determinacy and strongest large cardinals: - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 . - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$. - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs. - ▶ What's new: the analogy also makes predictions about $L(\mathbb{R})$. - Some of these predictions can be verified. - ▶ One prediction is: $L(\mathbb{R})$ satisfies the Ultrapower Axiom. - ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$. - Missing a "global" theory of ultrafilters on ordinals. - The Ultrapower Axiom serves this purpose in the inner models. - **Question:** Does $L(\mathbb{R})$ satisfy the Ultrapower Axiom? - Analogy between determinacy and strongest large cardinals: - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 . - ▶ Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$. - Many properties of $L(\mathbb{R})$ (e.g., the perfect set property) generalize to $L(V_{\lambda+1})$ with completely different proofs. - ▶ What's new: the analogy also makes predictions about $L(\mathbb{R})$. - Some of these predictions can be verified. - ▶ One prediction is: $L(\mathbb{R})$ satisfies the Ultrapower Axiom. - ▶ Some consequences of UA can be shown to hold in $L(\mathbb{R})$. A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} . - A structure N is interpretable in a structure M if there is a surjection f : M^k → N such that the f-preimage of a definable subset of N is definable over M. - δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R}, \mathbb{N}, +, \times)$; i.e., the sup of the definable prewellorders. - A structure N is interpretable in a structure M if there is a surjection f : M^k → N such that the f-preimage of a definable subset of N is definable over M. - δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$. - ▶ A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} . - δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$. **Blanket assumption:** The Axiom of Determinacy holds in $L(\mathbb{R})$. - ▶ A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} . - δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$. **Blanket assumption:** The Axiom of Determinacy holds in $L(\mathbb{R})$. # Theorem (Jackson) In $$L(\mathbb{R})$$, $\delta^1_\omega = \aleph_{\epsilon_0}$. - ▶ A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} . - δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$. **Blanket assumption:** The Axiom of Determinacy holds in $L(\mathbb{R})$. # Theorem (Jackson) In $$L(\mathbb{R})$$, $\delta^1_\omega = \aleph_{\epsilon_0}$. Here ϵ_0 is the least ordinal α such that $\omega^{\alpha} = \alpha$. - ▶ A structure \mathcal{N} is *interpretable* in a structure \mathcal{M} if there is a surjection $f: \mathcal{M}^k \to \mathcal{N}$ such that the f-preimage of a definable subset of \mathcal{N} is definable over \mathcal{M} . - δ^1_ω denotes the minimum ordinal that is not interpretable in $(\mathbb{R},\mathbb{N},+, imes)$; i.e., the sup of the definable prewellorders. Note that $\omega_1\leq |\delta^1_\omega|\leq \mathfrak{c}$. **Blanket assumption:** The Axiom of Determinacy holds in $L(\mathbb{R})$. # Theorem (Jackson) In $$L(\mathbb{R})$$, $\delta^1_\omega = \aleph_{\epsilon_0}$. Here ϵ_0 is the least ordinal α such that $\omega^{\alpha} = \alpha$. Therefore in actuality, $\delta^1_\omega = (\aleph_{\epsilon_0})^{L(\mathbb{R})}$. The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω
. ### Theorem The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### Theorem The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### Theorem In $L(\mathbb{R})$, the following hold: Every ultrafilter is countably complete. The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### Theorem - Every ultrafilter is countably complete. - ▶ (Solovay) \aleph_1 is measurable. The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### Theorem - Every ultrafilter is countably complete. - ▶ (Solovay) \aleph_1 is measurable. - ▶ The club filter is the unique normal ultrafilter on \aleph_1 . The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### Theorem - Every ultrafilter is countably complete. - ▶ (Solovay) \aleph_1 is measurable. - ▶ The club filter is the unique normal ultrafilter on \aleph_1 . - ▶ (Solovay) \aleph_2 is measurable. The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### Theorem - Every ultrafilter is countably complete. - ▶ (Solovay) \aleph_1 is measurable. - ▶ The club filter is the unique normal ultrafilter on \aleph_1 . - ▶ (Solovay) \aleph_2 is measurable. - The ω -club filter and the ω_1 -club filter are the only normal ultrafilters on \aleph_2 . The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### Theorem - Every ultrafilter is countably complete. - ▶ (Solovay) \aleph_1 is measurable. - ▶ The club filter is the unique normal ultrafilter on \aleph_1 . - ▶ (Solovay) \aleph_2 is measurable. - The ω -club filter and the ω_1 -club filter are the only normal ultrafilters on \aleph_2 . - ▶ (Martin) \aleph_n is singular for $3 \le n \le \omega$. The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### Theorem - Every ultrafilter is countably complete. - ▶ (Solovay) \aleph_1 is measurable. - ▶ The club filter is the unique normal ultrafilter on \aleph_1 . - ▶ (Solovay) \aleph_2 is measurable. - ► The ω-club filter and the $ω_1$ -club filter are the only normal ultrafilters on \aleph_2 . - ▶ (Martin) \aleph_n is singular for $3 \le n \le \omega$. - ▶ (Kunen, Martin) $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$ are measurable. The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_ω . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_ω . ### **Theorem** - Every ultrafilter is countably complete. - ▶ (Solovay) \aleph_1 is measurable. - ▶ The club filter is the unique normal ultrafilter on \aleph_1 . - ▶ (Solovay) \aleph_2 is measurable. - ► The ω-club filter and the $ω_1$ -club filter are the only normal ultrafilters on \aleph_2 . - ▶ (Martin) \aleph_n is singular for $3 \le n \le \omega$. - ▶ (Kunen, Martin) $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$ are measurable. - ▶ (Jackson) $\aleph_{\omega \cdot 2+1}$ is measurable, but $\aleph_{\omega \cdot 3+1}$ is singular. ### Ultrafilters in inner models Two ultrafilters U and W are equivalent if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$. #### Ultrafilters in inner models Two ultrafilters U and W are equivalent if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$. ### Theorem (??) In $L(\mathbb{R})$, every ultrafilter on \aleph_1 is equivalent to an iterated product of the closed unbounded filter. #### Ultrafilters in inner models Two ultrafilters U and W are equivalent if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$. ### Theorem (??) In $L(\mathbb{R})$, every ultrafilter on \aleph_1 is equivalent to an iterated product of the closed unbounded filter. This calls to mind: ### Theorem (Kunen) If U is a normal ultrafilter, then in the inner model L[U], every countably complete ultrafilter is isomorphic to an iterated product of $U \cap L[U]$. #### Ultrafilters in inner models Two ultrafilters U and W are equivalent if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$. #### Theorem (??) In $L(\mathbb{R})$, every ultrafilter on \aleph_1 is equivalent to an iterated product of the closed unbounded filter. This calls to mind: ### Theorem (Kunen) If U is a normal ultrafilter, then in the inner model L[U], every countably complete ultrafilter is isomorphic to an iterated product of $U \cap L[U]$. Actually the first theorem can be proved using the second. Suppose U is an ω_1 -complete ultrafilter Suppose U is an ω_1 -complete ultrafilter - $ightharpoonup M_U$ denotes the ultrapower of the universe by U - $ightharpoonup j_U:V o M_U$ denotes the associated elementary embedding Suppose U is an ω_1 -complete ultrafilter - $ightharpoonup M_U$ denotes the ultrapower of the universe by U - $ightharpoonup j_U:V o M_U$ denotes the associated elementary embedding Since U is ω_1 -complete, M_U is wellfounded. So without loss of generality, M_U is transitive. Suppose U is an ω_1 -complete ultrafilter - $ightharpoonup M_U$ denotes the ultrapower of the universe by U - $ightharpoonup j_U:V o M_U$ denotes the associated elementary embedding Since U is ω_1 -complete, M_U is wellfounded. So without loss of generality, M_U is transitive. If P and Q are transitive models of ZFC, $j: P \to Q$ is an *ultrapower embedding* if there is some $U \in P$ such that $Q = (M_U)^P$ and $j = (j_U)^P$. # Ultrapower Axiom (UA) For any ultrapower embeddings $j_0: V \to M_0$ and $j_1: V \to M_1$, there are ultrapower embeddings $i_0: M_0 \to N$ and $i_1: M_1 \to N$ such that $i_0 \circ j_0 = i_1 \circ j_1$. # Ultrapower Axiom (UA) For any ultrapower embeddings $j_0: V \to M_0$ and $j_1: V \to M_1$, there are ultrapower embeddings $i_0: M_0 \to N$ and $i_1: M_1 \to N$ such that $i_0 \circ j_0 = i_1 \circ j_1$. # Ultrapower Axiom (UA) For any ultrapower embeddings $j_0: V \to M_0$ and $j_1: V \to M_1$, there are ultrapower embeddings $i_0: M_0 \to N$ and $i_1: M_1 \to N$ such that $i_0 \circ j_0 = i_1 \circ j_1$. ► The Ultrapower Axiom is an instance of the central *Comparison Lemma* of inner model theory, yet it can be stated without reference to fine structure. - ► The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure. - As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology. - ► The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure. - As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology. - ▶ If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal. - ► The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure. - As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology. - ▶ If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal. - The existence of a supercompact cardinal implies the existence of a vast array of ultrapowers, and combined with UA, provides a rich structure theory for the upper reaches of the universe of sets. - ► The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure. - As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology. - ▶ If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal. - ► The existence of a supercompact cardinal implies the existence of a vast array of ultrapowers, and combined with UA, provides a rich structure theory for the upper reaches of the universe of sets. - UA is equivalent to several natural combinatorial principles. - ➤ The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure. - As a consequence, UA
holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology. - ▶ If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal. - ► The existence of a supercompact cardinal implies the existence of a vast array of ultrapowers, and combined with UA, provides a rich structure theory for the upper reaches of the universe of sets. - UA is equivalent to several natural combinatorial principles. - Seems to yield an "optimal" theory of ω_1 -complete ultrafilters (in the context of the Axiom of Choice). ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{RF} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$. - ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{\mathsf{RF}} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$. - ▶ By definition, UA holds iff the restriction of the Rudin-Frolík order to ω_1 -complete ultrafilters is directed. - ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{\mathsf{RF}} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$. - By definition, UA holds iff the restriction of the Rudin-Frolík order to ω₁-complete ultrafilters is directed. - A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$). - ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{\mathsf{RF}} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$. - ▶ By definition, UA holds iff the restriction of the Rudin-Frolík order to ω_1 -complete ultrafilters is directed. - A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$). # Theorem (UA) - ▶ *U* lies below *W* in the *Rudin-Frolik* order, denoted $U \leq_{\mathsf{RF}} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$. - ▶ By definition, UA holds iff the restriction of the Rudin-Frolík order to ω_1 -complete ultrafilters is directed. - A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$). # Theorem (UA) • Every ω_1 -complete ultrafilter W factors as an iteration: $$V = M_0 \xrightarrow{j_{U_0}} M_1 \xrightarrow{j_{U_1}} \cdots \xrightarrow{j_{U_n}} M_{n+1} = M_W$$ where for all $k \leq n$, U_k is an irreducible ultrafilter of M_k . - ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{RF} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$. - ▶ By definition, UA holds iff the restriction of the Rudin-Frolík order to ω_1 -complete ultrafilters is directed. - A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$). # Theorem (UA) • Every ω_1 -complete ultrafilter W factors as an iteration: $$V = M_0 \xrightarrow{j_{U_0}} M_1 \xrightarrow{j_{U_1}} \cdots \xrightarrow{j_{U_n}} M_{n+1} = M_W$$ where for all $k \leq n$, U_k is an irreducible ultrafilter of M_k . In fact, an ω_1 -complete ultrafilter can have only finitely many Rudin-Frolík predecessors up to equivalence. An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in U} |A|$, then M_U is closed under λ -sequences. An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences. #### Proposition Normal ultrafilters are irreducible. An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences. #### Proposition Normal ultrafilters are irreducible. A uniform ultrafilter U on a cardinal κ is Dodd sound if the map $i: P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [\mathrm{id}]_U$ belongs to M_U . An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences. #### Proposition Normal ultrafilters are irreducible. A uniform ultrafilter U on a cardinal κ is Dodd sound if the map $i: P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [\mathrm{id}]_U$ belongs to M_U . #### **Proposition** Dodd sound ultrafilters are irreducible. An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences. #### Proposition Normal ultrafilters are irreducible. A uniform ultrafilter U on a cardinal κ is Dodd sound if the map $i: P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [\mathrm{id}]_U$ belongs to M_U . #### Proposition Dodd sound ultrafilters are irreducible. ### Theorem (UA) Normal ultrafilters and Dodd sound ultrafilters are wellordered by the Mitchell order. An ultrafilter U on a family of nonempty sets $\mathcal F$ is *normal* if every choice function on $\mathcal F$ is constant on a set in U. If U is normal and $\lambda = \min_{A \in \mathcal U} |A|$, then $M_{\mathcal U}$ is closed under λ -sequences. #### Proposition Normal ultrafilters are irreducible. A uniform ultrafilter U on a cardinal κ is Dodd sound if the map $i: P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [\mathrm{id}]_U$ belongs to M_U . #### Proposition Dodd sound ultrafilters are irreducible. ### Theorem (UA) Normal ultrafilters and Dodd sound ultrafilters are wellordered by the Mitchell order. #### Irreducible ultrafilters and UA # Theorem (UA) Suppose *U* is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$. #### Irreducible ultrafilters and UA # Theorem (UA) Suppose *U* is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$. ▶ M_U is closed under λ -sequences unless λ is inaccessible. #### Irreducible ultrafilters and UA # Theorem (UA) Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$. - M_U is closed under λ -sequences unless λ is inaccessible. - ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \le \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \le \lambda$. #### Irreducible ultrafilters and UA ## Theorem (UA) Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$. - M_U is closed under λ -sequences unless λ is inaccessible. - ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \le \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \le \lambda$. Remark. The inaccessible case obviously raises some questions... #### Irreducible ultrafilters and UA ## Theorem (UA) Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$. - M_U is closed under λ -sequences unless λ is inaccessible. - ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \le \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \le \lambda$. Remark. The inaccessible case obviously raises some questions... ## Corollary (UA) A cardinal is strongly compact if and only if it is supercompact or a measurable limit of supercompacts. #### Irreducible ultrafilters and UA ## Theorem (UA) Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$. - M_U is closed under λ -sequences unless λ is inaccessible. - ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \le \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \le \lambda$. Remark. The inaccessible case obviously raises some questions... ## Corollary (UA) A cardinal is strongly compact if and only if it is supercompact or a measurable limit of supercompacts. By a theorem of Menas, the least measurable limit of supercompact cardinals is strongly compact but not supercompact, so the corollary cannot be improved. Suppose δ is an ordinal. Suppose δ is an ordinal. ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$. #### Suppose δ is an ordinal. - ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$. - ► For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$. #### Suppose δ is an ordinal. - ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$. - ▶ For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$. #### Theorem Suppose δ is an ordinal. - ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha =
y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$. - ▶ For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$. #### Theorem The following hold in $L(\mathbb{R})$: Suppose δ is an ordinal. - ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$. - ▶ For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$. #### Theorem The following hold in $L(\mathbb{R})$: ▶ (Wadge) The subsets of $P(\omega)$ — i.e., "sets of reals" — are semi-linearly ordered by Lipschitz reducibility: if $A, B \subseteq \mathbb{R}$, either A is reducible to B or B is reducible to $P(\omega) \setminus A$. #### Suppose δ is an ordinal. - ▶ A function $f: P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \le \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$. - ► For $A, B \subseteq P(\delta)$, set $A \leq_L B$ if A is Lipschitz reducible to B; i.e., there is a Lipschitz $f : P(\delta) \to P(\delta)$ with $f^{-1}[B] = A$. #### Theorem ### The following hold in $L(\mathbb{R})$: - ▶ (Wadge) The subsets of $P(\omega)$ i.e., "sets of reals" are semi-linearly ordered by Lipschitz reducibility: if $A, B \subseteq \mathbb{R}$, either A is reducible to B or B is reducible to $P(\omega) \setminus A$. - ▶ (Martin-Monk) \leq_L is wellfounded on subsets of $P(\omega)$. Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X. Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X. ## Theorem (UA) For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder. Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X. ## Theorem (UA) For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder. ▶ A Lipschitz $f: P(\delta) \to P(\delta)$ is *Ketonen* if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$. Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X. ## Theorem (UA) For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder. - ▶ A Lipschitz $f: P(\delta) \to P(\delta)$ is *Ketonen* if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$. - ▶ *U* is *Ketonen reducible* to $W \in \beta_{\omega_1}(\delta)$, denoted $U \leq_{\mathbb{k}} W$, if there is a Ketonen $f : P(\delta) \to P(\delta)$ with $U = f^{-1}[W]$. Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X. ## Theorem (UA) For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder. - ▶ A Lipschitz $f: P(\delta) \to P(\delta)$ is *Ketonen* if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$. - ▶ *U* is *Ketonen reducible* to $W \in \beta_{\omega_1}(\delta)$, denoted $U \leq_{\mathbb{k}} W$, if there is a Ketonen $f : P(\delta) \to P(\delta)$ with $U = f^{-1}[W]$. #### Theorem For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is wellfounded. Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X. ## Theorem (UA) For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder. - ▶ A Lipschitz $f: P(\delta) \to P(\delta)$ is Ketonen if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$. - ▶ U is Ketonen reducible to $W \in \beta_{\omega_1}(\delta)$, denoted $U \leq_{\mathbb{k}} W$, if there is a Ketonen $f : P(\delta) \to P(\delta)$ with $U = f^{-1}[W]$. #### Theorem For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is wellfounded. #### **Theorem** UA holds if and only if for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder. The linearity of Ketonen reducibility immediately yields: The linearity of Ketonen reducibility immediately yields: ## Theorem (UA) Every ω_1 -complete ultrafilter on an ordinal is ordinal definable. The linearity of Ketonen reducibility immediately yields: ## Theorem (UA) Every ω_1 -complete ultrafilter on an ordinal is ordinal definable. By a strange coincidence, it is also possible to definably wellorder the ultrafilters of $L(\mathbb{R})$, although it is not clear whether Ketonen reducibility works: The linearity of Ketonen reducibility immediately yields: ## Theorem (UA) Every ω_1 -complete ultrafilter on an ordinal is ordinal definable. By a strange coincidence, it is also possible to definably wellorder the ultrafilters of $L(\mathbb{R})$, although it is not clear whether Ketonen reducibility works: ## Theorem (Kunen) In $L(\mathbb{R})$, every ultrafilter on an ordinal is ordinal definable. ## Question #### Question Does the Ultrapower Axiom hold in $L(\mathbb{R})$? ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom. #### Question Does the Ultrapower Axiom hold in $L(\mathbb{R})$? ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom. #### Question Does the Ultrapower Axiom hold in $L(\mathbb{R})$? ➤ To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom. UA_1 . #### Question Does the Ultrapower Axiom hold in $L(\mathbb{R})$? ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom. **UA**₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder. #### Question - ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom. - **UA**₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder. - ▶ Set $U \leq_{\mathsf{RF}} W$ if for some ultrafilters $(W_x)_{x \in X}$ with pairwise disjoint underlying sets, $W = \{\bigcup_{x \in X} A_x : \forall^U x A_x \in W_x\}.$ #### Question - ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom. - **UA**₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder. - ▶ Set $U \leq_{\mathsf{RF}} W$ if for some ultrafilters $(W_x)_{x \in X}$ with pairwise disjoint underlying sets, $W = \{\bigcup_{x \in X} A_x : \forall^U x \, A_x \in W_x\}$. **UA**₂. #### Question - ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom. - **UA**₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder. - ▶ Set $U \leq_{\mathsf{RF}} W$ if for some ultrafilters $(W_x)_{x \in X}$ with pairwise disjoint underlying sets, $W = \{\bigcup_{x \in X} A_x : \forall^U x A_x \in W_x\}.$ - **UA**₂. The Rudin-Frolík order is directed on $\bigcup_{\delta \in \text{Ord}} \beta_{\omega_1}(\delta)$. #### Question Does the Ultrapower Axiom hold in $L(\mathbb{R})$? ► To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom. UA_1 . For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_{\Bbbk})$ is a wellorder. ▶ Set $U \leq_{\mathsf{RF}} W$ if for some ultrafilters $(W_x)_{x \in X}$ with pairwise disjoint underlying sets, $W = \{\bigcup_{x \in X} A_x : \forall^U x A_x \in W_x\}.$ **UA**₂. The Rudin-Frolík order is directed on $\bigcup_{\delta \in \text{Ord}} \beta_{\omega_1}(\delta)$. ## Theorem (ZF + DC) UA₁ and UA₂ are equivalent. ▶ The best evidence that $L(\mathbb{R})$ satisfies UA comes from one of the strongest theories known to man. - ▶ The best evidence that $L(\mathbb{R})$ satisfies UA comes from one of the strongest theories known to man. - Reinhardt proposed the principle: there is a nontrivial elementary embedding from the universe of sets to itself. - ▶ The best evidence that $L(\mathbb{R})$ satisfies UA comes from one of the strongest theories known to man. - Reinhardt proposed the principle: there is a nontrivial elementary embedding from the universe of sets to itself. ## Theorem (Kunen) There is no elementary embedding from V to V except the identity. ## The Kunen inconsistency - ▶ The best evidence that $L(\mathbb{R})$ satisfies UA comes from one of the strongest theories known to man. - Reinhardt proposed the principle: there is a nontrivial elementary embedding from the universe of sets to itself. #### Theorem (Kunen) There is no elementary embedding from V to V except the identity. Kunen's proof shows that for any ordinal α , there is no elementary $j:V_{\alpha+2}\to V_{\alpha+2}$. So if $j:V_{\beta}\to V_{\beta}$ is elementary with critical point κ , $\beta<\lambda+2$ where $$\lambda = \sup\{\kappa, j(\kappa), j^2(\kappa), j^3(\kappa), \dots\}$$ because $$j(\lambda) = \sup\{j(\kappa), j^2(\kappa), j^3(\kappa), \dots\} = \lambda$$. The descriptive set theory of $V_{\lambda+1}$ assuming the existence of various embeddings $j:V_{\lambda+1}\to V_{\lambda+1}$ bears a striking and unexplained resemblance to classical descriptive set theory under determinacy axioms. Determinacy Elementary embeddings | Determinacy | Elementary embeddings | |-------------------|-------------------------------| | $Det(\Delta^1_1)$ | $j:V_{\lambda} o V_{\lambda}$ | | Determinacy | Elementary embeddings | |-------------------|--| | $Det(\Delta^1_1)$ | $j:V_{\lambda} o V_{\lambda}$ | | $Det(\Pi^1_1)$ | Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ | | Determinacy | Elementary embeddings | |-------------------|--| | $Det(\Delta^1_1)$ | $j:V_{\lambda} o V_{\lambda}$ | | $Det(\Pi^1_1)$ | Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ | | Det(Projective) |
Σ_n -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ for all n | | Determinacy | Elementary embeddings | |-------------------------------|--| | $Det(\Delta^1_1)$ | $j:V_{\lambda} o V_{\lambda}$ | | $Det(\Pi^1_1)$ | Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ | | Det(Projective) | Σ_n -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ for all n | | $Det(\mathit{L}(\mathbb{R}))$ | $j: \mathit{L}(V_{\lambda+1}) ightarrow \mathit{L}(V_{\lambda+1})$ with $crit(j) < \lambda$ | The descriptive set theory of $V_{\lambda+1}$ assuming the existence of various embeddings $j:V_{\lambda+1}\to V_{\lambda+1}$ bears a striking and unexplained resemblance to classical descriptive set theory under determinacy axioms. | Determinacy | Elementary embeddings | |-------------------------------|--| | $Det(\Delta^1_1)$ | $j:V_{\lambda} o V_{\lambda}$ | | $Det(\Pi^1_1)$ | Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ | | Det(Projective) | Σ_n -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ for all n | | $Det(\mathit{L}(\mathbb{R}))$ | $j: \mathit{L}(V_{\lambda+1}) ightarrow \mathit{L}(V_{\lambda+1})$ with $crit(j) < \lambda$ | The final embedding principle above is Woodin's axiom I_0 . The descriptive set theory of $V_{\lambda+1}$ assuming the existence of various embeddings $j:V_{\lambda+1}\to V_{\lambda+1}$ bears a striking and unexplained resemblance to classical descriptive set theory under determinacy axioms. | Determinacy | Elementary embeddings | |-------------------------------|--| | $Det(\Delta^1_1)$ | $j:V_{\lambda} o V_{\lambda}$ | | $Det(\Pi^1_1)$ | Σ_1 -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ | | Det(Projective) | Σ_n -elementary $j:V_{\lambda+1} o V_{\lambda+1}$ for all n | | $Det(\mathit{L}(\mathbb{R}))$ | $j: \mathit{L}(V_{\lambda+1}) ightarrow \mathit{L}(V_{\lambda+1})$ with $crit(j) < \lambda$ | The final embedding principle above is Woodin's axiom l_0 . **Going forward:** λ denotes an I_0 -cardinal, meaning there is an elementary $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ with $\mathrm{crit}(j) < \lambda$. #### Theorem #### Theorem In $L(V_{\lambda+1})$, the following hold: \blacktriangleright (Woodin) λ^+ is measurable. #### Theorem - ▶ (Woodin) λ^+ is measurable. - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality. #### Theorem - ▶ (Woodin) λ^+ is measurable. - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality. - (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property. #### Theorem In $L(V_{\lambda+1})$, the following hold: - (Woodin) λ^+ is measurable. - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality. - (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property. $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x): x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$. #### Theorem In $L(V_{\lambda+1})$, the following hold: - (Woodin) λ^+ is measurable. - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality. - (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property. $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x): x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$. To get $\Theta^{L(V_{\lambda+1})}$, replace \mathbb{R} s with $V_{\lambda+1}$ s. #### Theorem In $L(V_{\lambda+1})$, the following hold: - (Woodin) λ^+ is measurable. - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality. - ▶ (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property. $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x): x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$. To get $\Theta^{L(V_{\lambda+1})}$, replace \mathbb{R} s with $V_{\lambda+1}$ s. #### Theorem ▶ (Moschovakis) $\Theta^{L(\mathbb{R})}$ is weakly inaccessible in $L(\mathbb{R})$. #### Theorem In $L(V_{\lambda+1})$, the following hold: - (Woodin) λ^+ is measurable. - (Cramer) There is a unique normal ultrafilter on λ^+ concentrating on ordinals of countable cofinality. - ▶ (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property. $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x): x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$. To get $\Theta^{L(V_{\lambda+1})}$, replace \mathbb{R} s with $V_{\lambda+1}$ s. #### Theorem - ▶ (Moschovakis) $\Theta^{L(\mathbb{R})}$ is weakly inaccessible in $L(\mathbb{R})$. - ▶ (Woodin) $\Theta^{L(V_{\lambda+1})}$ is weakly inaccessible in $L(V_{\lambda+1})$. The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach. The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach. #### Question The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach. #### Question In $L(V_{\lambda+1})$, do the following hold? $\triangleright \lambda^{++}$ is measurable. The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach. #### Question - $\triangleright \lambda^{++}$ is measurable. - $\triangleright \lambda^{+++}$ is singular. The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach. #### Question - $\triangleright \lambda^{++}$ is measurable. - λ^{+++} is singular. The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach. #### Question - $\triangleright \lambda^{++}$ is measurable. - $\triangleright \lambda^{+++}$ is singular. - $\lambda^+ \to (\lambda^+)^\omega$. - ▶ Any definable binary relation on $V_{\lambda+1}$ is uniformizable. The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach. #### Question - $\triangleright \lambda^{++}$ is measurable. - $\triangleright \lambda^{+++}$ is singular. - $\lambda^+ \to (\lambda^+)^\omega.$ - ▶ Any definable binary relation on $V_{\lambda+1}$ is uniformizable. - Every subset of λ^+ is definable over $H(\lambda^+)$ from parameters. #### Theorem (Kunen) In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter. ### Theorem $\overline{(Kunen)}$ In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter. The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees. ### Theorem (Kunen) In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter. The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees. Although no analog of this is known for $L(V_{\lambda+1})$, one can prove: ### Theorem (Kunen) In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter. The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees. Although no analog of this is known for $L(V_{\lambda+1})$, one can prove: #### Theorem In $L(V_{\lambda+1})$, every λ^+ -complete filter on an ordinal below $\Theta^{L(V_{\lambda+1})}$ extends to a λ^+ -complete ultrafilter. ### Theorem (Kunen) In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter. The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees. Although no analog of this is known for $L(V_{\lambda+1})$, one can prove: #### $\mathsf{Theorem}$ In $L(V_{\lambda+1})$, every λ^+ -complete filter on an ordinal below $\Theta^{L(V_{\lambda+1})}$ extends to a λ^+ -complete ultrafilter. The proof is by induction on λ^+ -complete filters ordered by Ketonen reducibility. The global theory of $L(V_{\lambda+1})$, continued ## The global theory of $L(V_{\lambda+1})$, continued An atom of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is atomic if every F-positive set contains an atom. ## The global theory of $L(V_{\lambda+1})$, continued An atom of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is atomic if every F-positive set contains an atom. ## Theorem (Kechris-Kleinberg-Moschovakis-Woodin) If κ is a strong partition cardinal, the club filter on κ is atomic. ## The global theory of $L(V_{\lambda+1})$, continued An atom of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is atomic if every F-positive set contains an atom. ## Theorem (Kechris-Kleinberg-Moschovakis-Woodin) If κ is a strong partition cardinal, the club filter on κ is atomic.
Extending this to arbitrary regular cardinals in $L(\mathbb{R})$ is open, arguably a reasonable test question for Jackson's analysis. ## The global theory of $L(V_{\lambda+1})$, continued An atom of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is atomic if every F-positive set contains an atom. ### Theorem (Kechris-Kleinberg-Moschovakis-Woodin) If κ is a strong partition cardinal, the club filter on κ is atomic. Extending this to arbitrary regular cardinals in $L(\mathbb{R})$ is open, arguably a reasonable test question for Jackson's analysis. #### Theorem In $L(V_{\lambda+1})$, the club filter on any regular cardinal below $\Theta^{L(V_{\lambda+1})}$ is atomic. ▶ The α -th level of a wellfounded partial order \mathbb{P} is the set of all $x \in \mathbb{P}$ such that rank_{\mathbb{P}} $(x) = \alpha$. - The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$. - $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1. - The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$. - $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1. #### Theorem In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_{\mathbb{k}})$ is almost linear: each of its levels has cardinality less than λ . - The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$. - $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1. #### Theorem In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is almost linear: each of its levels has cardinality less than λ . As a corollary, in $L(V_{\lambda+1})$, every ω_1 -complete ultrafilter on an ordinal is *almost* ordinal definable in that it belongs to an ordinal definable set of cardinality less than λ . - The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$. - $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1. #### Theorem In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_{\mathbb{k}})$ is almost linear: each of its levels has cardinality less than λ . - As a corollary, in $L(V_{\lambda+1})$, every ω_1 -complete ultrafilter on an ordinal is *almost* ordinal definable in that it belongs to an ordinal definable set of cardinality less than λ . - Netonen reducibility is *not* linear in $L(V_{\lambda+1})$: e.g., the normal ultrafilter extending the ω -club filter is incomparable with any normal ultrafilter extending the ω_1 -club filter. - The α -th level of a wellfounded partial order $\mathbb P$ is the set of all $x \in \mathbb P$ such that $\operatorname{rank}_{\mathbb P}(x) = \alpha$. - $ightharpoonup \mathbb{P}$ is linear iff each level of \mathbb{P} has cardinality 1. #### Theorem In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is almost linear: each of its levels has cardinality less than λ . - As a corollary, in $L(V_{\lambda+1})$, every ω_1 -complete ultrafilter on an ordinal is *almost* ordinal definable in that it belongs to an ordinal definable set of cardinality less than λ . - Netonen reducibility is *not* linear in $L(V_{\lambda+1})$: e.g., the normal ultrafilter extending the ω -club filter is incomparable with any normal ultrafilter extending the ω_1 -club filter. ### Conjecture In L(\mathbb{R}), for all ordinals δ , every level of $(\beta_{\omega_1}(\delta), \leq_{\mathbb{k}})$ is finite. The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$. The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$. #### Theorem In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors. The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$. ### Theorem. In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors. ► The Rudin-Keisler order extends the Rudin-Frolík order. The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$. #### Theorem In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors. - ► The Rudin-Keisler order extends the Rudin-Frolík order. - Recall: under UA, no ω_1 -complete ultrafilter has infinitely many Rudin-Frolík predecessors. The Rudin-Keisler order is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$. #### Theorem In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors. - The Rudin-Keisler order extends the Rudin-Frolik order. - ▶ Recall: under UA, no ω_1 -complete ultrafilter has infinitely many Rudin-Frolík predecessors. ### Conjecture In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Keisler predecessors. Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way. Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way. Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way. #### Theorem In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors. An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter. Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way. #### Theorem In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors. - ► An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter. - The structure of seminormal ultrafilters is a central question in extending the Jackson analysis. Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way. #### Theorem In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors. - An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter. - The structure of seminormal ultrafilters is a central question in extending the Jackson analysis. ### Theorem In $L(\mathbb{R})$, no ultrafilter on an ordinal has has infinitely many seminormal Rudin-Keisler predecessors. Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way. #### Theorem In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors. - ► An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter. - The structure of seminormal ultrafilters is a central question in extending the Jackson analysis. #### Theorem In $L(\mathbb{R})$, no ultrafilter on an ordinal has has infinitely many seminormal Rudin-Keisler predecessors. Proofs use Steel's fine-structural analysis of $HOD^{L(\mathbb{R})}$ below $\Theta^{L(\mathbb{R})}$. If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product: If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product: **Cartesian product:** $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$. If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product: **Cartesian product:** $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$. **Tensor product:** for $C \subseteq X \times Y$, If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product: **Cartesian product:** $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$. **Tensor product:** for $C \subseteq X \times Y$, $$C \in U \ltimes W \iff \forall^U x \forall^W y (x, y) \in C.$$ $$C \in U \rtimes W \iff \forall^W y \forall^U x (x, y) \in C.$$ If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product: **Cartesian product:** $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$. **Tensor product:** for $C \subseteq X \times Y$, $$C \in U \ltimes W \iff \forall^{U} x \forall^{W} y (x, y) \in C.$$ $$C \in U \rtimes W \iff \forall^W y \forall^U x (x, y) \in C.$$ Note: $U \times W$ is contained in both $U \ltimes W$ and $U \rtimes W$. If U and W are ultrafilters on X and Y, there are at least three
natural candidates for their product: **Cartesian product:** $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$. **Tensor product:** for $C \subseteq X \times Y$, $$C \in U \ltimes W \iff \forall^{U} x \forall^{W} y (x, y) \in C.$$ $$C \in U \rtimes W \iff \forall^{W} y \forall^{U} x (x, y) \in C.$$ - Note: $U \times W$ is contained in both $U \ltimes W$ and $U \rtimes W$. - ▶ Usually, $U \times W$ is not an ultrafilter and $U \ltimes W \neq U \rtimes W$, so all three products are distinct. In certain very special cases, however, $U \times W$ is an ultrafilter. In certain very special cases, however, $U \times W$ is an ultrafilter. ### Theorem (Blass) If W is |U|-complete, $U \times W$ is an ultrafilter In certain very special cases, however, $U \times W$ is an ultrafilter. ### Theorem (Blass) If W is |U|-complete, $U \times W$ is an ultrafilter Since $U \times W$ is contained in $U \ltimes W$ and $U \rtimes W$, if $U \times W$ is an ultrafilter (i.e., is maximal), then $U \ltimes W = U \times W = U \rtimes W$. In certain very special cases, however, $U \times W$ is an ultrafilter. ### Theorem (Blass) If W is |U|-complete, $U \times W$ is an ultrafilter Since $U \times W$ is contained in $U \ltimes W$ and $U \rtimes W$, if $U \times W$ is an ultrafilter (i.e., is maximal), then $U \ltimes W = U \times W = U \rtimes W$. ### Question Suppose $U \ltimes W = U \rtimes W$. Must $U \times W$ be an ultrafilter? In certain very special cases, however, $U \times W$ is an ultrafilter. ### Theorem (Blass) If W is |U|-complete, $U \times W$ is an ultrafilter Since $U \times W$ is contained in $U \ltimes W$ and $U \rtimes W$, if $U \times W$ is an ultrafilter (i.e., is maximal), then $U \ltimes W = U \times W = U \rtimes W$. ### Question Suppose $U \ltimes W = U \rtimes W$. Must $U \times W$ be an ultrafilter? $V \ltimes W = U \rtimes W$ iff the ultrafilter quantifiers commute: $$\forall^{U} x \forall^{W} y R(x, y) \iff \forall^{W} y \forall^{U} x R(x, y)$$ From an elementary embeddings perspective: From an elementary embeddings perspective: ▶ The ultrafilters Z extending $U \times W$ represent amalgamations $$M_U \xrightarrow{k_U} M_Z \xleftarrow{k_W} M_W$$ such that $k_U \circ j_U = k_W \circ j_W$. From an elementary embeddings perspective: ▶ The ultrafilters Z extending $U \times W$ represent amalgamations $$M_U \xrightarrow{k_U} M_Z \xleftarrow{k_W} M_W$$ such that $k_U \circ j_U = k_W \circ j_W$. ▶ The tensor products correspond to the amalgamations $$M_U \xrightarrow{j_U(j_W)} M_{U \ltimes W} \xleftarrow{j_U \restriction M_W} M_W$$ $$M_U \xrightarrow{j_W \restriction M_U} M_{U \rtimes W} \xleftarrow{j_W(j_U)} M_W$$ From an elementary embeddings perspective: ▶ The ultrafilters Z extending $U \times W$ represent amalgamations $$M_U \xrightarrow{k_U} M_Z \xleftarrow{k_W} M_W$$ such that $k_U \circ j_U = k_W \circ j_W$. ▶ The tensor products correspond to the amalgamations $$M_U \xrightarrow{j_U(j_W)} M_{U \ltimes W} \xleftarrow{j_U \upharpoonright M_W} M_W$$ $$M_U \xrightarrow{j_W \upharpoonright M_U} M_{U \rtimes W} \xleftarrow{j_W(j_U)} M_W$$ Quantifiers commute iff the associated ultrapowers do: $$U \ltimes W = U \rtimes W \iff j_U(j_W) = j_W \upharpoonright M_U$$ $$\iff j_W(j_U) = j_U \upharpoonright M_W$$ ## Theorem (UA) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. ## Theorem (UA) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC. ## Theorem (UA) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC. ## Theorem (GCH) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. ## Theorem (UA) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC. ## Theorem (GCH) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. In ZF, one can prove $U \times U$ is never an ultrafilter, whereas Elliot Glazer pointed out that in $L(\mathbb{R})$, there is an ultrafilter U such that $U \ltimes U = U \rtimes U$. So the equivalence fails in $L(\mathbb{R})$. ## Theorem (UA) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC. ## Theorem (GCH) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. In ZF, one can prove $U \times U$ is never an ultrafilter, whereas Elliot Glazer pointed out that in $L(\mathbb{R})$, there is an ultrafilter U such that $U \ltimes U = U \rtimes U$. So the equivalence fails in $L(\mathbb{R})$. Still... ## Theorem (UA) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC. ## Theorem (GCH) $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. In ZF, one can prove $U \times U$ is never an ultrafilter, whereas Elliot Glazer pointed out that in $L(\mathbb{R})$, there is an ultrafilter U such that $U \ltimes U = U \rtimes U$. So the equivalence fails in $L(\mathbb{R})$. Still... #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters **on ordinals**, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. ## Proof. ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - Fix U and W on δ with $U \ltimes W = U \rtimes W$. - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A. #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. - Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A. - For some $x \in \mathbb{R}$, $A \in \mathsf{HOD}_x$. #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. - Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A. - For some $x \in \mathbb{R}$, $A \in HOD_x$. - $\bar{U} = U \cap \mathsf{HOD}_x$ and $\bar{W} = W \cap \mathsf{HOD}_x$ are in HOD_x . #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A. - For some $x \in \mathbb{R}$, $A \in \mathsf{HOD}_x$. - $lackbox{} ar{U} = U \cap \mathsf{HOD}_x$ and $ar{W} = W \cap \mathsf{HOD}_x$ are in HOD_x . - ightharpoonup In HOD_x : #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A. - For some $x \in \mathbb{R}$, $A \in HOD_x$. - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x . - ightharpoonup In HOD_x : - $\qquad \qquad \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$ #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A. - For some $x \in \mathbb{R}$, $A \in HOD_x$. - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x . - ► In HOD_x: - $\qquad \qquad \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$ - (Steel) GCH holds! UA holds! #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A. - For some $x \in \mathbb{R}$, $A \in HOD_x$. - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x . - ► In HOD_x: - $\qquad \qquad \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$ - (Steel) GCH holds! UA holds! - **>** By either of the previous theorems, $ar{U} imes ar{W}$ is an ultrafilter. #### **Theorem** In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A. - For some $x \in \mathbb{R}$, $A \in HOD_x$. - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x . - ► In HOD_x: - (Steel) GCH holds! UA holds! - **>** By either of the previous theorems, $\bar{U} \times \bar{W}$ is an ultrafilter. - ▶ So $\bar{U} \times \bar{W}$ measures A. #### Theorem In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$. - ▶ Fix U and W on δ with $U \ltimes W = U \rtimes W$. - ▶ Fix $A \subseteq \delta \times \delta$. Must show $U \times W$
measures A. - For some $x \in \mathbb{R}$, $A \in \mathsf{HOD}_x$. - $\bar{U} = U \cap HOD_x$ and $\bar{W} = W \cap HOD_x$ are in HOD_x . - ► In HOD_x: - $\qquad \qquad \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$ - ► (Steel) GCH holds! UA holds! - **\rightarrow** By either of the previous theorems, $ar{U} imes ar{W}$ is an ultrafilter. - ► So $\bar{U} \times \bar{W}$ measures A. - ▶ This implies $U \times W$ measures A. ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways. - ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways. - ▶ There is evidence that UA holds in $L(\mathbb{R})$. - ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways. - ▶ There is evidence that UA holds in $L(\mathbb{R})$. ## Conjecture The following hold in $L(\mathbb{R})$: - ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways. - ▶ There is evidence that UA holds in $L(\mathbb{R})$. ## Conjecture The following hold in $L(\mathbb{R})$: ► The club filter on any regular cardinal $\delta < \Theta^{L(\mathbb{R})}$ is atomic. - ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways. - ▶ There is evidence that UA holds in $L(\mathbb{R})$. ## Conjecture The following hold in $L(\mathbb{R})$: - ► The club filter on any regular cardinal $\delta < \Theta^{L(\mathbb{R})}$ is atomic. - Every level of the Ketonen order is finite. - ▶ The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways. - ▶ There is evidence that UA holds in $L(\mathbb{R})$. ## Conjecture The following hold in $L(\mathbb{R})$: - ► The club filter on any regular cardinal $\delta < \Theta^{L(\mathbb{R})}$ is atomic. - Every level of the Ketonen order is finite. - No ultrafilter on an ordinal has infinitely many Rudin-Keisler predecessors. ## **Thanks** Thanks!