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Weak embeddings in classes of trees

Letk € {N1,N2}.

x T, is the class of trees of height and size «, but with no
unbounded branch. A, is the class of k-Aronszajn trees.
Elements of 7, are called wide x-Aronszajn trees.

s« We consider these classes under (weak) embeddings,
which are functions that preserve the strict order (but are
not necessarily 1-1). They are 1-1 on branches.

% The main question for this talk is the existence of a
maximal (i.e. universal) element in these classes.
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x Aronszajn trees exist (Aronszajn 1935). Under
MA + —CH there is no universal (Todorcevi¢ 2007, using
the technology of Lipshitz trees). Just under CH : not
known ! Consistently yes for GCH and embeddings on a
club many levels (Abraham and Shelah 1985).

x Note: A non-special tree cannot weakly embed into a
special one, so there is a connection with specialisation.

x If 2<% = X then there is a A*-Aronszajn tree (Specker
and Sikorski 1949). Wide A-Aronszajn trees exist for any
A (e.g. a disjoint sum of ordinals < \). Under CH there is
no universal wide Aronszajn tree (o-operator of Kurepa).
Under MA + —CH no universal wide Aronszajn tree (DZ.+
Shelah 2021) exists. Also possible to obtain using
TodorcCevi¢ methods and TodorCevi¢’s result possible to
obtain using this method.)

x Under MA + —CH, Ay, is cofinal in 7y, (DZ.+ Shelah
2021).
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% No-Aronszajn and even Souslin trees exist in L (Jensen
1970).

x From a weakly compact cardinal, one can force a
model in which there are no No-Aronszajn trees, and if
is regular and there are no «*-Aronszajn trees, then s+ is
weakly compact in L (Mitchell, Silver 1972).

% From a weakly compact cardinal, one can force a
model in which CH holds and all Xo-Aronszajn trees are
special (Laver and Shelah 1981).

Question: What about universality ? For example, can
we generalise the methods from Xy ?
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A generalised MA (ShFA)

Shelah (1978) proved the consistency from ZFC of a
generalised Martin Axiom, now known as Shelah’s FA:

Theorem (Shelah)

It is consistent that CH holds along with the forcing axiom
for forcings which are :

@ strongly N»-cc,
@ countably closed and

@ well met (every two compatible conditions have the
least upper bound).

Consistent with any reasonable size of 2% > Xy.
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which he investigated forcing axioms for countably closed
posets.
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x One of the lines of research is to investigate the
possible generalisations of TodorCeviC’s Lipcshitz tree
technology to N, and to prove Th 37 which claims that
under CH + ShFA there is no universal X>-Aronszajn tree.

% Unfortunately, as noticed by us and confirmed by
Justin, the proof has a gap and moreover, the main
Lemma (Lemma 18) is provably wrong modulo the
previous known facts and arguments of the thesis.
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Xiong’s work

s Shihao Xiong wrote a Ph.D. thesis (Cornell 2020) in
which he investigated forcing axioms for countably closed
posets.

x One of the lines of research is to investigate the
possible generalisations of TodorCeviC’s Lipcshitz tree
technology to N, and to prove Th 37 which claims that
under CH + ShFA there is no universal X>-Aronszajn tree.

% Unfortunately, as noticed by us and confirmed by
Justin, the proof has a gap and moreover, the main
Lemma (Lemma 18) is provably wrong modulo the
previous known facts and arguments of the thesis.

x So the question of a model in which CH holds and
there are no universal Xo-Aronszajn trees was left open.
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Our and some other work

The starting point in almost all work in this subject is the
Baumgartner-Malitz-Reinhardt 1970 proof that under
MA + —CH all Aronszajn trees are special using finite
specialising functions and their proof that the forcing is
ccc.

The forcing from DZ.+Shelah introduces another way of
specialising Aronszajn trees. The proof of the ccc is more
complicated but still uses the BMR method. | recall the
theorem and the definition of the forcing.

Theorem
Forevery tree T € Ay,, there is a ccc forcing which adds
atree T' in Ay, not weakly embeddable into T.
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Definition
If T € Ay,, we define a forcing notion Q = Q(T) to
consist of all p = (uP, vP, <p, cP) such that:

@ uvP CwiU{{)}, vP C T are finite and () € v,
@ if « € vP then there is 5 € uP with ht(a) = ht(3),

© <, is atree-like partial order on uP such that o <, 3
implies ht(c) < ht(3) and which fixes aN<, 8 € uP for

every two different elements «, 8 of uP and fixes the
root () of uP,

Q ¢ Us limit <u, levs(uP) x levs(vP) — w s.t.:
if (x1, y1) = c(x2, y2) and (X1, y1) # (X2, y2), then
a(xy, 1) # X2, ¥2), X1 Lup X2, y1 Lyoy2 and

ht(X1 Mupr Xz) > ht(y1 Myp }’2).
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Definition
If T € Ay,, we define a forcing notion Q = Q(T) to
consist of all p = (uP, vP, <p, cP) such that:

@ uvP CwiU{{)}, vP C T are finite and () € v,
@ if « € vP then there is 5 € uP with ht(a) = ht(3),

© <, is atree-like partial order on uP such that oo <, 8
implies ht(c) < ht(3) and which fixes aN<, 8 € uP for
every two different elements «, 8 of uP and fixes the
root () of uP,

Q ¢ Us limit <u, levs(uP) x levs(vP) — w s.t.:

if (x1, y1) = c(x2, y2) and (X1, y1) # (X2, y2), then
a(x1, ¥1) # a(x2, ¥2), X1 Lue X, y1Luey2 and

ht(X1 Mupr Xz) > ht(y1 Myp }’2).

The orderp < gonQis
uP C w9, vP C vl <pC<q,c? C c?andif p < g, then the
intersection and the root given by <, are preserved in <g:

=} F = E = PRNGY
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uncountable branches and W is an uncountable
collection of finite pairwise disjoint subsets of T, then
there exist s,s' € W such that any x € s is incomparable
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Ascent paths

The verbatim analogue of the BMR Lemma is not true for
No-Aronszajn trees.
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Theorem (Ltcke 2017)

Suppose that T is a tree of size and height wo with a
weak ascent path. Then T is not special.
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Suppose that T is a tree of size and height wo with a
weak ascent path. Then T is not special.

Baumgartner and Shelah-Stanley independently proved:

Theorem

If Oy, holds, then there is an Xp-Aronszajn tree with an
ascent path.
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Our forcing generalises to the trees with no weak ascent
paths. That is, let Q%(T) be the obvious generalisation of
Q(T) where X4 is replaced by X, and finite by countable.
Then:

Theorem
Assume CH. Suppose that T € Ay, has no weak ascent
paths. Then Q = Q?(T) has the following properties:

Q QisRy-cc,
@ Q is countably closed,

© Q adds a tree T* in Ay, which is special and not
weakly embeddable into T and

© Q specialises T.
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We note that the forcing Q?(T) does not have the
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We note that the forcing Q?(T) does not have the
strong-cc, and is not well met. So it is not a forcing where
we can use ShFA.

There is another, earlier, result which we also do not
know how to iterate (as it requires Ro-dense sets), due to
Mohammadpour.

Theorem (Mohammadpour)
Assume PFA.
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We note that the forcing Q?(T) does not have the
strong-cc, and is not well met. So it is not a forcing where
we can use ShFA.

There is another, earlier, result which we also do not
know how to iterate (as it requires Ro-dense sets), due to
Mohammadpour.

Theorem (Mohammadpour)

Assume PFA. Then every tree of height and size w»
without cofinal branches is specialisable via a proper and
No-preserving forcing with finite conditions and models on
the side.
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An iteration result was developed by Laver and Shelah
(1981)
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So how to iterate ?

An iteration result was developed by Laver and Shelah
(1981) in which starting from a weakly compact cardinal
which is collapsed to become X, they obtain a model in
which there are no No-Souslin trees (forcing: countable
antichains) or a model in which every RN>-Aronszajn tree is
special (forcing: countable specialising functions).

Replacing these forcings by Q?(T) gives the following
theorem in our work in preparation:

Theorem

From the consistency of the weakly compact cardinal,
there follows the consistency of the non-existence of a
universal Xo-Aronszajn tree.

In fact, the same can be said about wide R,>-Aronszajn
trees.
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Theorem: From the consistency of the weakly compact
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Positive universality results

Until now, no model has been known in which is a
universal Aronszajn or wide Aronszajn tree either on X4
or on No.

Jouko Vaananen informs me that in joint work in
preparation with Ben Naria and Magidor, they obtain

Theorem: From the consistency of the weakly compact
cardinal, there follows the consistency of the existence of
a (strongly) universal wide N>-Aronszajn tree. Similarly for
the wide Aronszajn trees.

A still open Question: |Is there a model with a universal
Aronszajn tree ?
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Weak embeddings with strong requirements

We mention a known theorem that we hope to improve.

Theorem
(Dz.+ Vaananen 2004) Suppose that k is a reqular
cardinal, \** = X\ < x and
@ there is a club guessing between . and A while
@ r< 2N
Let <* stand for weak embeddings that preserve the

splitting level and T\* for trees of size x with no branches
of length \*.
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Weak embeddings with strong requirements

We mention a known theorem that we hope to improve.

Theorem
(Dz.+ Vaananen 2004) Suppose that k is a reqular
cardinal, \** = X\ < x and
@ there is a club guessing between . and A while
@ r< 2N

Let <* stand for weak embeddings that preserve the
splitting level and T\* for trees of size x with no branches
of length X\*. Then the universality number of (T, <*) is
at least 2*.
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