Classical and quantum particles coupled to a vibrational environment

with:
A. Vavasseur (Univ. Côte d'Azur, now BCAM)
L. Vivion (Univ. Côte d'Azur, now Ec. Polytechnique)
S. De Bièvre (Lille)

Motivation: description of dissipation in (quantum-)mechanical systems

Caldeira-Legget (Ann. Phys. 83)
Dissipation arising on a physical system might come from a coupling with a complex environment: energy is evacuated into the environment and does not come back to the system.
Dissipation $=$ transfer of energy from the single degree of freedom characterising the system to the set of degrees of freedom describing the environment.

Motivation: description of dissipation in

 (quantum-)mechanical systems$$
\ddot{q}=-\lambda \dot{q}+F_{\text {ext }}
$$

Where does the friction λ come from ?
Many approaches, depending on the model of the degrees of freedom for the environment:
Komech, Spohn '90-00
Jaksic-Pillet Acta. Math. 98
A series of works by S. De Bièvre (Lille)
with L. Bruneau (CMP'02),
and P. Parris, P. Lafitte, B. Aguer, E. Soret...
"Dynamical Lorentz gas": interaction of a particle with a vibrational field
"a particle in a pinball machine"

The BdB model for a single particle

A particle moving through a transverse continuum of vibrating membranes

$$
\begin{aligned}
& \ddot{q}(t)=-\nabla_{q} V(q(t))-\int_{\mathbb{R}^{d} \times \mathbb{R}^{n}} \sigma_{1}(q(t)-z) \sigma_{2}(y) \nabla_{z} \Psi(t, z, y) \mathrm{d} y \mathrm{~d} z, \\
& \partial_{t t}^{2} \Psi(t, x, y)-c^{2} \Delta_{y} \Psi(t, x, y)=-\sigma_{2}(y) \sigma_{1}(x-q(t))
\end{aligned}
$$

A particle coupled to its environment

$$
\begin{aligned}
& \ddot{q}(t)=-\nabla_{q} V(q(t))-\int_{\mathbb{R}^{d} \times \mathbb{R}^{n}} \sigma_{1}(q(t)-z) \sigma_{2}(y) \nabla_{z} \Psi(t, z, y) \mathrm{d} y \mathrm{~d} z, \\
& \partial_{t t}^{2} \psi(t, x, y)-c^{2} \Delta_{y} \Psi(t, x, y)=-\sigma_{2}(y) \sigma_{1}(x-q(t))
\end{aligned}
$$

Modeling parameters:

form functions $\sigma_{1}, \sigma_{2}\left(C_{c}^{\infty}\right.$, non negative...), c : wave speed
Hamiltonian structure:

$$
\begin{aligned}
& \frac{1}{2}|\dot{q}(t)|^{2}+V(q(t))+\frac{1}{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{n}}\left(\left|\partial_{t} \Psi\right|^{2}+c^{2}\left|\nabla_{y} \Psi\right|^{2}\right)(t, x, y) \mathrm{d} y \mathrm{~d} x \\
& \quad+\int_{\mathbb{R}^{d} \times \mathbb{R}^{n}} \sigma_{1}(x-q(t)) \sigma_{2}(y) \Psi(t, x, y) \mathrm{d} y \mathrm{~d} x \text { is conserved }
\end{aligned}
$$

Starting point: findings of De Bièvre's group

Assume $n=3$ (wave dimension) and $c \gg 1$ large enough

- If V is a confining potential, as time becomes large, $q(t)$ converges to the potential well and the velocity $\dot{q}(t)$ tends to 0 .
- If $V(q)=\mathcal{F} \cdot q$, there exists a limiting velocity $v(\mathcal{F})$ and, for \mathcal{F} small enough, $q(t) \sim q_{\infty}+v(\mathcal{F}) t$ and $\dot{q}(t) \rightarrow v(\mathcal{F})$.
It is remarkable that $v(\mathcal{F}) \sim \mu \mathcal{F}$ for small \mathcal{F} 's: linear response.
- Typical convergence rate $e^{-\gamma t / c^{3}}$.

These results bring out dissipative effects of the interaction with medium: asymptotically it acts like a friction force and energy is evacuated in the membranes.

Many particles: mean-field interpretation

- Consider a set of P particles

$$
\left\{\begin{array}{l}
\ddot{q}_{j}(t)=-\nabla_{q} V\left(q_{j}(t)\right)-\nabla_{q} \Phi\left(t, q_{j}(t)\right), \\
\partial_{t t}^{2} \Psi(t, x, y)-c^{2} \Delta_{y} \Psi(t, x, y)=-\sigma_{2}(y) \sum_{k=1}^{P} \sigma_{1}\left(x-q_{k}(t)\right) .
\end{array}\right.
$$

- Rescale the self-consistent potential $\Phi(t, x)=\left(\sigma_{1} * \int_{\mathbb{R}^{n}} \sigma_{2}(y) \Psi(t, \cdot, y) \mathrm{d} y\right)(x) \rightarrow \frac{1}{P} \nabla \Phi(t, x)$.
- Consider $F_{P}(t, x, v)=\frac{1}{P} \sum_{j=1}^{P} \delta\left(x=q_{j}(t)\right) \otimes \delta\left(v=\dot{q}_{j}(t)\right)$ and let $P \rightarrow \infty$
Further results on the P particles case and the behavior as $t \rightarrow \infty$, $P \rightarrow \infty$: A. Vavasseur '20
But the large time behavior is much more complex, with several scenario, than for a single particle.

Kinetic version of the BdB model

We are finally led to

$$
\begin{aligned}
& \partial_{t} F+v \cdot \nabla_{x} F-\nabla_{x}(V+\Phi) \cdot \nabla_{v} F=0 \\
& \Phi(t, x)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{n}} \sigma_{1}(x-z) \sigma_{2}(y) \Psi(t, z, y) \mathrm{d} z \mathrm{~d} y \\
& \left(\partial_{t t}^{2} \Psi-c^{2} \Delta_{y} \Psi\right)(t, x, y)=-\sigma_{2}(y) \int_{\mathbb{R}^{d}} \sigma_{1}(x-z) \rho(t, z) \mathrm{d} z \\
& \rho(t, x)=\int_{\mathbb{R}^{d}} F(t, x, v) \mathrm{d} v .
\end{aligned}
$$

Bear in mind that $y \in \mathbb{R}^{n}$ is a transverse variable: the model differs from the coupling Vlasov-Wave (coming from Vlasov-Maxwell) dealt with e. g. by Bouchut-Golse-Pallard'04.

Overview of the results

Energy conservation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{1}{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{n}}\left|\partial_{t} \Psi(t, x, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{c^{2}}{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{n}}\left|\nabla_{y} \Psi(t, x, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y\right.
$$

$$
\left.+\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} F(t, x, v)\left(\frac{|v|^{2}}{2}+V(x)+\Phi(t, x)\right) \mathrm{d} v \mathrm{~d} x\right\}=0 .
$$

"Vibrational+ Kinetic \& Potential particle energy + Coupling"

- Existence-uniqueness with general external potential $x \mapsto V(x)$ and data (it slightly generalizes BdB's analysis: $n \in \mathbb{N} \backslash\{0\}, P>1$ particles...)
- mean-field asymptotics
- asymptotic analysis
- equilibrium states and stability (by a variational approach)
- Landau damping

A (quite surprising) connection to the Vlasov-Poisson

 equation- Rescale the equation: large wave speed and strong coupling

$$
\partial_{t t}^{2} \Psi_{\epsilon}-\frac{1}{\epsilon} \Delta_{y} \Psi_{\epsilon}=-\frac{1}{\epsilon} \sigma_{2}(y) \int \sigma_{1}(x-z) \rho_{\epsilon}(t, z) \mathrm{d} z
$$

- Formally as $\epsilon \rightarrow 0:-\Delta_{y} \Psi(t, x, y)=-\sigma_{2}(y) \sigma_{1} * \rho(t, x):$

$$
\Psi(t, x, y)=\Upsilon(y) \sigma_{1} * \rho(t, x) \text { with } \Delta_{y} \Upsilon(y)=\sigma_{2}(y)
$$

Therefore, we get $\Phi(t, x)=-\Lambda \sigma_{1} * \sigma_{1} * \rho(t, x)$, with
$\Lambda=-\int \Upsilon \sigma_{2}(y) \mathrm{d} y\left(=\int\left|\nabla_{y} \Upsilon(y)\right|^{2} \mathrm{~d} y>0\right)$.

- We can rescale as well $\sigma_{1} \rightarrow \sigma_{1, \epsilon}$ so that $\left|\widehat{\sigma_{1, \epsilon}}(\xi)\right|^{2} \sim \frac{1}{|\xi|^{2}}$. It yields the ATTRACTIVE Vlasov-Poisson system.

From VW to attractive VP

- $\partial_{t} F_{\epsilon}+v \cdot \nabla_{x} F_{\epsilon}-\nabla_{x} \Phi_{\epsilon} \cdot \nabla_{v} F_{\epsilon}=0$
- $\Phi_{\epsilon}=\sigma_{1, \epsilon} * \int \sigma_{2} \Psi_{\epsilon} \mathrm{d} y$
- $\Psi_{\epsilon}(t, x, y) \simeq \Upsilon(y) \sigma_{1, \epsilon} * \rho_{\epsilon}(t, x)$ with $\Delta_{y} \Upsilon=\sigma_{2}$
- $\Phi_{\epsilon} \simeq-\Lambda \sigma_{1, \epsilon} * \sigma_{1, \epsilon} * \rho_{\epsilon}$ with $\Lambda=-\int \Upsilon \sigma_{2} \mathrm{~d} y>0$,
- $\widehat{\Phi}_{\epsilon} \rightarrow-\frac{\Lambda}{\xi^{2}} \widehat{\rho}$

It yields the ATTRACTIVE Vlasov-Poisson system:

$$
\begin{aligned}
& \partial_{t} F+v \cdot \nabla_{x} F-\nabla_{x} \Phi \cdot \nabla_{v} F=0, \\
& \Delta \Phi=\Lambda \rho, \quad \Lambda>0 .
\end{aligned}
$$

Intuition that VW inherits some features of the attractive VP system

A modified formulation

We rewrite the pb. as

$$
\partial_{t} F+v \cdot \nabla_{x} F=\nabla_{v} F \cdot \nabla_{x}\left(\Phi_{I}+\Phi_{S}\right)
$$

where we set

$$
\begin{aligned}
\Phi_{I}(t, x)= & \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{d}} \sigma_{1}(x-z) \\
& \times\left(\widehat{\Psi_{0}}(z, \xi) \cos (c|\xi| t)+\widehat{\Psi_{1}}(z, \xi) \frac{\sin (c|\xi| t)}{c|\xi|}\right) \widehat{\sigma_{2}}(\xi) \mathrm{d} z \mathrm{~d} \xi
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{S}(t, x)=-\int_{\mathbb{R}^{d}} \Sigma(x-z)\left(\int_{0}^{t} p_{c}(t-s) \rho(s, z) \mathrm{d} s\right) \mathrm{d} z \\
& \text { with } \rho(t, x)=\int F(t, x, v) \mathrm{d} v, \quad \Sigma=\sigma_{1} * \sigma_{1} \\
& \text { and } t \mapsto p_{c}(t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \frac{\sin (c|\xi| t)}{c|\xi|}\left|\widehat{\sigma_{2}}(\xi)\right|^{2} \mathrm{~d} \xi
\end{aligned}
$$

The kernel p_{c} drives the dissipation mechanism (σ_{2}, c and n)

Landau Damping

Given $M: v \mapsto M(v)>0$, with $\int M d v=1, \rho_{0} M(v)$ defines a homogeneous solution, with mass ρ_{0} of the VW system.
"Theorem". Initial data $F_{0}(x, v)=\rho_{0} M(v)+f_{0}(x, v)$. Assume

- smooth data $\sigma_{1}, \sigma_{2}, M, f_{0}$,
- $n \geq 3$ odd
- the (L) stability criterion

There exists $\epsilon_{0}>0$ such that if $\left\|f_{0}\right\| \leq \epsilon_{0}$, then

$$
\rho-\int F_{0} \mathrm{~d} v \mathrm{~d} x \text { and } \nabla_{x} \Phi \text { tend to } 0 \text { as } t \rightarrow \infty
$$

Landau '46 (linearized pb.)
Mouhot-Villani '11 (torus)
Faou-Rousset '16 (finite regularity)
Bedrossian-Masmoudi-Mouhot '16-'18 (torus, whole space)
Han-Kwan-Nguyen-Rousset '19 (whole space)

Quantum version: Schrödinger-Wave

$$
\begin{aligned}
& i \partial_{t} u+\frac{1}{2} \Delta_{x} u=\left(\sigma_{1} \star \int_{\mathbb{R}^{n}} \sigma_{2}(y) \psi(t, x, y) \mathrm{d} y\right) u, \\
& \partial_{t t}^{2} \psi-c^{2} \Delta_{y} \psi=-c^{2} \sigma_{2}(y) \sigma_{1} \star|u|^{2}
\end{aligned}
$$

- Energy conservation

$$
\begin{aligned}
& \frac{1}{2} \int\left|\nabla_{x} u\right|^{2} \mathrm{~d} x+
\end{aligned} \begin{aligned}
& \frac{1}{2} \int\left(\frac{\left|\partial_{t} \psi\right|^{2}}{c^{2}}+\left|\nabla_{y} \psi\right|^{2}\right) \mathrm{d} y \mathrm{~d} x \\
& \\
& \quad+\int \sigma_{1}\left(x-x^{\prime}\right) \sigma_{2}(y) \psi\left(x^{\prime}, y\right)|u(x)|^{2} \mathrm{~d} y \mathrm{~d} x^{\prime} \mathrm{d} x
\end{aligned}
$$

- Well-posedness in the energy space
- Semi-classical analysis à la Lions-Paul makes the connection with the kinetic model.

Connection to other models: preliminary observations

- The limit $c \rightarrow \infty$ leads to the Hartree model

$$
i \partial_{t} u+\frac{1}{2} \Delta_{x} u=-\left(\Lambda \Sigma \star|u|^{2}\right) u
$$

Many results known when Σ is replaced by δ_{0} (focusing NLS) and in dimension 3 when Σ is replaced by $\frac{1}{|x|}$ (Newton-Hartree: Lieb, Lenzmann...)
Intuition that the space dimension d might be important...

- But SW has no scale invariance, and it does not satisfy Galilean invariance.
- Both systems admit Solitary Wave solutions:
$(u, \psi)=\left(e^{i \omega t} Q(x), \Psi(x, y)\right)$

$$
-\frac{1}{2} \Delta_{x} Q+\omega Q+\Lambda \Sigma \star|Q|^{2} Q=0, \quad-\Delta_{y} \psi=-\sigma_{2}(y) \sigma_{1} \star|Q|^{2}
$$

Choquard's equation... which has infinitely many solutions.

Ground states

Minimization of the energy

$$
\begin{aligned}
& \frac{1}{2} \int\left|\nabla_{x} u\right|^{2} \mathrm{~d} x+\frac{1}{2} \int\left(\frac{|\chi|^{2}}{c^{2}}+\left|\nabla_{y} \psi\right|^{2}\right) \mathrm{d} y \mathrm{~d} x \\
& +\int \sigma_{1}\left(x-x^{\prime}\right) \sigma_{2}(y) \psi\left(x^{\prime}, y\right)|u(x)|^{2} \mathrm{~d} y \mathrm{~d} x^{\prime} \mathrm{d} x,
\end{aligned}
$$

with a mass constraint $\|u\|_{L^{2}}^{2}=M$.

- Mass threshold: the minimal energy is 0 for $M<M_{0}$; it is negative when $M>M_{0}$ and it is reached at $(Q, \Psi, 0)$, solution of Choquard's equation for a certain ω.
- Regularity and radial symmetry... but uniqueness is open!

Orbital stability

- P-L. Lions' concentration-compactness approach leads to a weak stability statement: starting close to a ground state, the solutions remains close to the manifold on all ground states.
- Strengthened results can be obtained by linearization and spectral analysis:
$\left\|u(t)-e^{i \gamma(t)} Q(\cdot-x(t))\right\|_{H^{1}}^{2}+\left\|\nabla_{y} \psi(t)-\nabla_{y} \psi(\cdot-x(t))\right\|_{L^{2}}^{2}+\frac{1}{c^{2}}\left\|\partial_{t} \psi\right\|_{L^{2}}^{2} \leq \epsilon$.
The proof relies on a perturbation argument from Lenzmann's analysis of the case where $d=3$ and $\Sigma \rightarrow \frac{1}{|x|}$. Critical step: coercivity estimate.
- The stability is shown for an admissible class of relevant form functions σ_{1} such that by rescaling $\sigma_{1} \star \sigma_{1}$ approaches $\frac{1}{|x|}$.
Surprising fact: the convolution with the smooth kernel Σ is much harder than the case with $\frac{1}{|x|}$!

Numerical experiments

Initial data $u_{0}(x)=Q(x) e^{i p_{0} / M^{2}}$ with $\left|p_{0}\right| \ll 1$.
Simplified dynamics:
$M \dot{q}=p$,
$\dot{p}=-\nabla_{x} \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \sigma_{1}\left(x-x^{\prime}\right) \int_{\mathbb{R}^{d}} \sigma_{2}(y) \psi\left(t, x^{\prime}, y\right) \mathrm{d} y \mathrm{~d} x^{\prime}\right) Q^{2}(x-q(t)) \mathrm{d} x$
$\partial_{t t}^{2} \psi-c^{2} \Delta_{y} \psi=-c^{2} \sigma_{2}(y) \int_{\mathbb{R}^{d}} \sigma_{1} \star\left(x-x^{\prime}\right) Q^{2}\left(x^{\prime}-q\right) \mathrm{d} x^{\prime}$.

- p, q close to the center of mass and the impulsion defined from the SW system
- analogy with the classical dynamics
- $\left|q(t)-q_{\infty}\right|+|p(t)| \leq C e^{-\lambda t / c}$

Blank page

A modified formulation

We rewrite the pb. as

$$
\partial_{t} F+v \cdot \nabla_{x} F=\nabla_{v} F \cdot \nabla_{x}\left(\Phi_{I}+\Phi_{S}\right)
$$

where we set

```
De1
```

$$
\begin{aligned}
\Phi_{I}(t, x)= & \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{d}} \sigma_{1}(x-z) \\
& \times\left(\widehat{\Psi_{0}}(z, \xi) \cos (c|\xi| t)+\widehat{\Psi_{1}}(z, \xi) \frac{\sin (c|\xi| t)}{c|\xi|}\right) \widehat{\sigma_{2}}(\xi) \mathrm{d} z \mathrm{~d} \xi
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{S}(t, x)=-\int_{\mathbb{R}^{d}} \Sigma(x-z)\left(\int_{0}^{t} p_{c}(t-s) \rho(s, z) \mathrm{d} s\right) \mathrm{d} z \\
& \text { with } \rho(t, x)=\int F(t, x, v) \mathrm{d} v, \quad \Sigma=\sigma_{1} * \sigma_{1} \\
& \text { and } t \mapsto p_{c}(t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \frac{\sin (c|\xi| t)}{c|\xi|}\left|\widehat{\sigma_{2}}(\xi)\right|^{2} \mathrm{~d} \xi
\end{aligned}
$$

VP vs VW

Vlasov eq.

$$
\partial_{t} F+v \cdot \nabla_{x} F-\nabla_{x} \Phi \cdot \nabla_{v} F=0 .
$$

with either

$$
\text { VP case: } \Phi(t, x)=\Sigma \star \rho(t, x)
$$

$$
\text { VW case: } \Phi(t, x)=\Phi_{l}(t, x)+\int_{0}^{t} p_{c}(t-s) \Sigma \star \rho(s, x) \mathrm{d} s
$$

- Effect of the initial data for the vibrational field: decay related to the dispersion of the wave eq.
- "Memory effect" through p_{c} interplay between dispersion (depends on n and c) and regularity of the coefficients σ_{1}, σ_{2}

The kernel p_{c}
Let W solution of $\square_{t, z} W=0,\left.\left(W, \partial_{t} W\right)\right|_{t=0}=\left(0, \sigma_{2}\right)$

$$
p_{c}(t)=\frac{1}{c} \int_{\mathbb{R}^{n}} \sigma_{2}(z) W(c t, z) \mathrm{d} z=\int_{\mathbb{R}^{n}} \frac{\sin (c|\zeta| t)}{c|\zeta|}\left|\widehat{\sigma}_{2}(\zeta)\right|^{2} \frac{\mathrm{~d} \zeta}{(2 \pi)^{n}}
$$

Energy dissipation mechanisms \longleftrightarrow decay of p_{c}.
When $n \geq 3, p_{c}$ is integrable and satisfies

$$
\int_{0}^{\infty} p_{c}(t) \mathrm{d} t=\frac{\Lambda}{c^{2}}, \quad \text { with } \quad \Lambda=\int_{\mathbb{R}^{n}} \frac{\left|\widehat{\sigma}_{2}(\zeta)\right|^{2}}{|\zeta|^{2}} \mathrm{~d} \zeta<\infty
$$

In dimension $n=1$, a direct computation by means of D'Alembert formula shows that

$$
p_{c}(t)=\frac{1}{2 c} \int_{-\infty}^{+\infty} \sigma_{2}(z)\left(\int_{z-c t}^{z+c t} \sigma_{2}(s) \mathrm{d} s\right) \mathrm{d} z \underset{t \rightarrow \infty}{ } \frac{1}{2 c}\left\|\sigma_{2}\right\|_{L_{z}^{1}}^{2}>0 .
$$

The kernel p_{c}, ctn'd

$$
p_{c}(t)=\frac{1}{c} \int_{\mathbb{R}^{n}} \sigma_{2}(z) W(c t, z) \mathrm{d} z, \quad \square_{t, z} W=\left.0 \quad\left(W, \partial_{t} W\right)\right|_{t=0}=\left(0, \sigma_{2}\right)
$$

If $n \geq 3$ odd, $\sigma_{2} \in C_{c}^{0}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}\left(\sigma_{2}\right) \subset B\left(0, R_{2}\right)$, then p_{c} has a compact support included in $\left[0, \frac{2 R_{2}}{c}\right]$ and $\left|p_{c}(t)\right| \lesssim 1 / c$.

Assumptions on σ_{2} can be relaxed, and including for even dimension $n \geq 4$ we can obtain algebraic decay of p_{c}

A modified formulation

The splitting of $\Phi(t, x)=\left(\sigma_{1} * \int_{\mathbb{R}^{n}} \sigma_{2}(y) \Psi(t, \cdot, y) \mathrm{d} y\right)(x)$ with
$\left(\partial_{t t}^{2}-c^{2} \Delta_{y}\right) \Psi(t, x, y)=-\sigma_{2}(y) \sigma_{1} * \rho(t, x),\left.\quad\left(\Psi, \partial_{t} \Psi\right)\right|_{t=0}=\left(\Psi_{0}, \Psi_{1}\right)$ relies on the linearity of the wave eq.:

$$
\Phi=\Phi_{I}+\Phi_{S}
$$

with $\Phi_{\text {I }}$ associated to the free wave equation

$$
\left(\partial_{t t}^{2}-c^{2} \Delta_{y}\right) \Upsilon(t, x, y)=0,\left.\quad\left(\Upsilon, \partial_{t} \Upsilon\right)\right|_{t=0}=\left(\Psi_{0}, \Psi_{1}\right)
$$

(or with data $\sigma_{1} *\left(\Psi_{0}, \Psi_{1}\right)$), and Φ_{S} associated to the sol. of

$$
\left(\partial_{t t}^{2}-c^{2} \Delta_{y}\right) \widetilde{\Psi}(t, x, y)=-\sigma_{2}(y) \sigma_{1} * \rho(t, x),\left.\quad\left(\widetilde{\Psi}, \partial_{t} \widetilde{\Psi}\right)\right|_{t=0}=0
$$

Proceeding this way, we distinguish the influence of the initial data and the influence of the coupling.

