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Motivation: description of dissipation in
(quantum-)mechanical systems

Caldeira-Legget (Ann. Phys. 83)

Dissipation arising on a physical system might come from a coupling
with a complex environment: energy is evacuated into the
environment and does not come back to the system.

Dissipation = transfer of energy from the single degree of freedom
characterising the system to the set of degrees of freedom describing
the environment.



Motivation: description of dissipation in
(quantum-)mechanical systems

.d = *)‘q + Fext
Where does the friction A\ come from ?

Many approaches, depending on the model of the degrees of freedom
for the environment:

Komech, Spohn '90-00

Jaksic-Pillet Acta. Math. 98

A series of works by S. De Biévre (Lille)

with L. Bruneau (CMP'02),

and P. Parris, P. Lafitte, B. Aguer, E. Soret...

“Dynamical Lorentz gas”: interaction of a particle with a vibrational
field

“a particle in a pinball machine”



The BdB model for a single particle

A particle moving through a transverse continuum of vibrating
membranes

66 = ~VaV(a(e) ~ [ oi(alt) =) oaly) V(. z,) dydz.

al%tw(tvxvy) - Cszw(t7XaY) = _UZ(y)Ul(X - q(t))



A particle coupled to its environment

§(6) = ~VaV{a() = [ orlalt) = 2) oaly) V(e 2.y dy

8§tw(t7X7Y) - C2Ay\U(t,X,y) = _UZ(y)Ul(X - q(t))

Modeling parameters:

form functions 01,02 (C2°, non negative...), c: wave speed
Hamiltonian structure:

1

1,
SR+ V@O +5 [ (0P + 29, WP) (e x.y) dydx
R4 xR"

—1—/ o1(x — q(t))o2(y)W(t, x, y) dy dx is conserved
RIxR"



Starting point: findings of De Bievre's group

Assume n =3 (wave dimension) and ¢ > 1 large enough

e If V is a confining potential, as time becomes large, q(t) converges
to the potential well and the velocity §(t) tends to O.

e If V(q) = F - q, there exists a limiting velocity v(F) and, for F
small enough, q(t) ~ goo + v(F)t and §(t) — v(F).

It is remarkable that v(F) ~ uF for small F's: linear response.

e Typical convergence rate et/

These results bring out dissipative effects of the interaction with
medium: asymptotically it acts like a friction force and energy is
evacuated in the membranes.



Many particles: mean—field interpretation

> Consider a set of P particles
qj(t) = =VqV(q;(t)) — Vq&(t, gi(1)),

P
8t?tw(t)x7y) - Csz\U(t,X7y) = _0'2(_)/) Z Ul(X - qk(t))
k=1
» Rescale the self—consistent potential

(t, x) = <01 */R o2 ()W (E - y) dy> (x) = %Vd)(t,x).

» Consider Fp(t,x, v) =5 Zé x = qj(t)) ® 6(v = g;(t)) and let

P — o

Further results on the P particles case and the behavior as t — oc,
P — oco: A. Vavasseur '20

But the large time behavior is much more complex, with several
scenario, than for a single particle.



Kinetic version of the BdB model

We are finally led to

OF + v - ViF = Vy(V +®)-V,F =0,

ot = [ orlx— 2)oa(y)¥(t,z.y) dzdy.
R xR"

(8%‘11 — csz\U)(t,x,y) = —o2(y) /

o1(x — z)p(t,z)dz,
Rd
p(t,x) = / F(t,x,v)dv.

Rd

Bear in mind that y € R" is a transverse variable: the model differs
from the coupling Vlasov-Wave (coming from Vlasov-Maxwell) dealt
with e. g. by Bouchut-Golse-Pallard’04.



Overview of the results
Energy conservation

2

d 1
- / 0:W(t, x, )2 dxdy + 5 IV, W(t,x,y)* dxdy
dt 2 RA xRN 2 RI xRN

+/RdXRd F(t,x,v) <|V22 L V() +¢(t,x)> dvdx} 0,

“Vibrational+ Kinetic & Potential particle energy + Coupling”

» Existence—uniqueness

with general external potential x — V/(x) and data

(it slightly generalizes BdB's analysis: n € N\ {0}, P > 1
particles... )

mean-field asymptotics

asymptotic analysis

equilibrium states and stability (by a variational approach)

vV v v Y

Landau damping



A (quite surprising) connection to the Vlasov—Poisson
equation

> Rescale the equation: large wave speed and strong coupling

1 1
BV~ AV =) [ ar(x - Dt 2) dz,

» Formally as € = 0: =AW (t,x,y) = —o2(y) o1 * p(t, x):
V(t,x,y) = T(y)or = p(t, x) with Ay T(y) = o2(y).

Therefore, we get ®(t, x) = —Aoy * o1 * p(t, x), with

A= [Tomay(= [19, 10 ay > o).

~ 1
§1%

2

» We can rescale as well 01 — o1 so that |77 ¢(§)| t

yields the ATTRACTIVE Vlasov—Poisson system.



From VW to attractive VP

» OiFe+v-VyFe— V.-V, F.=0

> O =0 * /02‘4/6 dy

» VU (t,x,y) ~ T(y)ore * pe(t, x) with AT = o3

> O~ —Aoy k01 * pe With A = —/Tag dy > 0,

~

> ¢€ﬁ75—2ﬁ

It yields the ATTRACTIVE Vlasov—Poisson system:

8:F 4+ v - Vi F —Vy®-V,F =0,
Ad=Np, A>0.

Intuition that VW inherits some features of the attractive VP system



A modified formulation
We rewrite the pb. as

OtF +v-VyF=V,F -V, (¢/—|—¢5)

where we set

b, (t, —
- gl [ e

X <‘“0(Z»5) cos(clé|t) + V1(z, g)w

i) ez

and

ds(t, x) = /Rd Y(x —2) </0t pc(t — s)p(s, z) ds) dz

with p(t,x) = [ F(t,x,v)dv, Y =01 * 01,
1 " sin(cl¢]t)
and t v pc(t) = (QW)H/H I [@2(6)I* dé.

The kernel p. drives the dissipation mechanism (o2, ¢ and n)



Landau Damping
Given M : v — M(v) > 0, with [ Mdv =1, pgM(v) defines a
homogeneous solution, with mass pg of the VW system.
“Theorem”. Initial data Fo(x, v) = poM(v) + fo(x, v). Assume
» smooth data 01,00, M, fy,
» n >3 odd
» the (L) stability criterion
There exists €g > 0 such that if ||f]| < €p, then

p/Fodvdx and V,® tend to 0 as t — oo.

Landau '46 (linearized pb.)

Mouhot-Villani '11 (torus)

Faou-Rousset '16 (finite regularity)
Bedrossian-Masmoudi-Mouhot '16-'18 (torus, whole space)
Han-Kwan-Nguyen-Rousset '19 (whole space)



Quantum version: Schrodinger-Wave

iO¢u + %Axu = (Jl*/ UZ(Y)w(t,XaY) dy> u,

2 2
Ofp — Dy = —oa(y)or * |uf?
» Energy conservation

/\VX 2dx + = /(’8””2 + |V, 9| )dydx

+ [ o106 = X)) ) u) 2 dy e ax,

» Well-posedness in the energy space

» Semi-classical analysis 4 /a Lions-Paul makes the connection with
the kinetic model.



Connection to other models: preliminary observations

» The limit ¢ — oo leads to the Hartree model
1
iOru + EAXU = — (AL * |u|2)u.

Many results known when X is replaced by dg (focusing NLS)
and in dimension 3 when X is replaced by ﬁ (Newton-Hartree:

Lieb, Lenzmann...)
Intuition that the space dimension d might be important...

» But SW has no scale invariance, and it does not satisfy Galilean
invariance.

» Both systems admit Solitary Wave solutions:

(u, 1) = (e Q(x), ¥(x,y))
—%AXQ+wQ+/\Z*|leQ:0, ~A WV = —a3(y)o1 % |Q|?

Choquard's equation... which has infinitely many solutions.



Ground states

Minimization of the energy

2
/|v ulPdx + - /(X’ + V012 dy dx
+ / o1(x — x)oa(y)(x', y) u(x) 2 dy dx’ dx,

with a mass constraint ||ul|?, = M.

> Mass threshold:
the minimal energy is 0 for M < Mp; it is negative when M > M

and it is reached at (Q, V,0), solution of Choquard's equation

for a certain w.
» Regularity and radial symmetry... but uniqueness is open !



Orbital stability

» P-L. Lions’ concentration-compactness approach leads to a weak
stability statement: starting close to a ground state, the solutions
remains close to the manifold on all ground states.

» Strengthened results can be obtained by linearization and
spectral analysis:

. 1
HU(t)*ew(t)Q('*X(t))||iIﬁIIVyTZJ(t)*VyW('*X(t))Hfﬁgllaﬂbllfz Se

The proof relies on a perturbation argument from Lenzmann's
analysis of the case where d =3 and ¥ — ﬁ
Critical step: coercivity estimate.

» The stability is shown for an admissible class of relevant form
functions o1 such that by rescaling o1 x o1 approaches ﬁ

Surprising fact: the convolution with the smooth kernel ¥ is much
1

harder than the case with =l



Numerical experiments

Initial data ug(x) = Q(x)e/M* with |pg| < 1.
Simplified dynamics:

Mg = p,
b= [ ([ ortx =) [ oatnputex' vy ax') @(x - a(e)a

024h — 2Dy = —c2a2(y) /d o1 % (x — x)Q*(x' — q) dx’.
R

> p, g close to the center of mass and the impulsion defined from
the SW system

» analogy with the classical dynamics
> |q(t) = goo| + |P(t)] < Ce™/¢
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A modified formulation
We rewrite the pb. as

GtF+ v-VyF=V,F- -V, ((D/—i-q)g)

where we set

271' / /Rdalx—z

X <\IJO(Z,£) cos(cl||t) + wl(za £)

d)[(t X

sin(cl¢lt)
cl]

) Faazac
and
Bs(t, x) = _/ﬂ%d S (x — 7) (/:pc(t—s)p(s,z)ds> dz
with p(t,x) = [ F(t,x,v)dv, Y =01 %01,

and t — pc(t) = (zi)n /]R sm(C‘;”f) 73(6)[? de.




VP vs VW

Vlasov eq.
OtF4+v-VyF—-Vo -V, F=0.

with either
VP case: ®(t,x) =X p(t,x)
ot
VW case: ®(t,x) = &(t,x) + / pc(t — )X * p(s, x)ds
Jo
» Effect of the initial data for the vibrational field:
decay related to the dispersion of the wave eq.

» “Memory effect” through p.
interplay between dispersion (depends on n and ¢)
and regularity of the coefficients o1, o2



The kernel p.
Let W solution of O, ,W =0, (W, 0, W)‘t:0 = (0, 02)

sin(c|¢]t)
cld|

1

pc(t) = p /naz(Z)W(ct,z) dz = / d

(2m)™

[52()?

Energy dissipation mechanisms «+— decay of p..

When n > 3, pc is integrable and satisfies

o) A _ =~ C 2
/0 pe(t)dt = =2 with A= /" JTéP)‘ d¢ < oo,

In dimension n = 1, a direct computation by means of D'Alembert
formula shows that

1 +o0 z+ct 1 )
pc(t) = 2c/ o2(z) </ o2(s) ds> dz = ZHO’QHL} > 0.

—00 —ct




The kernel p., ctn'd

1
pc(t)zc/nag(z)W(Ct,z)dz, O W =0 (W,0,W)|_, = (0,0)

If n >3 odd, o2 € CO(R") with supp(c2) C B(0, R), then p. has a
compact support included in [0, 2R2] and |pc(t)| S 1/c.

Assumptions on o, can be relaxed, and including for even
dimension n > 4 we can obtain algebraic decay of p.



A modified formulation
The splitting of ®(t,x) = (al */ a2 (y)V(t,-,y) dy) (x) with
Rn

(aft_c2Ay)W(t’X7y) = _0'2(_)/) Ul*P(t,X)a (Waatw)‘tzo = (WO’\UI)
relies on the linearity of the wave eq.:
O =0,+ dg

with @, associated to the free wave equation

(0% = ) T(tx,y) =0, (T,0T)| = (Wo, 1)

(or with data o1 % (Wg, V1)), and s associated to the sol. of

(92 — A )U(t,x,y) = —0a(y) o1 % p(t,x),  (V,0:¥)] =0

t=0

Proceeding this way, we distinguish the influence of the initial data
and the influence of the coupling.





