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Motivation: description of dissipation in
(quantum-)mechanical systems

Caldeira-Legget (Ann. Phys. 83)

Dissipation arising on a physical system might come from a coupling
with a complex environment: energy is evacuated into the
environment and does not come back to the system.
Dissipation = transfer of energy from the single degree of freedom
characterising the system to the set of degrees of freedom describing
the environment.



Motivation: description of dissipation in
(quantum-)mechanical systems

..q = −λ .q + Fext

Where does the friction λ come from ?

Many approaches, depending on the model of the degrees of freedom
for the environment:
Komech, Spohn ’90-00
Jaksic-Pillet Acta. Math. 98

A series of works by S. De Bièvre (Lille)
with L. Bruneau (CMP’02),
and P. Parris, P. Lafitte, B. Aguer, E. Soret...
“Dynamical Lorentz gas”: interaction of a particle with a vibrational
field
“a particle in a pinball machine”



The BdB model for a single particle
A particle moving through a transverse continuum of vibrating
membranes

x ∈ Rd

y ∈ Rn

..q(t) = −∇qV (q(t))−
∫
Rd×Rn

σ1(q(t)− z) σ2(y) ∇zΨ(t, z , y) dy dz ,

∂2
ttΨ(t, x , y)− c2∆y Ψ(t, x , y) = −σ2(y)σ1(x − q(t))



A particle coupled to its environment

..q(t) = −∇qV (q(t))−
∫
Rd×Rn

σ1(q(t)− z) σ2(y) ∇zΨ(t, z , y) dy dz ,

∂2
ttΨ(t, x , y)− c2∆y Ψ(t, x , y) = −σ2(y)σ1(x − q(t))

Modeling parameters:
form functions σ1,σ2 (C∞c , non negative...), c: wave speed

Hamiltonian structure:

1
2 |

.q(t)|2 + V (q(t)) +
1
2

∫
Rd×Rn

(|∂tΨ|2 + c2|∇y Ψ|2)(t, x , y)dy dx

+

∫
Rd×Rn

σ1(x − q(t))σ2(y)Ψ(t, x , y) dy dx is conserved



Starting point: findings of De Bièvre’s group

Assume n = 3 (wave dimension) and c � 1 large enough
• If V is a confining potential, as time becomes large, q(t) converges
to the potential well and the velocity .q(t) tends to 0.
• If V (q) = F · q, there exists a limiting velocity v(F) and, for F
small enough, q(t) ∼ q∞ + v(F)t and .q(t)→ v(F).
It is remarkable that v(F) ∼ µF for small F ’s: linear response.
• Typical convergence rate e−γt/c3 .

These results bring out dissipative effects of the interaction with
medium: asymptotically it acts like a friction force and energy is
evacuated in the membranes.



Many particles: mean–field interpretation
I Consider a set of P particles

..qj(t) = −∇qV (qj(t))−∇qΦ(t, qj(t)),

∂2
ttΨ(t, x , y)− c2∆y Ψ(t, x , y) = −σ2(y)

P∑
k=1

σ1(x − qk(t)).

I Rescale the self–consistent potential

Φ(t, x) =

(
σ1 ∗

∫
Rn
σ2(y)Ψ(t, ·, y) dy

)
(x)→ 1

P∇Φ(t, x).

I Consider FP(t, x , v) =
1
P

P∑
j=1

δ(x = qj(t))⊗ δ(v =
.qj(t)) and let

P →∞
Further results on the P particles case and the behavior as t →∞,
P →∞: A. Vavasseur ’20
But the large time behavior is much more complex, with several
scenario, than for a single particle.



Kinetic version of the BdB model

We are finally led to

∂tF + v · ∇x F −∇x (V + Φ) · ∇v F = 0,
Φ(t, x) =

∫
Rd×Rn

σ1(x − z)σ2(y)Ψ(t, z , y) dz dy ,(
∂2

ttΨ− c2∆y Ψ
)
(t, x , y) = −σ2(y)

∫
Rd
σ1(x − z)ρ(t, z)dz ,

ρ(t, x) =

∫
Rd

F (t, x , v)dv .

Bear in mind that y ∈ Rn is a transverse variable: the model differs
from the coupling Vlasov-Wave (coming from Vlasov-Maxwell) dealt
with e. g. by Bouchut-Golse-Pallard’04.



Overview of the results
Energy conservation

d

dt

{
1
2

∫
Rd×Rn

|∂tΨ(t, x , y)|2 dx dy +
c2

2

∫
Rd×Rn

|∇y Ψ(t, x , y)|2 dx dy

+

∫
Rd×Rd

F (t, x , v)

(
|v |2

2 + V (x) + Φ(t, x)

)
dv dx

}
= 0.

“Vibrational+ Kinetic & Potential particle energy + Coupling”
I Existence–uniqueness

with general external potential x 7→ V (x) and data
(it slightly generalizes BdB’s analysis: n ∈ N \ {0}, P > 1
particles... )

I mean-field asymptotics
I asymptotic analysis
I equilibrium states and stability (by a variational approach)
I Landau damping



A (quite surprising) connection to the Vlasov–Poisson
equation
I Rescale the equation: large wave speed and strong coupling

∂2
ttΨε −

1
ε

∆y Ψε = −1
ε
σ2(y)

∫
σ1(x − z)ρε(t, z)dz .

I Formally as ε→ 0: −∆y Ψ(t, x , y) = −σ2(y) σ1 ∗ ρ(t, x):

Ψ(t, x , y) = Υ(y)σ1 ∗ ρ(t, x) with ∆y Υ(y) = σ2(y).

Therefore, we get Φ(t, x) = −Λσ1 ∗ σ1 ∗ ρ(t, x), with
Λ = −

∫
Υσ2(y)dy

(
=

∫
|∇y Υ(y)|2 dy > 0

)
.

I We can rescale as well σ1 → σ1,ε so that |σ̂1,ε(ξ)|2 ∼ 1
|ξ|2

. It
yields the ATTRACTIVE Vlasov–Poisson system.



From VW to attractive VP

I ∂tFε + v · ∇x Fε −∇x Φε · ∇v Fε = 0

I Φε = σ1,ε ∗
∫
σ2Ψε dy

I Ψε(t, x , y) ' Υ(y)σ1,ε ∗ ρε(t, x) with ∆y Υ = σ2

I Φε ' −Λσ1,ε ∗ σ1,ε ∗ ρε with Λ = −
∫

Υσ2 dy > 0,

I Φ̂ε → −
Λ

ξ2 ρ̂

It yields the ATTRACTIVE Vlasov–Poisson system:

∂tF + v · ∇x F −∇x Φ · ∇v F = 0,
∆Φ = Λρ, Λ > 0.

Intuition that VW inherits some features of the attractive VP system



A modified formulation
We rewrite the pb. as

∂tF + v · ∇x F = ∇v F · ∇x (ΦI + ΦS)

where we set

ΦI(t, x) =
1

(2π)n

∫
Rn

∫
Rd
σ1(x − z)

×
(

Ψ̂0(z , ξ) cos(c|ξ|t) + Ψ̂1(z , ξ)
sin(c|ξ|t)

c|ξ|

)
σ̂2(ξ) dz dξ

and

ΦS(t, x) = −
∫
Rd

Σ(x − z)

(∫ t

0
pc(t − s)ρ(s, z) ds

)
dz

with ρ(t, x) =

∫
F (t, x , v)dv , Σ = σ1 ∗ σ1,

and t 7→ pc(t) =
1

(2π)n

∫
Rn

sin(c|ξ|t)

c|ξ| |σ̂2(ξ)|2 dξ.

The kernel pc drives the dissipation mechanism (σ2, c and n)



Landau Damping
Given M : v 7→ M(v) > 0, with

∫
M dv = 1, ρ0M(v) defines a

homogeneous solution, with mass ρ0 of the VW system.

“Theorem”. Initial data F0(x , v) = ρ0M(v) + f0(x , v). Assume
I smooth data σ1, σ2,M, f0,
I n ≥ 3 odd
I the (L) stability criterion

There exists ε0 > 0 such that if ‖f0‖ ≤ ε0, then

ρ−
∫

F0 dv dx and ∇x Φ tend to 0 as t →∞.

Landau ’46 (linearized pb.)
Mouhot-Villani ’11 (torus)
Faou-Rousset ’16 (finite regularity)
Bedrossian-Masmoudi-Mouhot ’16-’18 (torus, whole space)
Han-Kwan-Nguyen-Rousset ’19 (whole space)



Quantum version: Schrödinger-Wave

i∂tu +
1
2∆x u =

(
σ1 ?

∫
Rn
σ2(y)ψ(t, x , y)dy

)
u,

∂2
ttψ − c2∆yψ = −c2σ2(y)σ1 ? |u|2

I Energy conservation

1
2

∫
|∇x u|2 dx +

1
2

∫ ( |∂tψ|2

c2 + |∇yψ|2
)
dy dx

+

∫
σ1(x − x ′)σ2(y)ψ(x ′, y)|u(x)|2 dy dx ′ dx .

I Well-posedness in the energy space
I Semi-classical analysis à la Lions-Paul makes the connection with

the kinetic model.



Connection to other models: preliminary observations
I The limit c →∞ leads to the Hartree model

i∂tu +
1
2∆x u = −

(
ΛΣ ? |u|2

)
u.

Many results known when Σ is replaced by δ0 (focusing NLS)
and in dimension 3 when Σ is replaced by 1

|x | (Newton-Hartree:
Lieb, Lenzmann...)
Intuition that the space dimension d might be important...

I But SW has no scale invariance, and it does not satisfy Galilean
invariance.

I Both systems admit Solitary Wave solutions:
(u, ψ) = (eiωtQ(x),Ψ(x , y))

−1
2∆x Q + ωQ + ΛΣ ? |Q|2Q = 0, −∆y Ψ = −σ2(y)σ1 ? |Q|2

Choquard’s equation... which has infinitely many solutions.



Ground states

Minimization of the energy

1
2

∫
|∇x u|2 dx +

1
2

∫ ( |χ|2
c2 + |∇yψ|2

)
dy dx

+

∫
σ1(x − x ′)σ2(y)ψ(x ′, y)|u(x)|2 dy dx ′ dx ,

with a mass constraint ‖u‖2L2 = M.
I Mass threshold:

the minimal energy is 0 for M < M0; it is negative when M > M0
and it is reached at (Q,Ψ, 0), solution of Choquard’s equation
for a certain ω.

I Regularity and radial symmetry... but uniqueness is open !



Orbital stability
I P-L. Lions’ concentration-compactness approach leads to a weak

stability statement: starting close to a ground state, the solutions
remains close to the manifold on all ground states.

I Strengthened results can be obtained by linearization and
spectral analysis:

‖u(t)−eiγ(t)Q(·−x(t))‖2H1+‖∇yψ(t)−∇y Ψ(·−x(t))‖2L2+
1
c2 ‖∂tψ‖2L2 ≤ ε.

The proof relies on a perturbation argument from Lenzmann’s
analysis of the case where d = 3 and Σ→ 1

|x | .
Critical step: coercivity estimate.

I The stability is shown for an admissible class of relevant form
functions σ1 such that by rescaling σ1 ? σ1 approaches 1

|x | .

Surprising fact: the convolution with the smooth kernel Σ is much
harder than the case with 1

|x | !



Numerical experiments

Initial data u0(x) = Q(x)eip0/M2 with |p0| � 1.
Simplified dynamics:

M .q = p,
.p = −∇x

∫
Rd

(∫
Rd
σ1(x − x ′)

∫
Rd
σ2(y)ψ(t, x ′, y)dy dx ′

)
Q2(x − q(t))dx ,

∂2
ttψ − c2∆yψ = −c2σ2(y)

∫
Rd
σ1 ? (x − x ′)Q2(x ′ − q) dx ′.

I p, q close to the center of mass and the impulsion defined from
the SW system

I analogy with the classical dynamics
I |q(t)− q∞|+ |p(t)| ≤ Ce−λt/c
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A modified formulation
We rewrite the pb. as

∂tF + v · ∇x F = ∇v F · ∇x (ΦI + ΦS)

where we set De1

ΦI(t, x) =
1

(2π)n

∫
Rn

∫
Rd
σ1(x − z)

×
(

Ψ̂0(z , ξ) cos(c|ξ|t) + Ψ̂1(z , ξ)
sin(c|ξ|t)

c|ξ|

)
σ̂2(ξ) dz dξ

and

ΦS(t, x) = −
∫
Rd

Σ(x − z)

(∫ t

0
pc(t − s)ρ(s, z) ds

)
dz

with ρ(t, x) =

∫
F (t, x , v)dv , Σ = σ1 ∗ σ1,

and t 7→ pc(t) =
1

(2π)n

∫
Rn

sin(c|ξ|t)

c|ξ| |σ̂2(ξ)|2 dξ.



VP vs VW

Vlasov eq.
∂tF + v · ∇x F −∇x Φ · ∇v F = 0.

with either
VP case: Φ(t, x) = Σ ? ρ(t, x)

VW case: Φ(t, x) = ΦI(t, x) +

∫ t

0
pc(t − s)Σ ? ρ(s, x)ds

I Effect of the initial data for the vibrational field:
decay related to the dispersion of the wave eq.

I “Memory effect” through pc
interplay between dispersion (depends on n and c)
and regularity of the coefficients σ1, σ2



The kernel pc
Let W solution of �t,zW = 0, (W , ∂tW )

∣∣
t=0 = (0, σ2)

pc(t) =
1
c

∫
Rn
σ2(z)W (ct, z) dz =

∫
Rn

sin(c|ζ|t)

c|ζ| |σ̂2(ζ)|2 dζ

(2π)n .

Energy dissipation mechanisms ←→ decay of pc .

When n ≥ 3, pc is integrable and satisfies∫ ∞
0

pc(t)dt =
Λ

c2 , with Λ =

∫
Rn

|σ̂2(ζ)|2

|ζ|2
dζ <∞,

In dimension n = 1, a direct computation by means of D’Alembert
formula shows that

pc(t) =
1

2c

∫ +∞

−∞
σ2(z)

(∫ z+ct

z−ct
σ2(s)ds

)
dz −−−→

t→∞

1
2c ‖σ2‖2L1

z
> 0.



The kernel pc , ctn’d

pc(t) =
1
c

∫
Rn
σ2(z)W (ct, z) dz , �t,zW = 0 (W , ∂tW )

∣∣
t=0 = (0, σ2)

If n ≥ 3 odd, σ2 ∈ C0
c (Rn) with supp(σ2) ⊂ B(0,R2), then pc has a

compact support included in [0, 2R2
c ] and |pc(t)| . 1/c.

t

x

T

B(0,R)

Assumptions on σ2 can be relaxed, and including for even
dimension n ≥ 4 we can obtain algebraic decay of pc



A modified formulation Bk1

The splitting of Φ(t, x) =

(
σ1 ∗

∫
Rn
σ2(y)Ψ(t, ·, y) dy

)
(x) with

(∂2
tt−c2∆y )Ψ(t, x , y) = −σ2(y) σ1∗ρ(t, x), (Ψ, ∂tΨ)

∣∣∣
t=0

= (Ψ0,Ψ1)

relies on the linearity of the wave eq.:

Φ = ΦI + ΦS

with ΦI associated to the free wave equation

(∂2
tt − c2∆y )Υ(t, x , y) = 0, (Υ, ∂tΥ)

∣∣∣
t=0

= (Ψ0,Ψ1)

(or with data σ1 ∗ (Ψ0,Ψ1)), and ΦS associated to the sol. of

(∂2
tt − c2∆y )Ψ̃(t, x , y) = −σ2(y) σ1 ∗ ρ(t, x), (Ψ̃, ∂tΨ̃)

∣∣∣
t=0

= 0

Proceeding this way, we distinguish the influence of the initial data
and the influence of the coupling.




