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Large stochastic systems of interacting particles.

P.-E. Jabin in collaboration with D. Bresch, Z. Wang
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From very small to very large “particles”

Many-particle or multi-agent systems are used in a widespread
range of applications

Plasmas: Particles are ions or electrons.

Astrophysics: Particles are dark matter particles, galaxies or
galaxy clusters...

Fluids: Point vortices, suspensions...

Bio-mechanics: Medical aerosols in the respiratory tract,
suspensions in the blood...

Bio-Sciences: Collective behaviors of animals, swarming or
flocking, but also dynamics of micro-organisms, chemotaxis,
cell migration, neural networks...

Social Sciences: Opinion dynamics, consensus formation...

Economics: Mean-field games...
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Very large particles: Galaxies

Figure: Credits: CNRS, France; Numerical simulation of the formation of
large scale structures in the universe: Dynamics of galaxies moving to the
central concentration.
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Or very small: Biological neurons

Figure: Credits: CNRS Bordeaux, France; 2D reconstruction of rat
hippocampus, marked for cytoskeleton protein.
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Interacting particles

Consider N particles, identical and interacting two by two through
the kernel K. For X;(t) € M9 the position of the i-th particle,

N
1
dX; = NZ;K(X,-—XJ-)dt—l—\/ZadW,-,
J:

with the mean field scaling and for N independent Brownian
motions W. For simplicity take K(0) = 0: No self-interaction.

® Main question: Behavior of the system for N >> 1.

® For simplicity in the talk, o is fixed but the case 0 = oy is
also of interest, with for example o ~ % playing a special role
for Coulomb gases.
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Some of the Existing Literature: The deterministic setting

The previous ideas have been considerably extended with some
success in the deterministic case o = 0:

The Lipschitz case is still important to further understand the
framework. See for example Golse 16, Golse-Mouhot-Ricci 13,
Hauray-Mischler 14, Mischler-Mouhot 13...

2d incompressible Euler system in Goodman-Hou-Lowengrub
90, Schochet, with a general result by Hauray 09.

Deterministic Riesz kernels recently in Duerinckx 16,
Duerinckx-Serfaty 18 and Serfaty 19.

2nd order systems are less well understood: Hauray-Jabin 09
and 15 for K(x) << |x|7, Lazarovici and Pickl 17, Pickl 19.

Singularity not at the origin: Carrillo-Choi-Hauray-Salem 18
for swarming models.

Collisional models (Boltzmann) are hard: Lanford 75, and
Bodineau-Gallagher-Saint-Raymond-Texier.
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Some of the Existing Literature: The stochastic setting

In contrast, the stochastic case with op > 0 is much less well
understood
® | ocally Lipschitz interactions in Bolley-Canizo-Carrillo 11,
Bossy-Faugeras-Talay 15.
e For 2d Navier-Stokes, if K = V1V, only qualitative
convergence by Osada 85, Fournier-Hauray-Mischler 16.
® For the Patlak-Keller-Segel system, various attempts by
Cattiaux-Pédeéches 16, Godinh-Quininao 15,
Haskovec-Schmeiser 11... Recently Fournier-Jourdain 17
proved some limit for A < 1 but no propagation of chaos. See
also Bolley-Chafai-Fontbona 18 for the repulsive Keller-Segel.
® Recent result by Rosenzweig extending the Serfaty method to
some stochastic settings.
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Cells dynamics under chemotaxis

BIOSCIENCE

[

Figure: Credits: Essen Bio-Science from Labtube; Directional migration
of Jurkat cells toward the chemo-attractant SDF1a, visualized on an
IncuCyte ClearView 96-well Cell Migration Plate

N
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Elementary chemotaxis models for micro-organisms

Consider N micro-organisms following the gradient of the
concentration c(t, x) of some chemical. In the simplest model,
their velocities solve

dX; = Ve(t, Xi(t)) dt + V2 o dW;,

where the independent Wiener processes W; may represent
random changes in direction.
Assume now that the chemical is also produced by the organisms
and diffuses fast:

—Ac = Z d(x + possible source.

—— Toy model from the biological point of view but captures the
singularity of the interaction.
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Elementary chemotaxis models for micro-organisms

Consider N micro-organisms following the gradient of the
concentration ¢(t, x) of some chemical. In the simplest model,
their velocities solve

X; = — NZ‘X X‘zdt—k\/ o dWi,

where the independent Wiener processes W; may represent
random changes in direction.
Assume now that the chemical is also produced by the organisms
and diffuses fast: In dimension 2

c(t,x) = ——Zlog|x—X|+5(tx)

— Toy model from the biological point of view but captures the
singularity of the interaction.
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The Patlak-Keller-Segel system

The mean-field limit is the well known Patlak-Keller-Segel system
(1953 and 1970)

Otp+div(pu) =0 Ap,
u=Ve, —Ac=27mAp.

Again not a very accurate model of chemotaxis but a good
prototype of what relevant models may look like.

Similar to the so-called Smoluchowski-Poisson equation in
astrophysics, cf. Chandrasekhar 1943.
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The Patlak-Keller-Segel system

The mean-field limit is the well known Patlak-Keller-Segel system
(1953 and 1970)

Otp+div(pu) =0 Ap,
u=Vec, —Ac=27mAp.

Kernel with the same singularity as the Biot-Savart law but very
different structure: Hamiltonian for Navier-Stokes vs singular
attractive gradient flow.

— Solutions may not exist for all times as the singular attractive
interactions can lead to concentration: From Dolbeault-Perthame
2004 for example,

® Global existence if A <40 (or A <2do).
® Always blow-up if A > 40.
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A new statistical approach
Instead of looking at trajectories, we consider

pn(t, x1, ..., xn) : joint law of the positions Xi(t),..., Xn(t)
at time t.
It contains most of the statistical information on the system but

not all the information: Correlations in time are lost and it may be
difficult to reconstruct trajectories of the system.

Aim: Compare py with the tensorized

- N - —QN

pn = Myt x;) = 7%,

which is the joint law of the i.i.d. sequence X;, in terms of their
observables or marginals:

- Rk
PN,k = / PN ka+]_ . dXN — PNk = p® .
Md (N—k)
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The Gibbs entropy is critical

We based our method on the scaled relative entropy
_ 1 PN

Hulonln)(6) = [ ontog 22

nnd PN

Thanks to the sub-additive nature of the entropy, it controls the
marginals

1 PNk 1 PN
— lo AR log —.
k/ndeN,k g ﬁ®k =N nNdPN gﬁN

For fixed k, the Csiszar-Kullback-Pinsker inequality bounds

lonk — P¥ [lix < C\/k Hu(onlpn)(t).

It has the right initial scaling: If the X,-0 are i.i.d. with law p° then

0
Huv(on|pw)(t = 0) = / P log 2.
nd p
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The relative entropy for many-particle systems

® Uses of the full relative entropy between trajectories: Ben
Arous-Zeitouni 99 for smooth Langevin dynamics, and Ben
Arous-Tannenbaum-Zeitouni 03, Fontbona-Jourdain 16.

® Some connections with Random Matrix Theory, Erdos-Yau 17.

® Closest to the method here is Yau 91 concerning the
hydrodynamics of Ginzburg-Landau models.
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How to modify the relative entropy approach
For gradient flows where K = —V® such as the
Patlak-Keller-Segel, we need to find the right object that still sees
the advection part of the operator Ly in a anti-symmetrical
manner.
We introduce a weighted relative entropy

PN | PN 1 N pn(t, XN) Gy (8, XN o
En = — t, X™M) I aX
(& GpN> 0 X108 iy S )X

through the Gibbs equilibrium of the system, and its equivalent
mean-field representation




The mean-field limit An example of application A new approach
000000 000 0000@e00000

Our new result

Consider even potentials ®(—x) = d(x), s.t.

® Any possibly singular potential ® € L1(1N?) with at most a
mildly singular attractive part

d(x)>—-C— )\Iog‘| for A <2do, (1)

and some structure on the repulsive and potentially very
singular part such as ® ~ |x| =X

® We can be more precise by asking & = ¢, + &, with
(6 C

d, >0, |Ved () <C + :
= ‘E ()’ 1+|§| 1+|§|d+1

()
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Our new result

Theorem

Assume K = —V & with ® as above. Consider p a smooth enough
solution with inf p > 0. There exists C > 0 and 6§ > 0 s.t. for

pn = NN p(t,x;), and for the joint law py on NN of any entropy
solution to the SDE system, for o fixed

() + | En(2)] < €1 (Hu(e = 0) + En(e =O)| + 5 ).

Hence if H + |EJ| < C N=Y, for any fixed marginal PN,k

low s = My 5, x0) [ reey < Crse N7,
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A modified free energy
One may also write

PN | PN

En(—
ut G GﬁN

) = Hn(pnlpn) + Kn(GnlGsy),
where

i 1 p t, XN
/HN(pN‘pN) = N/ndeN(t,XNNOg(M) dXN

is exactly the relative entropy introduced in J.-Wang and

1 GN(t,XN)
Kn(Gn|Gsy) = —N/ndN pn(t, X") '0g(m) dx"

is the expectation of the modulated potential energy from
Duerincx-Serfaty.
— Ep is a modulated free energy for the system.
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Propagating Ey

Because it is based on the free energy, Ey has the right algebraic
structure with for any ® even that

d PN | PN /
~_Ep _Z
dt < Gy GPN > apn

= / / Vo(x —y)- <v log —(x) — Vlog p(y)>
2 Jnav Jpe dn{x#y} Gp p
(dpn — dp)**dp,

Gy |?
GﬁN

VIog_——VIo
PN

where iy = 3 SN 8(x — x;) is as before the empirical measure
and where we denote

1 _ 1 __
Gﬁ(t,x):exp<—JV*p(x)+2U /rld V*pp).
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Another large deviation inequality
Theorem
For & > —C — X log & with A\ < 2d o, define the functional

Ix]

1

Fo(un) = ——
i) = =3, M2 {xsty )}

¢(X - y) HlX*}/ISn (dﬁ - d,U/N)®27

then there exists 7 > 0 s.t.

1 1 C
— log Zy = — Iog/ py eV TFl) gxN < =
N N naw N 2@dTT)

— A delicate extension of the logarithmic Hardy, Littlewood,
Sobolev inequality to remove the singular parts and then use a
large deviation control of the type: For any A < 2do

A _
/ dps log & + = log [x — y| (dn — dp)*2 > 0.
P 0 Jo<|x—y|<n
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Conclusions

e Using the right physics is the key...

® The method provides a statistical control on large systems
with a large class of attractive-repulsive interactions.

® We obtain explicit rates of convergence, which are optimal for
point vortices but may not be for Keller-Segel.

Many open questions

® Systems with different structures: Non Hamiltonian, non
gradient flows?

® Non-exchangeable systems, such as neuron networks?
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