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From very small to very large “particles”

Many-particle or multi-agent systems are used in a widespread
range of applications

• Plasmas: Particles are ions or electrons.

• Astrophysics: Particles are dark matter particles, galaxies or
galaxy clusters...

• Fluids: Point vortices, suspensions...

• Bio-mechanics: Medical aerosols in the respiratory tract,
suspensions in the blood...

• Bio-Sciences: Collective behaviors of animals, swarming or
flocking, but also dynamics of micro-organisms, chemotaxis,
cell migration, neural networks...

• Social Sciences: Opinion dynamics, consensus formation...

• Economics: Mean-field games...



The mean-field limit An example of application A new approach

Very large particles: Galaxies

Figure: Credits: CNRS, France; Numerical simulation of the formation of
large scale structures in the universe: Dynamics of galaxies moving to the
central concentration.
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Or very small: Biological neurons

Figure: Credits: CNRS Bordeaux, France; 2D reconstruction of rat
hippocampus, marked for cytoskeleton protein.
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Interacting particles

Consider N particles, identical and interacting two by two through
the kernel K . For Xi (t) ∈ Πd the position of the i-th particle,

d Xi =
1

N

N∑
j=1

K (Xi − Xj) dt +
√

2σ dWi ,

with the mean field scaling and for N independent Brownian
motions W t

i . For simplicity take K (0) = 0: No self-interaction.

• Main question: Behavior of the system for N >> 1.

• For simplicity in the talk, σ is fixed but the case σ = σN is
also of interest, with for example σ ∼ 1

N playing a special role
for Coulomb gases.
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Some of the Existing Literature: The deterministic setting
The previous ideas have been considerably extended with some
success in the deterministic case σ = 0:

• The Lipschitz case is still important to further understand the
framework. See for example Golse 16, Golse-Mouhot-Ricci 13,
Hauray-Mischler 14, Mischler-Mouhot 13...

• 2d incompressible Euler system in Goodman-Hou-Lowengrub
90, Schochet, with a general result by Hauray 09.

• Deterministic Riesz kernels recently in Duerinckx 16,
Duerinckx-Serfaty 18 and Serfaty 19.

• 2nd order systems are less well understood: Hauray-Jabin 09
and 15 for K (x) << |x |−1, Lazarovici and Pickl 17, Pickl 19.

• Singularity not at the origin: Carrillo-Choi-Hauray-Salem 18
for swarming models.

• Collisional models (Boltzmann) are hard: Lanford 75, and
Bodineau-Gallagher-Saint-Raymond-Texier.
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Some of the Existing Literature: The stochastic setting

In contrast, the stochastic case with σN > 0 is much less well
understood

• Locally Lipschitz interactions in Bolley-Cañizo-Carrillo 11,
Bossy-Faugeras-Talay 15.

• For 2d Navier-Stokes, if K = ∇⊥V , only qualitative
convergence by Osada 85, Fournier-Hauray-Mischler 16.

• For the Patlak-Keller-Segel system, various attempts by
Cattiaux-Pédèches 16, Godinh-Quininao 15,
Haskovec-Schmeiser 11... Recently Fournier-Jourdain 17
proved some limit for λ < 1 but no propagation of chaos. See
also Bolley-Chafäı-Fontbona 18 for the repulsive Keller-Segel.

• Recent result by Rosenzweig extending the Serfaty method to
some stochastic settings.
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Cells dynamics under chemotaxis

Figure: Credits: Essen Bio-Science from Labtube; Directional migration
of Jurkat cells toward the chemo-attractant SDF1a, visualized on an
IncuCyte ClearView 96-well Cell Migration Plate.
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Elementary chemotaxis models for micro-organisms

Consider N micro-organisms following the gradient of the
concentration c(t, x) of some chemical. In the simplest model,
their velocities solve

dXi = ∇c(t,Xi (t)) dt +
√

2σ dWi ,

where the independent Wiener processes Wi may represent
random changes in direction.
Assume now that the chemical is also produced by the organisms
and diffuses fast:

−∆c =
α

N

∑
i

δ(x − Xi ) + possible source.

−→ Toy model from the biological point of view but captures the
singularity of the interaction.
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Elementary chemotaxis models for micro-organisms

Consider N micro-organisms following the gradient of the
concentration c(t, x) of some chemical. In the simplest model,
their velocities solve

dXi = − λ
N

∑
j 6=i

Xi − Xj

|Xi − Xj |2
dt +

√
2σ dWi ,

where the independent Wiener processes Wi may represent
random changes in direction.
Assume now that the chemical is also produced by the organisms
and diffuses fast: In dimension 2

c(t, x) = − λ
N

∑
i

log |x − Xi |+ S(t, x).

−→ Toy model from the biological point of view but captures the
singularity of the interaction.
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The Patlak-Keller-Segel system

The mean-field limit is the well known Patlak-Keller-Segel system
(1953 and 1970) {

∂t ρ̄+ div (ρ̄ u) = σ∆ ρ̄,

u = ∇c, −∆c = 2π λ ρ̄.

Again not a very accurate model of chemotaxis but a good
prototype of what relevant models may look like.
Similar to the so-called Smoluchowski-Poisson equation in
astrophysics, cf. Chandrasekhar 1943.
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The Patlak-Keller-Segel system

The mean-field limit is the well known Patlak-Keller-Segel system
(1953 and 1970) {

∂t ρ̄+ div (ρ̄ u) = σ∆ ρ̄,

u = ∇c, −∆c = 2π λ ρ̄.

Kernel with the same singularity as the Biot-Savart law but very
different structure: Hamiltonian for Navier-Stokes vs singular
attractive gradient flow.
−→ Solutions may not exist for all times as the singular attractive
interactions can lead to concentration: From Dolbeault-Perthame
2004 for example,

• Global existence if λ ≤ 4σ (or λ ≤ 2 d σ).

• Always blow-up if λ > 4σ.
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A new statistical approach
Instead of looking at trajectories, we consider

ρN(t, x1, . . . , xN) : joint law of the positions X1(t), . . . ,XN(t)

at time t.

It contains most of the statistical information on the system but
not all the information: Correlations in time are lost and it may be
difficult to reconstruct trajectories of the system.

Aim: Compare ρN with the tensorized

ρ̄N = ΠN
i=1ρ̄(t, xi ) = ρ̄⊗N ,

which is the joint law of the i.i.d. sequence X̄i , in terms of their
observables or marginals:

ρN,k =

∫
Πd (N−k)

ρN dxk+1 . . . dxN ←→ ρ̄N,k = ρ̄⊗k .
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The Gibbs entropy is critical
We based our method on the scaled relative entropy

HN(ρN |ρ̄N)(t) =
1

N

∫
ΠN d

ρN log
ρN
ρ̄N
.

Thanks to the sub-additive nature of the entropy, it controls the
marginals

1

k

∫
Πk d

ρN,k log
ρN,k
ρ̄⊗k

≤ 1

N

∫
ΠN d

ρN log
ρN
ρ̄N
.

For fixed k , the Csiszár-Kullback-Pinsker inequality bounds

‖ρN,k − ρ̄⊗k‖L1 ≤ C
√
k HN(ρN |ρ̄N)(t).

It has the right initial scaling: If the X 0
i are i.i.d. with law ρ0 then

HN(ρN |ρ̄N)(t = 0) =

∫
Πd

ρ0 log
ρ0

ρ̄0
.
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The relative entropy for many-particle systems

• Uses of the full relative entropy between trajectories: Ben
Arous-Zeitouni 99 for smooth Langevin dynamics, and Ben
Arous-Tannenbaum-Zeitouni 03, Fontbona-Jourdain 16.

• Some connections with Random Matrix Theory, Erdös-Yau 17.

• Closest to the method here is Yau 91 concerning the
hydrodynamics of Ginzburg-Landau models.
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How to modify the relative entropy approach
For gradient flows where K = −∇Φ such as the
Patlak-Keller-Segel, we need to find the right object that still sees
the advection part of the operator LN in a anti-symmetrical
manner.
We introduce a weighted relative entropy

EN

(
ρN
GN
| ρ̄N
Gρ̄N

)
=

1

N

∫
ΠdN

ρN(t,XN) log
(ρN(t,XN)

GN(XN)

Gρ̄N (t,XN)

ρ̄N(t,XN)

)
dXN ,

through the Gibbs equilibrium of the system, and its equivalent
mean-field representation

GN(t,XN) = exp

(
− 1

2Nσ

∑
i 6=j

Φ(xi − xj)

)
,

Gρ̄N (t,XN) = exp

(
− 1

σ

N∑
i=1

Φ ? ρ̄(xi ) +
N

2σ

∫
Πd

Φ ? ρ̄ ρ̄

)
.
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Our new result

Consider even potentials Φ(−x) = Φ(x), s.t.

• Any possibly singular potential Φ ∈ L1(Πd) with at most a
mildly singular attractive part

Φ(x) ≥ −C − λ log
1

|x |
for λ < 2 d σ, (1)

and some structure on the repulsive and potentially very
singular part such as Φ ∼ |x |−k .

• We can be more precise by asking Φ = Φa + Φr with

Φ̂r ≥ 0, |∇ξΦ̂r (ξ)| ≤ C
Φ̂r (ξ)

1 + |ξ|
+

C

1 + |ξ|d+1
,

|∇Φa(x)| ≤ C

|x |
.

(2)
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Our new result

Theorem
Assume K = −∇Φ with Φ as above. Consider ρ̄ a smooth enough
solution with inf ρ̄ > 0. There exists C > 0 and θ > 0 s.t. for
ρ̄N = ΠN

i=1ρ̄(t, xi ), and for the joint law ρN on ΠdN of any entropy
solution to the SDE system, for σ fixed

HN(t) + |EN(t)| ≤ eCρ̄ ‖K‖ t
(
HN(t = 0) + |EN(t = 0)|+ C

Nθ

)
.

Hence if H0
N + |E 0

N | ≤ C N−θ, for any fixed marginal ρN,k

‖ρN,k − Πk
i=1ρ̄(t, xi )‖L1(Πk d ) ≤ CT ,ρ̄,k N

−θ/2.
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A modified free energy

One may also write

EN(
ρN
GN
| ρ̄N
Gρ̄N

) = HN(ρN |ρ̄N) +KN(GN |Gρ̄N ),

where

HN(ρN |ρ̄N) =
1

N

∫
ΠdN

ρN(t,XN) log
(ρN(t,XN)

ρ̄N(t,XN)

)
dXN

is exactly the relative entropy introduced in J.-Wang and

KN(GN |Gρ̄N ) = − 1

N

∫
ΠdN

ρN(t,XN) log
( GN(t,XN)

Gρ̄N (t,XN)

)
dXN

is the expectation of the modulated potential energy from
Duerincx-Serfaty.
−→ EN is a modulated free energy for the system.
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Propagating EN

Because it is based on the free energy, EN has the right algebraic
structure with for any Φ even that

d

dt
EN

(
ρN
GN
| ρ̄N
Gρ̄N

)
≤ − σ

N

∫
Πd N

dρN

∣∣∣∣∇ log
ρN
ρ̄N
−∇ log

GN

Gρ̄N

∣∣∣∣2
− 1

2

∫
ΠdN

∫
Π2 d∩{x 6=y}

∇Φ(x − y) ·
(
∇ log

ρ̄

Gρ̄
(x)−∇ log

ρ̄

Gρ̄
(y)

)
(dµN − d ρ̄)⊗2dρN ,

where µN = 1
N

∑N
i=1 δ(x − xi ) is as before the empirical measure

and where we denote

Gρ̄(t, x) = exp

(
− 1

σ
V ? ρ̄(x) +

1

2σ

∫
Πd

V ? ρ̄ ρ̄

)
.
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Another large deviation inequality

Theorem
For Φ ≥ −C − λ log 1

|x | with λ < 2 d σ, define the functional

Fη(µN) = − 1

2σ

∫
Π2d∩{x 6=y}

Φ(x − y) I|x−y |≤η (d ρ̄− dµN)⊗2,

then there exists η > 0 s.t.

1

N
logZN =

1

N
log

∫
ΠdN

ρ̄N eN γ F (µN) dXN ≤ C

N
1

2 (2d+1)

.

−→ A delicate extension of the logarithmic Hardy, Littlewood,
Sobolev inequality to remove the singular parts and then use a
large deviation control of the type: For any λ < 2 d σ∫

dµ log
µ

ρ̄
+

λ

2σ

∫
0<|x−y |<η

log |x − y | (dµ− d ρ̄)⊗2 ≥ 0.
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Conclusions

• Using the right physics is the key...

• The method provides a statistical control on large systems
with a large class of attractive-repulsive interactions.

• We obtain explicit rates of convergence, which are optimal for
point vortices but may not be for Keller-Segel.

Many open questions

• Systems with different structures: Non Hamiltonian, non
gradient flows?

• Non-exchangeable systems, such as neuron networks?
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