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The Gross-Pitaevskii equation (GPE)

Simplest ”one particle” approximation : Gross-Pitaevskii equation
(i.e. cubic NLS with confinement potential)

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m
∇2 + Vext(x, t) + g |ψ(x, t)|2

)
ψ(x, t)

Vext = time dependent confining potential : anisotropic (”cigar
shape” BEC)

coupling constant: g = N · 4π~2asm
(Note : g is somewhat a modeling parameter,
g positive or negative : ”defocussing” or ”focussing” NLS !)

normalization: ‖ψ(·, t)‖ =
∫
|ψ(x, t)|2dx = 1

ψ(x, t = 0) = ψI = Ground state for Vext(t = 0) parabolic



”Hartree Condensate ansatz” for N-body problem

GPE is the simplest ”one particle” approximation of
the ”N particle Schrödinger equation with contact interaction”

”Bosons” : class of quantum particles,
many particle wavefunction is symmetrized.
Example : photons, phonons, atoms

”Condensate” : N bosons occupy the same quantum state

Ψ(x1, ..., xN) =
∏

1≤i≤N

ψ(xi )

Note : This is sometimes called ”Hartree ansatz”,
indeed it is a special case of the general Hartree ansatz, where the
one particle wavefunctions ψj(xi ) are different.



The extended Gross-Pitaevskii equation (eGPE)
Simulation of dipolar Bose-Einstein condensates

Extended Gross-Pitaevskii equation

i~
∂

∂t
ψ(x , t) = (GPE )ψ(x , t) +

[
Φ(x , t) + γqf |ψ(x , t)|3

− i~L3
2
|ψ(x , t)|4

]
ψ(x , t)

with

Φ(x , t) =
µ0µ

2

4π

∫
U(x − x ′)|ψ(x ′, t)|2 dx ′

describing dipole-dipole interactions

γqf |ψ(x , t)|3 is the Lee-Huang-Yang beyond mean-field correction to
include the effect of quantum fluctuations

ı~L3

2 |ψ(x , t)|4 models three-body loss processes



The extended Gross-Pitaevskii equation
Simulation of dipolar Bose-Einstein condensates

Extended Gross-Pitaevskii equation

i~
∂

∂t
ψ(x , t) = (GPE )ψ(x , t) +

[
Φ(x , t) + γqf |ψ(x , t)|3

− ı~L3
2
|ψ(x , t)|4

]
ψ(x , t)

Numerical solution
Time-splitting spectral method (split-step Fourier method) [Weizhu Bao,
Shi Jin, P. Markowich 2002]

The dipolar interaction potential Φ(x , t) can be evaluated with spectral
accuracy using the fast convolution with free-space Green’s functions
approach [F. Vico, L. Greengard, M. Ferrando 2016]
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Extended Gross-Pitaevskii equation

i~
∂

∂t
ψ(x , t) = (GPE )ψ(x , t) +

[
Φ(x , t) + γqf |ψ(x , t)|3

− ı~L3
2
|ψ(x , t)|4

]
ψ(x , t)

Optimal control problem
Find time-evolution of the s-wave scattering length as and the trap
frequencies ωρ and ωz such that

J (ψ(T )) =
(
N0 − |〈ψd , ψ(T )〉|

)2
is minimized

desired state ψd , final time T , number of atoms N0
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Numerical solution
Parameterize the control inputs as , ωρ and ωz by means of B-spline
functions

u(c , t) =
K∑

k=1

ckNk,p(t),

where Nk,p denotes the kth B-spline basis function of polynomial order p

Solve a finite dimensional optimization problem, i.e., determine an
optimal coefficient vector c collecting the B-spline coefficients of all
control inputs

Speed up the solution process by employing a multilevel (hierarchical)
basis approach, i.e., solve a sequence of optimization tasks with ever
increasing complexity

J.-F. Mennemann, T. Langen, L. Exl, and N.J. Mauser, ”Optimal control

of the self-bound dipolar droplet formation process”, Comput. Phys.

Commun. 244, 205 (2019) )
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Time-evolution of the density after final time T
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Top row: optimized control inputs, bottom row: linear control inputs



Experiment: Matter-wave interference in a double well

Analogous to the double-slit experiment for photons (light),
but now for atoms (rubidium) of a Bose-Einstein condensate (BEC)

Creation of BEC at extremely low temperatures (∼ 10 nK),
sophisticated cooling techniques necessary

BEC confined in a trap: harmonic potential well, realized with
combination of static and radio-frequency (RF) magnetic
fields, numerical simulation starts here

Splitting the condensate: splitting single well → double well
by slowly changing parameters of RF-currents

Free expansion: Sudden switch off of the external potential,
recombine BEC clouds in time-of-flight expansion

Measurement of interference pattern, . . . (show movie of
experiment)



Figure: Left: Photograph of the macroscopic wire structures mounted
underneath the atom chip. Right: Simulation of the experimental set-up.
A Bose-Einstein condensate (blue) is created and trapped by a
current-carrying wire (gold) mounted on the silicon surface of the atom
chip (grey). The laser beam (red) from a CCD camera indicates the
imaging assembly. Allocated by the AtomChip Group.



Figure: Schematic of the three-wire rf trap (a) top view, (b) side view
from the longitudinal direction. Allocated by the AtomChip Group.



Rescaling of Domain

Free flight phase:

Fast expansion of condensate ⇒ expansion of computational
domain

Density low ⇒ dynamics of condensate may be modelled by
the free (linear) Schrödinger equation (g = 0)

Kinetic step implemented with “pruned” FFTs



Simulation of a BEC at finite temperature

Numerical verification of the main experimental findings in a recent
experiment:

M. Pigneur, T. Berrada, M. Bonneau, T. Schumm, E. Demler, and J.

Schmiedmayer, ”Relaxation to a Phase-locked Equilibrium State in a

One-dimensional Bosonic Josephson Junction”, Phys. Rev. Lett. 120,

173601 (2018).

Top: external parameters, center: density and phase, bottom: time of flight



GPE beyond zero temperature : ”stochastic GPE”

Gross-Pitaevskii Equation with ”stochasticity” :

A) ”stochastic GPE” (SGPE)

i~
∂

∂t
ψ(x , t) = (GPE )ψ(x , t) + Ω(x , t) + iVabsorb(x , t)ψ(x , t)

where Ω(x , t) = white noise in x and t,

and possibly this comes with an ”absorbing potential”
iVabsorb(x , t):

Note : in more than 1-d the ”wave-function” ψ is not in L2 but
rather a ”rough path”.



GPE beyond zero temperature :
”Truncated Wigner Approach”

Gross-Pitaevskii Equation with ”stochasticity”:

B) ”GPE with random initial data”

i~
∂

∂t
ψ(x, t) = (GPE )ψ(x, t)

,

with initial data a probability distribution for the amplitude A
and/or phase φ

ψ(x , t = 0) = A(x , t)exp(iφ(x , t, ))

Take a ”realization Ak , φk of the random distribution of
A(x , t = 0) and/or φ(x , t = 0)
and compute the deterministic evolution.
Then ”average” over a sufficiently large ”sample” (k = O(500)).



Simulation of a BEC at finite temperature
GPE = ”mean field” = ”Classical fields” simulation

Solve the Gross-Pitaevskii equation (GPE)

i~
∂

∂t
ψ(r , t) =

[
− ~2

2m
∇2 + V (r , t) +

4π~2as
m
|ψ(r , t)|2

]
ψ(r , t),

ψ(·, 0) = ψ0(r)

many times using a different initial condition ψ0(r) in each single run.

The initial condition of every single run is prepared in a two-stage
process:

First, compute a ground state solution ψ0(r) of the GPE using
imaginary time propagation. Take into account atom number
fluctuations by normalizing ψ0(r) to a desired atom number N from
a given distribution N (N̄, σ2

N).

Second, imprint thermal noise to ψ0(r) by means of a suitable
thermal noise sampling process.



Simulation of a BEC at finite temperature
GPE simulation

Different methods are available to imprint thermal noise to ψ0(r):

The Metropolis-Hastings algorithm

Pjotrs Grǐsins and Igor E. Mazets, ”Metropolis-Hastings thermal

state sampling for numerical simulations of Bose-Einstein

condensates”, Computer Physics Communications 185 (2014).

The stochastic Gross-Pitaevskii equation

P. B. Blakie, A. Bradley, M. Davis, R. Ballagh, and C. Gardiner,

”Dynamics and statistical mechanics of ultra-cold Bose gases using

c-field techniques”, Adv. Phys. 57, 363 (2008).

The second approach turned out to be more efficient in our application.



Simulation of a BEC at finite temperature
SGPE simulation

Propagate the zero temperature ground state solution ψ0(r) using the
stochastic Gross-Pitaevskii equation (SGPE)

i~
∂

∂t
ψ(r , t) = (1− iγ)

[
− ~2

2m
∇2 + V (r , 0)

+ g |ψ(x , t)|2 − µ
]
ψ(r , t) + η(r , t),

ψ(x , 0) = ψ0(r)

until a new quasi-stationary thermal state is reached.

µ: chemical potential of the eigenvalue problem at zero temperature
γ: positive, freely tunable parameter to improve the speed of convergence
η: complex, Gaussian, white noise process with correlations

〈η∗(r , t) η(r ′, t ′)〉 = 2~γkBT δ(r − r ′)δ(t − t ′)

T : temperature



Simulation of a BEC at finite temperature
SGPE simulation

Propagate the zero temperature ground state solution ψ0(r) using the
stochastic Gross-Pitaevskii equation (SGPE)

i~
∂

∂t
ψ(r , t) = (1− iγ)

[
− ~2

2m
∇2 + V (r , 0)

+ g |ψ(r , t)|2 − µ
]
ψ(r , t) + η(r , t),

ψ(r , 0) = ψ0(r)

until a new quasi-stationary thermal state is reached.

The numerical propagation of the SGPE is based on:

a second-order accurate operator splitting

spatial derivatives are approximated by means of the Fourier
spectral collocation method

the thermal noise term η is assumed to be constant for the duration
of every time step



Simulation of a BEC at finite temperature
SGPE simulation

Propagate the zero temperature ground state solution ψ0(r) using the
stochastic Gross-Pitaevskii equation (SGPE)

i~
∂

∂t
ψ(r , t) = (1− iγ)

[
− ~2

2m
∇2 + V (r , 0)

+ g |ψ(r , t)|2 − µ
]
ψ(r , t) + η(r , t),

ψ(r , 0) = ψ0(r)

until a new quasi-stationary thermal state is reached.

Normalize the wave function after each time step to preserve the exact
atom number distribution already included in the first stage of the
algorithm.



Simulation of a BEC at finite temperature
GPE simulation

Problem:
For strongly elongated condensates (typically realized in atom chip
experiments) the above outlined thermal state sampling process may
results in unrealistic excitations along the tightly confined transverse
directions (x and y) of the trap.

Two possible solutions:

1st solution: Projected stochastic GPE: project the wave function onto a
few of the lowest energy single particle eigenstates of the harmonic trap
after every time step.



Simulation of a BEC at finite temperature
GPE simulation

For strongly elongated condensates (typically realized in atom chip
experiments) the above outlined thermal state sampling process may
results in unrealistic excitations along the tightly confined transverse
directions (x and y) of the trap.

Two possible solutions:

2nd solution: Use a modified (quasi one-dimensional) thermal noise term

η(r) = λ(z)ψ⊥(x , y , z), ψ⊥(r) = ψ(r)/
√
ρ(z)

with

ρ(z) =

∫ ∫
|ψ(x , y , z)|2 dxdy

and one-dimensional Gaussian white noise λ with zero mean and variance

〈λ∗(z , t)λ(z ′, t ′)〉 = 2~γkBT δ(z − z ′)δ(t − t ′).



Simulation of a BEC at finite temperature
GPE simulation

Prepared initial states using different temperatures:

T = 0 nK



Simulation of a BEC at finite temperature
GPE simulation

Prepared initial states using different temperatures:

T = 5 nK



Simulation of a BEC at finite temperature
GPE simulation

Prepared initial states using different temperatures:

T = 10 nK



Simulation of a BEC at finite temperature
GPE simulation

Prepared initial states using different temperatures:

T = 20 nK



Simulation of a BEC at finite temperature
GPE simulation

Prepared initial states using different temperatures:

T = 40 nK



Simulation of a BEC at finite temperature
GPE simulation

The temperature of the condensate may be estimated using the g1 auto
correlation function

g1(δz) = Re

[
ψ∗z (0)ψz(δz)

|ψz(0)ψz(δz)|

]
, δz ≥ 0,

where ψz denotes the restriction of the wave function to the line along
the longitudinal direction at the center of the trap.

For a system in thermal equilibrium we
expect (approximate Bose-Einstein statistics by Rayleigh-Jeans)

g1(δz) = e−δz/λT

with the thermal coherence length

λT =
2~2n̄
mkBT

and the mean density of the condensate n̄.


