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A class of oscillatory problems

A class of Highly-oscillatory problems

Highly-oscillatory ODEs

e
dl _ ’Y(t) Ays
dt

where A is supposed a skew-adjoint operator with all its eigenvalues in iZ. Assume
~(t) > 0 for simplicity. = € (0, 1].

+ R:(y%), te€l0,T], y°(0) = yo,

Two important cases:

Case | :
Y(t) >0 >0

Case Il :
~v(to) =0 for some tg € [0,T].



A class of oscillatory problems

Numerical difficulties

» Standard schemes of order p lead to

(At)

a q >0,

Hus eAt” <c—r

forcing At ~ ¢ and thus formidable costs for small values of ¢.

» More sophisticated schemes of order p can be constructed in some situations but
suffer from the "order reduction” phenomena :

lus —us 2| < C(AL)Y, q << p.

» Partial remedy: Averaging methods lead to

[u® — a2 < C((A)P +&9).

» Aim: Provide with systematic methods allowing the conventional numerical
schemes of order p to be uniformly accurate, i.e. such that

sup [luf — usA| < (AP,
£€(0,1]



A class of oscillatory problems

A first example : Vlasov equation with a given strong magnetic field

~ v X B
S+ v-Vafs +E-Vofs 4

SVefs=0

Caracteritics :

&(t) = v(t)
1
o(t) = —v(t) x B(z(t)) + E(z(t))
Numerics : widely developed in collaboration with Chartier, Crouseilles, Méhats, X.

Zhao.
Asymptotics : widely developed by Bostan et al..

» Monofrequency case : constant modulus |B(z)| = 1. The oscillatory part
generates a 27- periodic trajectory.

» General case : B with varying intensity and direction. In this case, we introduce a
new time s and consider ¢ as a function of s.

d o1 .\ (s)
=" BEE @ T BN
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Main Assumption : |B(z)| > Constant > 0.



A class of oscillatory problems

A second example : transition between quantum states

» Landau-Zener 2 X 2 system

du® i —
< p) t f ) u® + corrective terms.

dt =

» Transport in graphene in semiclassical regime (Morandi-Schiirrer, 2012). Joint
work with Crouseilles , Jin and Méhats.

Unknowns are the Wigner disitributions [ (¢, z,p), f—(t,z,p), [f(t,z,p):

L
) p— - V.V .
at,f++‘§7'meJr_va:V'vprr:_ITS((l)l+’Lpz)f)7
- P - - pt VLV ,
dt,f —m'vch —Vz,v'vpf —:TU((P1+l1I2)f),

8I,f - V.V vpf = -

. 1 2oL

2Ly P VeV T VeV i) (= 1)
|p| 2 pl?

where p = (p1,p2) and p* = (—p2,p1).

This semi-classical model is derived from the Von-Neumann equation for two mixed

states, by taking the Wigner transform and keeping only terms of the order of 1/¢ and

1. The quantities f4 and f_ are the diagonal terms in the Wigner matrix and f is the

off-diagonal coefficient.

Main Assumption : 1D problem in z and p, with p2> > 0 as a fixed parameter.



A class of oscillatory problems

Generic problem

W20 v RS, €T O =w,
» Setting
u®(t) = exp (@A) yo (1), with S(t) = /0 ~(s)ds
%uf(t) =F (?,ug) F(0,u) =e 4R (egAu) .
u®(0) = yo,

» F'is periodic in 0.

» In all cases (vanishing or not), the limit model is
d
prih (F (-, u)), u(0) = yo, where

1 27
<F(-,u)>:g ; F(0,u)db.



Non-vanishing frequency

Asymptotic models: constant frequency v =1

F(0,u) =e %R (QGAu) .

d t
—u(t)=F (*,u‘5> , u®(0) = yo,
g

: Bogoliubov-Mitropolsky 1930’,

» Averaging techniques or two-scale expansions

Perko 1968, ...
u®(t) = f/g( (1)) = us(t) + Uy (t/e,u®(t)) + €2Ua(t/e,u (t)) + ..
d
df@ “(t) = Ko(u® (¢) + eK1(u®(t)) + ... = K°(u®(?))
u(0) = (25) " (vo),
Dy is periodic in 6. No constructive method for ¢ and K¢
» Equivalently,
us(t) = 5, 0 Wi o (P5) " (yo),
with
vy _ Ke(T,), Uy =Id.

dt
Constructive methods and structure (Lie structure, Hamiltonian and divergence

free properties) : Chartier, Murua and Sanz-Serna, Castella, Méhats

(2011-2012-2015) ...



Non-vanishing frequency

> Equation on &
OpPp(u) = —0uPg(u)K*(u) + efg o Po(u),
K® = (8u®p(u) " (fo 0 Pg(u)).
> Integrating this equation with (®4) = id,
) 0
ol —iq, ol —iq +5/] (fT ool _ a‘,q&”]m"]) dr

(
-0
—e </ (,/‘T ool au@L"]KW) dT>
J0O
KOl =), KT =(folntlly,

» Averaged model
dg 2m

1
W o) = (FCw)y = = [ PO, u)db.
dt 27 Jo

> Error estimate. Let uf; be the truncated averaging expansion up to eN, then
u® —ufyy =0 <5N+1> ,

provided we have enough regularity on F'.
» The first asymptotic models may be obtained by hand (Chapman-Enskog like
expansion), starting from an equation on U(t, 0 = t/e) = u®(t)

1
U — F(0,U) = —-dyU.



Non-vanishing frequency

Asymptotic models: varying frequency y(t) > 49 > 0

» Perform a change of time
s=S(t), v°(s)=u"(¢).

» We can see this as an equation on (v°(s),t(s)):

ds — ~(t)

ds — ~(t)

dv® 1 (s ) E) dt 1
87

» Averaging techniques can be applied since the quantity A/,(lt

strongly converges to u solution to

3 is smooth. u®

d

20 = F(u®), 2(0) = uo.

» We still have the error estimate



Non-vanishing frequency

First numerical method when ~(¢) > ~y > 0 : a two-scale approach

%uf(t) =F Gzﬁ) o ut(0) = uo.

(Crouseilles, Méhats, L. JCP, 2013, and then with Chartier, Zhao, 2015-2019) with
applications to Schrodinger equations, and Vlasov equations with strong magnetic
field.

» Imbed the problem into an augmented one allowing to separate the fast variable

from the slow one: Set U(¢,0 = t/e) = u®(t)

1
U — F(0,U) = —~0,U.
13

» The only condition we have at time ¢ = 0 is U(0,0) = up. An additional degree a
freedom is available on the initial condition U(0, ).
» For any N € N, there exists a suitable initial condition U(0, §) such that

e U(0,0) = ug, and
o the resulting solution U (¢, 0) has uniformly bounded derivatives in time and 0 up to the
order N 4 1.



Non-vanishing frequency

Two-scale approach

» for N =1, a good choice of initial condition is

0
U(0,0) = uo + 8/ (F(o,u0) — (F(-,u0))) do.
0
More generally for arbitrary N:
—1
U0,0) = oMo (<1>([JN]) (uo),

where <I>[9N] is the truncation up to the order eV of the expansion of 5.
» This ensures the uniform boundeness of the time derivatives of U up to order
N +1.

» Uniformly accurate numerical schemes of order N (or even N + 1) can be
constructed on this two-scale formulation, with applications to Schrodinger and
kinetic equations.



Non-vanishing frequency

Second appraoch for v(t) > 79 > 0 : a micro-macro approach

The two-scale equation uses an additional variable #. To avoid this, we have
introduced Micro-macro decomposition (with Chartier, Méhats, and Vilmart, Found.
Comput. Math. 2020).

t
—u () = <7 uE) , u(0) = ug.
€
» The idea is to write the solution u® as
us (t) = O] (uf (1) + v (1),

where <I>LN] o u(t) is the asymptotic expansion up to some order N. The change
of variable ® is periodic in 6, and u®(t) is the solution to a smooth averaged
equation:

L) = k@), w0 = (o) (o).

4 e (t):F(t/e,Cb (u () + ) (éd@ (us)—i-du@t/t(Qﬁ)Ksif).

dt
= P (t/=, 0w ) +v7) = F (t/e, 0] s 1)) + OE™).

» Solve the equations on v¢ and u®, instead of the original equation on u¢



Non-vanishing frequency

Micro-macro approach

» Case N=1: u®(t) = <I)£1/]€ (uf(t)) + v°(t) where

Q[l](u)—ujte Id — / (F(o,u) — (F(-,u))) do

e = re ol @), w©) = (o) (o)

» The construction is done in a such way that, if we truncate to N the expansions

of ®¢ and of the averaged vector field K¢, then
o v°(t) = O(eV 1) and has uniformly bounded time derivatives up to N + 1,
o the equation satisfied by v°(t) does not contain singularities in &.



Vanishing frequency

Asymptotic models: vanishing frequency ~(ty) = 0, to > 0.

(with Chartier, Méhats, and Vilmart, SIAM, 2020)

v(t) = (p+ Dt — tol?,  S(t) = sign(t — to)|t — to|PT + B+

%ug(t) =F <¥,us> . FO,u)=e04F (eGAu) .

> Perform the change of time s = S(t), v°(s) = u®(t) = u® (S71(s)).

_p_

Y(t) = |s — so| PFT, so = S(to)-

1 1
41 (f,vs), a_ 1
ds (t) € ds  ~(t)

» Averaging techniques can no longer be applied since the quantity ﬁ is not
smooth at t = tg.

» We no longer have the estimate u® — u = O(¢) but rather

1
ugfy:()(awrl)



Vanishing frequency

Vanishing frequency: stationary phase effect.

d __p_
—® = |s — so| P“F(f,vE).
€

» We rather write (taking ¢9p = so = 0 for simplicity)

vE(s) = v%(0) +/OS o FHIF (g,v6(0)> do.

£

V() =0 0)+ [ o FTRC 0 @)do + e

where

s __p_ o .
R :/ o p+1 (F(—,v%(0)) — (F(-,v°(0))) ) do
=), (P (Gr@) )
» Typically, if F(o,u) = (1 + €' )u, we have
s v
R = / o p+1exp (io/e)v®(o)do.
0
» A change of variable o /e — o gives

1 s/e __p .
R = gpt] o pHie'7v%(eo)do
0



Vanishing frequency

Vanishing frequency: stationary phase effect.

> Let

Foo  p .
Q(s) :/ o ptle'%do
S

and perform integration by parts

1 2 s/e D X
R. = ep+1 (2(0)v°(0) — Q(s/e)v°(s))+er+l /0 o PHLQ(o)v®(e0)(14+€*)do.

__p_
» Next term: Observing that |Q(s)| < C(1+s) P+I, we get

2

2 sl _ __p_
< Ceptl / o P+ (140) PFlido.
0

_2
ep+1

D

s/e )
/ 0" T Q)0 (c0) (1 + ) dor
0

2

We then get a O(e»+1) for p > 1 and O(elog(e)) for p = 1.




Vanishi requency

Rigorous estimate up to £2/(®+1)

Let
6 s
G(G, u) = A (F(Ua u) - <F(,u)>)d(r - <A (F(O', u) - (F(,u)))da’),

Q(s,u) = /+°o cr77"/(p+1)(F(<77 u) — (F(-,u)))do.

Let u the solution to

du el/(p+1)

% (F(-,u(t)), u(0) = uo + ] (0, u0)

We have %
u® =u+w®, with |w®(t)| < Ceprtl, Vtel0,T],

51/(p+1)

Dp(u) = u—
o(u) =u p——

20,u()) + Lelog (1+6) (B:G)F) (vo),

0p = 1if p=1 and 0 otherwise.




Micro-Macro decomposition

Set
u®(t) = a(t) + we(¢).

Uniform estimate on the time derivatives of w¢®, for p = 1.

We have
vt € [0, 77, |lwe(t) < Ce
dw*® d2we
< Cy/e, <C.
‘ dt | — ve dt2 | —

» Instead of solving numerically the stiff equation on w, our strategy consists in
solving the system of the two smooth equations on u and w®. Then compute @
and finally u®(t) = a(t) + we(t).

» The computation of @ requires the computation of the function (6, u). Using
Fourier expansions for F', we are left with functions of "Erf’ type.



Vanishing frequency

The vanishing-frequency case

We test our method on the Hénon-Heiles system y© = (q1, g2, p1,p2) with a
time-varying parameter v(t) = 2(t — to)

. t t
UE(t) = (@plvp%*@(ll — 2q192, —q2 — ¢7 +q§> , telo,1],
¥©(0) = (0.9,0.6,0.8,0.5).
The filtered unknown u®(t) € R* is defined by
u®(t) = (cos(0)qu(t) — sin(0) p1(t), q2(t), sin(0)q1 (t) + cos(0)p1 (L), p2(1)) ,

with ¢ — (=to)lt—tol+¢3
1>

, and satisfies

0t (t) = (F1, Fz, F3, F4)(0,u (1)),

with

F1(0,u) = 2sin0 (uq cos 0 + uz sin 0) ua, F2(0,u) = ua,

F3(0,u) = —2cos 6 (u1 cos  + ugsin0) ug,  Fu(6,u) = — (u1 cos + uz sin 0)* + u3 — ug).

In our tests, several values for tg has been taken in [0,1], h = 1/N for some N € N*
and ti*l = kh, k=0,...,N.



Vanishing frequency

10% 10?
10* 10*

e
©10° © 10°
10° 10°

104 10° 102 10" 10 10° 102 10" 10°

h €
Figure: Error as a function of h for e € {27 k =0,---,11} (left) and error as a function of &

for h € {0.1/27%, k=0,---,9} (right). p = 1.



A time-space oscillatory problem

Time-space oscillations and transport model for graphene

2i|p|
- £

Otf = ViV -Vpf= f4--

(with N. Crouseilles, S. Jin and F. Méhats, 2020).

Combine ideas from nonlinear geometric optics (with Crouseilles and Jin, M3AS,
2017), with the above micro-macro decomposition.

Transport of electrons in graphene : Wigner distributions
fe(t,z,p), f-(t,z,p), [f(t,x,p), and € is the semiclassical parameter:

1L
P P P ViV y .
St + ol Vo ft —VaV - Vpft = Tp S (e tipy))),
L
o p— P _ _ p— -V V .
ouf _m'vmf — VeV -V f :TS((P@'-FW?/)JC),
. 2i|p VLV ipt ViV , _
onf ~Vav Vs = -2 pE T pp P )T =),

where |p| = (p2 + p2)'/? and p* = (—py, pa).

We construct a uniformly accurate second order method.

Important assumption: We consider a 1D problem in z so that p, becomes a
parameter. We suppose that p, > vy > 0, so that |p| does not vanish.



A time-space oscillatory problem

It is not a time oscillatory model!

2i|p|
—f
£

Of — ViV Vpf=— e

» Because of its dependence in p, the stiff term does not generate a periodic
solution and cannot be filtered out as before.

» The main oscillation should involve all the variables (¢, z,p). We introduce the
phase of oscillations:

s=5(t,z,p), 048 — VoV -VpS =2p|, S(0,z,p) = 0.

in order to bring down the problem to a time-oscillatory problem and apply the
micro/macro strategy.

» The function g(s = S(¢, z,p), z,p) = f(t,z,p)
V.V
2|p|

7 1
0sg — Vpg = ——g + —— X the other terms.
€

2|p|

» This phase equation can be solved explicitly here:

; o+ E z
S(t,z,pe,py) = % {5 (%) —¢ (%ﬂ '
y Y

E(u) = uv1+u? +log(u+ V14 u?)



A time-space oscillatory problem

Error curves as a function of At

—a— =1
—u—¢=0.1
—=—¢=0.01
10'3 L | —=—¢=0.001 B
—=—¢=0.0001
€=0.00001
€=0.000001
L 107 3
o
i
5]
= 10 :
10 3
10-7 . |
1073 1072
At

Error with respect to At for e € {1,0.1,0.01,0.001,0.0001, 0.00001, 0.000001}.
Nz =128, Np, = 128.



A time-space oscillatory problem

Error curves as a function of €

—
o
g
5] al
= 10°} i
B o =) — 8 -
10.6 8 g 8 ——8— — . B
- I = —a- —&
10-7 | |
10 107 10 10°
E

Error with respect to e for various values of At: At =2"% x 1072,k =0, ..., 5.



A time-space oscillatory problem
Oscillations

>

For ¢ = 0.005: R(f)(t,—2.16,—1.18) as a function of ¢.
Blue: reference solution, Red: solution computed with our scheme. The right figure
is a zoom of the left figure. N = 64, Np, = 128, At = 0.02.



A time-space oscillatory problem
Landau-Zener transition rate

We plot the transition rate as a function of €, and compare with the theoretical
Landau-Zener transition rate:

4
Fo(0,2,pg) = Ze AEHTHEI DR p (0,2,p0) =0, fi0,2,p2) = 0.

ff*(tf7$,px)dl‘dpx ﬂ‘pi
r= . T ~ _ Ay
J f+(0,z, pz)dadp, Landau—Zener = €XP =

transfert coefficient

2 1

10" 107 10°

Landau-Zener probability. Red crosses=numerically computed transfert coefficient.
Blue curve=theoretical coefficient. N; = 64, N, = 64, At = 0.005.



A derivative-free algorithm

Computing @y by a derivative-free algorithm

du

o = Jee(), u(t) = Py /. 0 Uy 0 (Do) " (uo).

» Equation on ®§
Py (u) = —£0uPg(u) K (u) + efp 0 Py(u),
K® = (u®q(u)) ™ (fo 0 ®o(u)).

> Integrating this equation with (®y) = id,

0
ol =i, ol =id + e/ (#- 0@l — o0 K ar
0

s </.0(f7 ol _ au@L”]Klnl) d7->
0

K[O] _ <f>7 K[n+1] :<foq>[n+1]>_



A derivative-free algorithm

A free derivative recursive formula

» Computing the explicit form of Bué[gnl becomes very complicated for large k as it
involves high-order derivatives of fg(u). Necessity to have at our disposal the
derivatives of fy

» To overcome this, we replace the derivatives 9,,g by the following

Dyg(u) = %(g (wtm) —g(w), n=em,

and get the following iterative scheme ,

~ ~ 9 ~ ~ ~
oW —ia, Bt a4 5/ (/T 03 — p.n3l K[”]>d7—
0

0 ~ (] ~
— £ </ (fT (o] @L—n] — DEn ‘I)L.H]K[”])dT>
0

ROV =(p) R = (ol

» Note that 5%0] = <I>[90] and 5[91] = <I>£91].

» Online code in a Julia package : YVES MOCQUARD, PIERRE NAVARO ET N.
CROUSEILLES :
https://github.com/ymocquar/HOODESolver jl



A derivative-free algorithm

Conlusion

» Several strategies based on averaging techniques have been briefly presented :
they provide uniformly accurate (UA) schemes for highly oscillatory models.

» Usual averaging techniques do not work in the case of vanishing frequency : the
fast and the slow variable strongly interact in the asymptotics. Stationary-phase
like computations are needed.

» Systematic derivation and structure of asymptotic models in this case is an open
question.

» This a first step towards the development of efficient methods for more " realistic”
quantum-kinetic models: quantum transition rates in 2D graphene for example.

» Other applications in Fluid Mechanics : rotating fluids, vibrating traps or bubbles



A derivative-free algorithm

THANK YOU FOR YOUR ATTENTION
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