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A class of Highly-oscillatory problems

Highly-oscillatory ODEs

dyε

dt
=
γ(t)

ε
Ayε +Rε(y

ε), t ∈ [0, T ], yε(0) = y0,

where A is supposed a skew-adjoint operator with all its eigenvalues in iZ. Assume
γ(t) ≥ 0 for simplicity. ε ∈ (0, 1].

Two important cases:

Case I :
γ(t) ≥ γ0 > 0

Case II :
γ(t0) = 0 for some t0 ∈ [0, T ].
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Numerical difficulties

ä Standard schemes of order p lead to

‖uε − uε,∆t‖ ≤ C
(∆t)p

εq
, q > 0,

forcing ∆t ∼ ε and thus formidable costs for small values of ε.

ä More sophisticated schemes of order p can be constructed in some situations but
suffer from the ”order reduction” phenomena :

‖uε − uε,∆t‖ ≤ C(∆t)q , q << p.

ä Partial remedy: Averaging methods lead to

‖uε − ũε,∆t‖ ≤ C((∆t)p + εq).

ä Aim: Provide with systematic methods allowing the conventional numerical
schemes of order p to be uniformly accurate, i.e. such that

sup
ε∈(0,1]

‖uε − uε,∆t‖ ≤ C(∆t)p.
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A first example : Vlasov equation with a given strong magnetic field

∂tf
ε + v · ∇xfε + E · ∇vfε +

v ×B
ε
· ∇vfε = 0

Caracteritics :
ẋ(t) = v(t)

v̇(t) =
1

ε
v(t)×B(x(t)) + E(x(t))

Numerics : widely developed in collaboration with Chartier, Crouseilles, Méhats, X.
Zhao.
Asymptotics : widely developed by Bostan et al..

ä Monofrequency case : constant modulus |B(x)| = 1. The oscillatory part
generates a 2π- periodic trajectory.

ä General case : B with varying intensity and direction. In this case, we introduce a
new time s and consider t as a function of s.

d

ds
t(s) =

1

|B(x̃(s))|
,

d

ds
x̃(s) =

ṽ(s)

|B(x̃(s))|
,

d

ds
ṽ(s) =

1

ε
ṽ(t)×

B

|B(x̃(s))|
+

E

|B(x̃(s))|
.

Main Assumption : |B(x)| ≥ Constant > 0.
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A second example : transition between quantum states

ä Landau-Zener 2× 2 system

duε

dt
= −

i

ε

(
−t δ
δ t

)
uε + corrective terms.

ä Transport in graphene in semiclassical regime (Morandi-Schürrer, 2012). Joint
work with Crouseilles , Jin and Méhats.

Unknowns are the Wigner disitributions f+(t, x, p), f−(t, x, p), f(t, x, p):

∂tf
+

+
p

|p|
· ∇xf

+ −∇xV · ∇pf
+

= −
p⊥ · ∇xV

|p|3
= ((p1 + ip2)f) ,

∂tf
− −

p

|p|
· ∇xf

− −∇xV · ∇pf
−− =

p⊥ · ∇xV

|p|3
= ((p1 + ip2)f) ,

∂tf −∇xV · ∇pf = −
2i|p|
ε

f + i
p⊥ · ∇xV

|p|2
f +

i

2

p⊥ · ∇xV

|p|3
(p1 − ip2)(f+ − f−).

where p = (p1, p2) and p⊥ = (−p2, p1).
This semi-classical model is derived from the Von-Neumann equation for two mixed
states, by taking the Wigner transform and keeping only terms of the order of 1/ε and
1. The quantities f+ and f− are the diagonal terms in the Wigner matrix and f is the
off-diagonal coefficient.
Main Assumption : 1D problem in x and p, with p2 > 0 as a fixed parameter.
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Generic problem

dyε

dt
=
γ(t)

ε
Ayε +R(yε), t ∈ [0, T ], yε(0) = y0,

ä Setting

uε(t) = exp

(
S(t)

ε
A

)
yε(t), with S(t) =

∫ t

0
γ(s)ds

d

dt
uε(t) = F

(
S(t)

ε
, uε
)
, F (θ, u) = e−θAR

(
eθAu

)
.

uε(0) = y0,

ä F is periodic in θ.

ä In all cases (vanishing or not), the limit model is

d

dt
u = 〈F (·, u)〉, u(0) = y0, where

〈F (·, u)〉 =
1

2π

∫ 2π

0
F (θ, u) dθ.
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Asymptotic models: constant frequency γ = 1

d

dt
uε(t) = F

(
t

ε
, uε
)
, uε(0) = y0, F (θ, u) = e−θAR

(
eθAu

)
.

ä Averaging techniques or two-scale expansions : Bogoliubov-Mitropolsky 1930’,
Perko 1968, ...

uε(t) = Φεt/ε(u
ε(t)) = uε(t) + εU1(t/ε, uε(t)) + ε2U2(t/ε, uε(t)) + ....

d

dt
uε(t) = K0(uε(t)) + εK1(uε(t)) + ... = Kε(uε(t))

uε(0) = (Φε0)−1(y0),

Φθ is periodic in θ. No constructive method for Φε and Kε.

ä Equivalently,
uε(t) = Φεt/ε ◦Ψt ◦ (Φε0)−1(y0),

with
dΨt

dt
= Kε(Ψt), Ψ0 = Id.

Constructive methods and structure (Lie structure, Hamiltonian and divergence
free properties) : Chartier, Murua and Sanz-Serna, Castella, Méhats
(2011-2012-2015) ...
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ä Equation on Φεθ

∂θΦθ(u) = −ε∂uΦθ(u)Kε(u) + εfθ ◦ Φθ(u),

Kε = 〈∂uΦθ(u)〉−1〈fθ ◦ Φθ(u)〉.
ä Integrating this equation with 〈Φθ〉 = id,

Φ
[0]
θ = id, Φ

[n+1]
θ =id + ε

∫ θ

0

(
fτ ◦ Φ

[n]
τ − ∂uΦ

[n]
τ K[n]

)
dτ

− ε
〈∫ θ

0

(
fτ ◦ Φ

[n]
τ − ∂uΦ

[n]
τ K[n]

)
dτ

〉
K[0] = 〈f〉, K[n+1] =〈f ◦ Φ[n+1]〉.

ä Averaged model

du

dt
= K0(u) = 〈F (·, u)〉 =

1

2π

∫ 2π

0
F (θ, u)dθ.

ä Error estimate. Let uεN be the truncated averaging expansion up to εN , then

uε − uεN = O
(
εN+1

)
,

provided we have enough regularity on F .
ä The first asymptotic models may be obtained by hand (Chapman-Enskog like

expansion), starting from an equation on U(t, θ = t/ε) = uε(t)

∂tU − F (θ, U) = −
1

ε
∂θU.
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Asymptotic models: varying frequency γ(t) ≥ γ0 > 0

d

dt
uε(t) = F

(
S(t)

ε
, uε
)
, F (θ, u) = e−θAK

(
eθAu

)
, S(t) =

∫ t

0
γ(t′)dt′

ä Perform a change of time

s = S(t), vε(s) = uε(t).

ä We can see this as an equation on (vε(s), t(s)):

dvε

ds
=

1

γ(t)
F
( s
ε
, vε
)
,

dt

ds
=

1

γ(t)

ä Averaging techniques can be applied since the quantity 1
γ(t)

is smooth. uε

strongly converges to u solution to

d

dt
u(t) = 〈F (·, u(t))〉, v(0) = u0.

ä We still have the error estimate

uε − u = O(ε).
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First numerical method when γ(t) ≥ γ0 > 0 : a two-scale approach

d

dt
uε(t) = F

(
t

ε
, uε
)
, uε(0) = u0.

(Crouseilles, Méhats, L. JCP, 2013, and then with Chartier, Zhao, 2015-2019) with
applications to Schrödinger equations, and Vlasov equations with strong magnetic
field.

ä Imbed the problem into an augmented one allowing to separate the fast variable
from the slow one: Set U(t, θ = t/ε) = uε(t)

∂tU − F (θ, U) = −
1

ε
∂θU.

ä The only condition we have at time t = 0 is U(0, 0) = u0. An additional degree a
freedom is available on the initial condition U(0, θ).

ä For any N ∈ N, there exists a suitable initial condition U(0, θ) such that
U(0, 0) = u0, and
the resulting solution U(t, θ) has uniformly bounded derivatives in time and θ up to the
order N + 1.
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Two-scale approach

ä for N = 1, a good choice of initial condition is

U(0, θ) = u0 + ε

∫ θ

0
(F (σ, u0)− 〈F (·, u0)〉) dσ.

More generally for arbitrary N :

U(0, θ) = Φ
[N ]
θ ◦

(
Φ

[N ]
0

)−1
(u0),

where Φ
[N ]
θ is the truncation up to the order εN of the expansion of Φεθ.

ä This ensures the uniform boundeness of the time derivatives of U up to order
N + 1.

ä Uniformly accurate numerical schemes of order N (or even N + 1) can be
constructed on this two-scale formulation, with applications to Schrodinger and
kinetic equations.
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Second appraoch for γ(t) ≥ γ0 > 0 : a micro-macro approach

The two-scale equation uses an additional variable θ. To avoid this, we have
introduced Micro-macro decomposition (with Chartier, Méhats, and Vilmart, Found.
Comput. Math. 2020).

d

dt
uε(t) = F

(
t

ε
, uε
)
, u(0) = u0.

ä The idea is to write the solution uε as

uε(t) = Φ
[N ]
t/ε

(uε(t)) + vε(t),

where Φ
[N ]
θ ◦ u(t) is the asymptotic expansion up to some order N . The change

of variable Φεθ is periodic in θ, and uε(t) is the solution to a smooth averaged
equation:

d

dt
uε(t) = K

[N ]
ε uε(t), uε(0) =

(
Φ

[N ]
0

)−1
(u0).

d

dt
vε(t) = F

(
t/ε,Φ

[N ]
t/ε

(uε(t)) + vε
)
−
(

1

ε
∂θΦ

[N ]
t/ε

(uε) + ∂uΦ
[N ]
t/ε

(uε)Kεuε
)
.

= F
(
t/ε,Φ

[N ]
t/ε

(uε(t)) + vε
)
− F

(
t/ε,Φ

[N ]
t/ε

(uε(t))
)

+O(εN ).

ä Solve the equations on vε and uε, instead of the original equation on uε
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Micro-macro approach

uε(t) = Φ
[N ]
t/ε

(uε(t)) + vε(t)

ä Case N = 0: uε(t) = u(t) + vε(t), with

d

dt
u = 〈F (·, u)〉, u(0) = u0;

d

dt
vε = F (t/ε, u+ vε)− 〈F (·, u)〉, vε(0) = 0.

ä Case N = 1: uε(t) = Φ
[1]
t/ε

(uε(t)) + vε(t) where

Φ
[1]
θ (u) = u+ ε(Id− 〈.〉)

∫ θ

0
(F (σ, u)− 〈F (·, u)〉) dσ.

d

dt
uε = 〈F (·,Φ[1]

θ (uε(t)))〉, uε(0) =
(

Φ
[1]
0

)−1
(u0)

ä The construction is done in a such way that, if we truncate to N the expansions
of Φε and of the averaged vector field Kε, then

vε(t) = O(εN+1) and has uniformly bounded time derivatives up to N + 1,
the equation satisfied by vε(t) does not contain singularities in ε.
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Asymptotic models: vanishing frequency γ(t0) = 0, t0 ≥ 0.

(with Chartier, Méhats, and Vilmart, SIAM, 2020)

γ(t) = (p+ 1)|t− t0|p, S(t) = sign(t− t0)|t− t0|p+1 + tp+1
0 .

d

dt
uε(t) = F

(
S(t)

ε
, uε
)
, F (θ, u) = e−θAf

(
eθAu

)
.

ä Perform the change of time s = S(t), vε(s) = uε(t) = uε
(
S−1(s)

)
.

γ(t) = |s− s0|
p

p+1 , s0 = S(t0).

d

ds
vε =

1

γ(t)
F
( s
ε
, vε
)
,

dt

ds
=

1

γ(t)
.

ä Averaging techniques can no longer be applied since the quantity 1
γ(t)

is not

smooth at t = t0.

ä We no longer have the estimate uε − u = O(ε) but rather

uε − u = O
(
ε

1
p+1

)



A class of oscillatory problems Non-vanishing frequency Vanishing frequency A time-space oscillatory problem A derivative-free algorithm

Vanishing frequency: stationary phase effect.

d

ds
vε = |s− s0|

− p
p+1 F

( s
ε
, vε
)
.

ä We rather write (taking t0 = s0 = 0 for simplicity)

vε(s) = vε(0) +

∫ s

0
σ
− p

p+1 F
(σ
ε
, vε(σ)

)
dσ.

vε(s) = vε(0) +

∫ s

0
σ
− p

p+1 〈F (·, vε(σ))〉dσ +Rε,

where

Rε =

∫ s

0
σ
− p

p+1

(
F
(σ
ε
, vε(σ)

)
− 〈F (·, vε(σ))〉

)
dσ

ä Typically, if F (σ, u) = (1 + eiσ)u, we have

Rε =

∫ s

0
σ
− p

p+1 exp (iσ/ε) vε(σ)dσ.

ä A change of variable σ/ε→ σ gives

Rε = ε
1

p+1

∫ s/ε

0
σ
− p

p+1 eiσvε(εσ)dσ
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Vanishing frequency: stationary phase effect.

ä Let

Ω(s) =

∫ +∞

s
σ
− p

p+1 eiσdσ

and perform integration by parts

Rε = ε
1

p+1 (Ω(0)vε(0)− Ω(s/ε)vε(s))+ε
2

p+1

∫ s/ε

0
σ
− p

p+1 Ω(σ)vε(εσ)(1+eiσ)dσ.

ä Next term: Observing that |Ω(s)| ≤ C(1 + s)
− p

p+1 , we get

ε
2

p+1

∣∣∣∣∣
∫ s/ε

0
σ
− p

p+1 Ω(σ)vε(εσ)(1 + eiσ)dσ

∣∣∣∣∣ ≤ Cε 2
p+1

∫ s/ε

0
σ
− p

p+1 (1+σ)
− p

p+1 dσ.

We then get a O(ε
2

p+1 ) for p > 1 and O(ε log(ε)) for p = 1.
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Rigorous estimate up to ε2/(p+1)

Let

G(θ, u) =

∫ θ

0
(F (σ, u)− 〈F (·, u)〉)dσ − 〈

∫ s

0
(F (σ, u)− 〈F (·, u)〉)dσ〉,

Ω(s, u) =

∫ +∞

s
σ−p/(p+1)(F (σ, u)− 〈F (·, u)〉)dσ.

Let u the solution to

du

dt
= 〈F (·, u(t))〉, u(0) = u0 +

ε1/(p+1)

p+ 1
Ω(0, u0).

Truncation error estimate

We have

uε = ũ+ wε, with |wε(t)| ≤ Cε
2

p+1 , ∀t ∈ [0, T ],

and ũ(t) = ΦS(t)
ε

(u(t)) and

Φθ(u) = u−
ε1/(p+1)

p+ 1
Ω (θ, u(t)) +

δp

4
ε log (1 + θ) 〈(∂2G)F 〉(u0),

δp = 1 if p = 1 and 0 otherwise.
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Micro-Macro decomposition

Set
uε(t) = ũ(t) + wε(t).

Uniform estimate on the time derivatives of wε, for p = 1.

We have
∀t ∈ [0, T ], |wε(t) ≤ Cε∣∣∣∣dwεdt
∣∣∣∣ ≤ C√ε, ∣∣∣∣d2wε

dt2

∣∣∣∣ ≤ C.
ä Instead of solving numerically the stiff equation on u, our strategy consists in

solving the system of the two smooth equations on u and wε. Then compute ũ
and finally uε(t) = ũ(t) + wε(t).

ä The computation of ũ requires the computation of the function Ω(θ, u). Using
Fourier expansions for F , we are left with functions of ”Erf” type.
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The vanishing-frequency case

We test our method on the Hénon-Heiles system yε = (q1, q2, p1, p2) with a
time-varying parameter γ(t) = 2(t− t0)

ẏε(t) =

(
γ(t)

ε
p1, p2,−

γ(t)

ε
q1 − 2q1q2,−q2 − q2

1 + q2
2

)
, t ∈ [0, 1],

yε(0) = (0.9, 0.6, 0.8, 0.5).

The filtered unknown uε(t) ∈ R4 is defined by

uε(t) = (cos(θ)q1(t)− sin(θ) p1(t), q2(t), sin(θ)q1(t) + cos(θ)p1(t), p2(t)) ,

with θ =
(t−t0)|t−t0|+t20

ε
, and satisfies

u̇ε(t) = (F1, F2, F3, F4)(θ, uε(t)),

with

F1(θ, u) = 2 sin θ (u1 cos θ + u3 sin θ)u2, F2(θ, u) = u4,

F3(θ, u) = −2 cos θ (u1 cos θ + u3 sin θ)u2, F4(θ, u) = − (u1 cos θ + u3 sin θ)2 + u2
2 − u2).

In our tests, several values for t0 has been taken in [0, 1], h = 1/N for some N ∈ N∗
and t[k] = kh, k = 0, . . . , N .
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Figure: Error as a function of h for ε ∈ {2−k, k = 0, · · · , 11} (left) and error as a function of ε

for h ∈ {0.1/2−k, k = 0, · · · , 9} (right). p = 1.
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Time-space oscillations and transport model for graphene

∂tf −∇xV · ∇pf = −
2i|p|
ε

f + · · · .

(with N. Crouseilles, S. Jin and F. Méhats, 2020).

Combine ideas from nonlinear geometric optics (with Crouseilles and Jin, M3AS,
2017), with the above micro-macro decomposition.

Transport of electrons in graphene : Wigner distributions
f+(t, x, p), f−(t, x, p), f(t, x, p), and ε is the semiclassical parameter:

∂tf
+ +

p

|p|
· ∇xf+ −∇xV · ∇pf+ = −

p⊥ · ∇xV
|p|3

= ((px + ipy)f) ,

∂tf
− −

p

|p|
· ∇xf− −∇xV · ∇pf− =

p⊥ · ∇xV
|p|3

= ((px + ipy)f) ,

∂tf −∇xV · ∇pf = −
2i|p|
ε

f + i
p⊥ · ∇xV
|p|2

f +
i

2

p⊥ · ∇xV
|p|3

(px − ipy)(f+ − f−).

where |p| = (p2
x + p2

y)1/2 and p⊥ = (−py , px).
We construct a uniformly accurate second order method.
Important assumption: We consider a 1D problem in x so that py becomes a
parameter. We suppose that py ≥ ν0 > 0, so that |p| does not vanish.



A class of oscillatory problems Non-vanishing frequency Vanishing frequency A time-space oscillatory problem A derivative-free algorithm

It is not a time oscillatory model!

∂tf −∇xV · ∇pf = −
2i|p|
ε

f + · · · .

ä Because of its dependence in p, the stiff term does not generate a periodic
solution and cannot be filtered out as before.

ä The main oscillation should involve all the variables (t, x, p). We introduce the
phase of oscillations:

s = S(t, x, p), ∂tS −∇xV · ∇pS = 2|p|, S(0, x, p) = 0.

in order to bring down the problem to a time-oscillatory problem and apply the
micro/macro strategy.

ä The function g(s = S(t, x, p), x, p) = f(t, x, p)

∂sg −
∇xV
2|p|

· ∇pg = −
i

ε
g +

1

2|p|
× the other terms.

ä This phase equation can be solved explicitly here:

S(t, x, px, py) =
p2
y

E

[
ξ

(
px + Et

py

)
− ξ

(
px

py

)]
.

ξ(u) = u
√

1 + u2 + log(u+
√

1 + u2)
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Error curves as a function of ∆t
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Nx = 128, Npx = 128.
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Error curves as a function of ε
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Error with respect to ε for various values of ∆t: ∆t = 2−k × 10−2, k = 0, ..., 5.
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Oscillations
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For ε = 0.005: <(f)(t,−2.16,−1.18) as a function of t.
Blue: reference solution, Red: solution computed with our scheme. The right figure

is a zoom of the left figure. Nx = 64, Npx = 128,∆t = 0.02.



A class of oscillatory problems Non-vanishing frequency Vanishing frequency A time-space oscillatory problem A derivative-free algorithm

Landau-Zener transition rate

We plot the transition rate as a function of ε, and compare with the theoretical
Landau-Zener transition rate:

f+(0, x, px) =
4

π
e−4(x+2)2−4(px−1.3)2 , f−(0, x, px) = 0, fi(0, x, px) = 0.

T =

∫
f−(tf , x, px)dxdpx∫
f+(0, x, px)dxdpx

, TLandau−Zener = exp

(
−
πp2
y

εE

)
.
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Landau-Zener probability. Red crosses=numerically computed transfert coefficient.
Blue curve=theoretical coefficient. Nx = 64, Npx = 64,∆t = 0.005.



A class of oscillatory problems Non-vanishing frequency Vanishing frequency A time-space oscillatory problem A derivative-free algorithm

Computing Φθ by a derivative-free algorithm

du

dt
= ft/ε(u), u(t) = Φt/ε ◦Ψt ◦ (Φ0)−1(u0).

ä Equation on Φεθ

∂θΦθ(u) = −ε∂uΦθ(u)Kε(u) + εfθ ◦ Φθ(u),

Kε = 〈∂uΦθ(u)〉−1〈fθ ◦ Φθ(u)〉.

ä Integrating this equation with 〈Φθ〉 = id,

Φ
[0]
θ = id, Φ

[n+1]
θ =id + ε

∫ θ

0

(
fτ ◦ Φ

[n]
τ − ∂uΦ

[n]
τ K[n]

)
dτ

− ε
〈∫ θ

0

(
fτ ◦ Φ

[n]
τ − ∂uΦ

[n]
τ K[n]

)
dτ

〉
K[0] = 〈f〉, K[n+1] =〈f ◦ Φ[n+1]〉.
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A free derivative recursive formula

ä Computing the explicit form of ∂uΦ
[n]
θ becomes very complicated for large k as it

involves high-order derivatives of fθ(u). Necessity to have at our disposal the
derivatives of fθ

ä To overcome this, we replace the derivatives ∂ug by the following

Dηg(u) =
1

η
(g (u+ ηv)− g(u)) , η = εn,

and get the following iterative scheme ,

Φ̃
[0]
θ = id, Φ̃

[n+1]
θ = id + ε

∫ θ

0

(
fτ ◦ Φ̃

[n]
τ −Dεn Φ̃

[n]
τ K̃[n]

)
dτ

− ε
〈∫ θ

0

(
fτ ◦ Φ̃

[n]
τ −Dεn Φ̃

[n]
τ K̃[n]

)
dτ

〉
K̃[0] = 〈f〉 K̃[n+1] = 〈f ◦ Φ̃[n+1]〉.

ä Note that Φ̃
[0]
θ = Φ

[0]
θ and Φ̃

[1]
θ = Φ

[1]
θ .

ä Online code in a Julia package : Yves Mocquard, Pierre Navaro et N.
Crouseilles :
https://github.com/ymocquar/HOODESolver.jl
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Conlusion

ä Several strategies based on averaging techniques have been briefly presented :
they provide uniformly accurate (UA) schemes for highly oscillatory models.

ä Usual averaging techniques do not work in the case of vanishing frequency : the
fast and the slow variable strongly interact in the asymptotics. Stationary-phase
like computations are needed.

ä Systematic derivation and structure of asymptotic models in this case is an open
question.

ä This a first step towards the development of efficient methods for more ”realistic”
quantum-kinetic models: quantum transition rates in 2D graphene for example.

ä Other applications in Fluid Mechanics : rotating fluids, vibrating traps or bubbles
...
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Thank you for your attention
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