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Scope

of the Talk

General interest in feedback boundary control of kinetic and
hyperbolic equations

Techniques typically require design and decay of suitable
Lyapunov function

This talk: Linear kinetic equations with relaxation term

No decay in deterministic limit, but decay in expectation for
uncertain relaxation rate
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Lyapunov function for linear transport problems *

Toy problem
Oru(t,x) + 0xa u(t,x) =0, u(t,x) EeR,a>0,x €[0,1]

» lIdea:

fulfills
L(t) < exp(—pat)L(0)

under dissipative (k < 1) boundary condition
u(t,0) = ku(t,1) implies exponential decay towards a steady
state u =0

P> Extension to systems and dissipative source terms , to the
nonlinear case (through linearization), networks, feedback

design, uncertainty quantification, ...
!Many references available, e.g. Control and Nonlinearity-by J.-M. Coron
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Two-velocity relaxation model

Z (10 _1 (-1 1
f-(ﬂ,fg),T-(O _1> andL€—26<1 _1>

Bef(t,x) + TF = Lf

> Global steady state F = (1,1)7
» Previous Lyapunov function £ does not decay exponentially
towards F since source is not dissipative w.r.t. to £
» Hypocoercivity framework utilize a functional, s.t.
If — FIl < C(e) exp(—k(e)t) [[£(0) — Fl
but k(e) — 0 for e — 0
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Notation and framework

1
Oef(t,x,v) + —Tf(t,x,v) = Lf(t,x,v), f(0,x,v) = fo(x,v)
€

6a+1

» Linear kinetic equation f = f(t, x, v) with transport operator
T and collision L, e.g. BGK type

» Hypocoercivity? give conditions on T, L to ensure convergence
towards local equilibrium F in the sense

1£(t) = FII? < C(e) exp(—k(e)t) I fo — FII?
» Modified entropy functional for v > 0
1
HIF = SIFIP + v < Af.f >, A= (14 (TN)*(TN)) ™ (TN)*

» [1is projection onto null space of L
> |- || is weighted L2 with weight +
2Many references, e.g. Dolbeaut, Mouhot, Schmeiser 2015
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Conditions on operators for hypocoercivity

1£(t) = FII? < C(e) exp(—k(e)t) 1o — F|>

(H1)
(H2)
(H3)
(H4)

icroscopic coercivity — < Lf, f >> Ap|(1 — M)f]|?

M
Macroscopic coercivity || T.MF|| > Ay ||0F]|2

Projection of Transport MT.[MT=0
Boundedness of AT.(1 — ), AL, and
[AT(1 = M| + |ALA]| < Cm||(1 — M|

Conditions ensure strictly positive decay rate k(e) for e > 0
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Scaling and existing results on decay rate

1 1
O (t,x,v) + e—an(t,x, v) = EaﬁLf(t’X’ v)
» « = 1 is the parabolic scaling and it has been shown
lim k
lim (e)>0
» o =1 and random?3 relaxation parameter ¢ = ¢(w) gives

exponential decay of mean squared deviations from
deterministic equilibrium F with x > 0

E([[f(t) = Fl}) < Cexp(—rt)|fo — F||
» « = 0 is acoustic scaling

lim k(e) =0

(as for toy example)
3Li,Wang SIAM UQ 2017
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Random kinetic equations with acoustic scaling

Replace the deterministic system
Oef(t,x,v)+ Tf(t,x,v) = %Lf(t,x, v)
by system with parametric uncertainty £ and deterministic n > 0
Oef(t,x,v, &)+ TF(t,x,v,&) = (£ +n)Lf(t,x,v,§)

& is a non—negative random variable with unbounded support
Realization of £ — oo correspond to previous € — 0 limit
Introduction of & leads to f that is uncertain f = f(t, x, v, &)

Assume: equilibrium F is deterministic

vVvyYyyvyy

Many references for uncertainty quantification of kinetic
equations 4

“e.g. by S. Jin and collaborators
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Preliminary discussion on the setting

Oef(t,x,v, &) + Tf(t,x,v,§) = (§ + n)Lf(t,x, v, )

» 1 can be arbitrary small but positive to prevent degeneration

of the system for realizations {(w) =0
P> ¢ is distributed with probability density

B&—f—l _
— (&3 _
PO = ey ol -59)

for parameters & > 0,5 > 0
» Orthogonal polynomials to this density are Laguerre

polynomials

~-distribution

0.6 0.6

04 04

02 02
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Non—intrusive vs. intrusive approach

Oef (t,x,v, ) + TF(t,x,v, &) = (§ + n)Lf(t,x,v,¢)

Goal: Exponential decay of the expected (weighted) mean square error
|66 - FIPae) e
0

» Intrusive (gPC): Consider a series expansion wrt to polynomials ¢;

oo

)‘-(I',X7 , VvV, 5) = Z f;'(t,X, V)¢,(§)
i=1

and solve the obtained enlarged system for f = (£);.

» Non-intrusive: Apply hypocoercivity framework for each realization
& using e.g. Monte-Carlo. This leads for each sample to vanishing
decay rate
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lllustration of non-intrusive and intrusive approach

exponential decay , bo exponential decay

— B(t) = 5=10.08

0.06 =
=]
0.04 =
il
|
0.02

R Y
0 500 1000 1500 2000 0 500 1000 1500 2000
time ¢ time ¢

Intrusive (left): exponential decay
Non-intrusive (right): vanishing decay rate

E(t) = E (C( ! - exp(—k——t ))

§+ §+n
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Steps showing exponential decay for gPC (intrusive)

Oef(t,x,v, &) + TF(t, x, v, §) = (E+n)Lf(t,x, v, &), £(0,x,v,§) = fo(x,v)
B (t,x,v) + TF(t,x,v) = LF(t,x, V), £ (0, x, v) = fo(x, v)dk0

» Deterministic initial data, T=T 1, L = L(P + 1),
Pri= Jo~ Eprpipd
> Solution f = (fi)ien, belongs to weighted space: for

ok = k+ Y5

oo
E(Zf ={f=Ff(x,v): Zak||fk||2 < o0},

» Bound on solution ||fH€2 < V;éj; 1fo]|? uses explicitly

properties of P linked to the particular orthogonal polynomials
> fel2 = felPandforfef2:|fl% <C|f|%
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Basic steps (cont'd)

O:f(t,x, v, &) + TF(t,x,v,&) = (§ +n)Lf(t,x,v,§), £(0,x,v,&) = fo(x, v)
8t7?(t,x7 v) + Tl?(t,X, v) = Li?(t,x7 v), Fk(O,x, v) = fo(x, v)dk0

» Assume (H1) — (H4) for the deterministic system, then
(H1) — (H4) hold in £2 (no truncation required)

» Hypocoercivity result gives exponential decay of expectation

/OOO Hf(tv K 75) - FH2P(§)d§ < CeXp(_Ht)Hfb - F”2

» Remark 1: solution is in £2, but no exponential decay in /2

» Remark 2: results does not include truncation error due to
(numerically) finite gPC series
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[llustration of remark 1

-

aigi_f’(t,x7 v) + T)?(t,x, v) = Lf(t,x, v),  f(0,x,v) = fo(x,v)dko

» Difference in non-intrusive and intrusive by using fe /2 and
hypocoercivity on ¢2
> Exponential decay in £2 also not observed numerically
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[llustration of remark 2

-

atf(t,x, v) + T)?(t,x, v) = Lf(t,x, v),  f(0,x,v) = fo(x,v)dko

Results on truncation error: E(||FX(t) — (£)|]2) ~ C "¢
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Decay of the mean squared error for truncated series

-

aigi_f’(t,x7 v) + T)?(t,x, v) = Lf(t,x, v),  f(0,x,v) = fo(x,v)dko

Expected decay rate of complete series is the black dashed line.
Deterministic toy example with two velocities leads to a system of
2K equations for f
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Summary and Outlook

» Extension of deterministic setting to parametric uncertainty in
the acoustic scaling

» Intrusive approach allows to get exponential decay

> Estimates on the sequence space use the properties of
probability density

» Decay rate is not explicit

» Derivation of boundary feedback control

Thank you for your attention!

Reference: S. Gerster, M. Herty and H. Yu, Hypocoercivity of stochastic
Galerkin formulations for stabilization of kinetic equations, Comm. Math.
Sci. 2021
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