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Scope of the Talk

I General interest in feedback boundary control of kinetic and
hyperbolic equations

I Techniques typically require design and decay of suitable
Lyapunov function

I This talk: Linear kinetic equations with relaxation term
I No decay in deterministic limit, but decay in expectation for

uncertain relaxation rate

2 / 17



Lyapunov function for linear transport problems 1

Toy problem

∂tu(t, x) + ∂xa u(t, x) = 0, u(t, x) ∈ R, a > 0, x ∈ [0, 1]

I Idea:
L(t) =

∫ 1

0
exp(−µx)u2(t, x)dx

fulfills

L(t) ≤ exp(−µat)L(0)

under dissipative (κ < 1) boundary condition
u(t, 0) = κu(t, 1) implies exponential decay towards a steady
state u ≡ 0

I Extension to systems and dissipative source terms , to the
nonlinear case (through linearization), networks, feedback
design, uncertainty quantification, . . .

1Many references available, e.g. Control and Nonlinearity by J.-M. Coron
3 / 17



Two-velocity relaxation model

~f = (f1, f2), T =
(
1 0
0 −1

)
and Lε = 1

2ε

(
−1 1
1 −1

)
∂t~f (t, x) + T~f = Lε~f

I Global steady state F = 1
2(1, 1)T

I Previous Lyapunov function L does not decay exponentially
towards F since source is not dissipative w.r.t. to L

I Hypocoercivity framework utilize a functional, s.t.
‖~f − F‖ ≤ C(ε) exp(−k(ε)t) ‖~f (0)− F‖

but k(ε)→ 0 for ε→ 0
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Notation and framework

∂t f (t, x , v) + 1
εα

Tf (t, x , v) = 1
εα+1 Lf (t, x , v), f (0, x , v) = f0(x , v)

I Linear kinetic equation f = f (t, x , v) with transport operator
T and collision L, e.g. BGK type

I Hypocoercivity2 give conditions on T , L to ensure convergence
towards local equilibrium F in the sense

‖f (t)− F‖2 ≤ C(ε) exp(−k(ε)t)‖f0 − F‖2

I Modified entropy functional for γ ≥ 0

H[f ] = 1
2‖f ‖

2 + γ < Af , f >, A = (1 + (T Π)∗(T Π))−1 (T Π)∗

I Π is projection onto null space of L
I ‖ · ‖ is weighted L2 with weight 1

F
2Many references, e.g. Dolbeaut, Mouhot, Schmeiser 2015
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Conditions on operators for hypocoercivity

‖f (t)− F‖2 ≤ C(ε) exp(−k(ε)t)‖f0 − F‖2

(H1) Microscopic coercivity − < Lεf , f >≥ λm‖(1− Π)f ‖2
(H2) Macroscopic coercivity ‖TεΠf ‖ ≥ λM‖Πf ‖2
(H3) Projection of Transport ΠTεΠ = 0
(H4) Boundedness of ATε(1− Π),ALε and

‖ATε(1− Π)f ‖+ ‖ALεf ‖ ≤ CM‖(1− Π)f ‖

Conditions ensure strictly positive decay rate k(ε) for ε > 0
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Scaling and existing results on decay rate

∂t f (t, x , v) + 1
εα

Tf (t, x , v) = 1
εα+1 Lf (t, x , v)

I α = 1 is the parabolic scaling and it has been shown
lim
ε→0

k(ε) > 0

I α = 1 and random3 relaxation parameter ε = ε(ω) gives
exponential decay of mean squared deviations from
deterministic equilibrium F with κ > 0

E (‖f (t)− F‖) ≤ C exp(−κt)‖f0 − F‖
I α = 0 is acoustic scaling

lim
ε

k(ε)→ 0

(as for toy example)
3Li,Wang SIAM UQ 2017
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Random kinetic equations with acoustic scaling
Replace the deterministic system

∂t f (t, x , v) + Tf (t, x , v) = 1
ε

Lf (t, x , v)

by system with parametric uncertainty ξ and deterministic η > 0

∂t f (t, x , v , ξ) + Tf (t, x , v , ξ) = (ξ + η)Lf (t, x , v , ξ)

I ξ is a non–negative random variable with unbounded support
I Realization of ξ →∞ correspond to previous ε→ 0 limit
I Introduction of ξ leads to f that is uncertain f = f (t, x , v , ξ)
I Assume: equilibrium F is deterministic
I Many references for uncertainty quantification of kinetic

equations 4

4e.g. by S. Jin and collaborators
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Preliminary discussion on the setting

∂t f (t, x , v , ξ) + Tf (t, x , v , ξ) = (ξ + η)Lf (t, x , v , ξ)
I η can be arbitrary small but positive to prevent degeneration

of the system for realizations ξ(ω) = 0
I ξ is distributed with probability density

p(ξ) = βᾱ+1

Γ(ᾱ + 1)ξ
ᾱ exp(−βξ)

for parameters ᾱ ≥ 0, β > 0
I Orthogonal polynomials to this density are Laguerre

polynomials
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Non–intrusive vs. intrusive approach

∂t f (t, x , v , ξ) + Tf (t, x , v , ξ) = (ξ + η)Lf (t, x , v , ξ)

Goal: Exponential decay of the expected (weighted) mean square error∫ ∞

0
‖f (t, ·, ·, ξ)− F‖2p(ξ)dξ

I Intrusive (gPC): Consider a series expansion wrt to polynomials φi

f (t, x , , v , ξ) =
∞∑

i=1
fi (t, x , v)φi (ξ)

and solve the obtained enlarged system for ~f = (fi )i .
I Non-intrusive: Apply hypocoercivity framework for each realization

ξ using e.g. Monte-Carlo. This leads for each sample to vanishing
decay rate
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Illustration of non-intrusive and intrusive approach

Intrusive (left): exponential decay
Non-intrusive (right): vanishing decay rate

E (t) = E
(

C( 1
ξ + η

exp(−k 1
ξ + η

t))
)
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Steps showing exponential decay for gPC (intrusive)

∂t f (t, x , v , ξ) + Tf (t, x , v , ξ) = (ξ + η)Lf (t, x , v , ξ), f (0, x , v , ξ) = f0(x , v)

∂t~f (t, x , v) + T~f (t, x , v) = L~f (t, x , v), ~fk(0, x , v) = f0(x , v)δk,0

I Deterministic initial data, T = T 1, L = L(P + η1),
Pk,i =

∫∞
0 ξφkφipdξ

I Solution ~f = (fi )i∈N0 belongs to weighted space: for
σk = k +

√
ᾱ+1

2βη

`2σ := { ~f = ~f (x , v) :
∞∑

k=0
σk‖fk‖2 <∞},

I Bound on solution ‖~f ‖2`2σ ≤
√
ᾱ+1

2βη ‖f0‖
2 uses explicitly

properties of P linked to the particular orthogonal polynomials
I ~f ∈ `2σ =⇒ ~f ∈ `2 and for ~f ∈ `2σ : ‖~f ‖2`2σ ≤ C‖~f ‖2`2
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Basic steps (cont’d)

∂t f (t, x , v , ξ) + Tf (t, x , v , ξ) = (ξ + η)Lf (t, x , v , ξ), f (0, x , v , ξ) = f0(x , v)

∂t~f (t, x , v) + T~f (t, x , v) = L~f (t, x , v), ~fk(0, x , v) = f0(x , v)δk,0

I Assume (H1)− (H4) for the deterministic system, then
(H1)− (H4) hold in `2 (no truncation required)

I Hypocoercivity result gives exponential decay of expectation

∫ ∞
0
‖f (t, ·, ·, ξ)− F‖2p(ξ)dξ ≤ C exp(−κt)‖f0 − F‖2

I Remark 1: solution is in `2σ, but no exponential decay in `2σ
I Remark 2: results does not include truncation error due to

(numerically) finite gPC series
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Illustration of remark 1

∂t~f (t, x , v) + T~f (t, x , v) = L~f (t, x , v), ~fk(0, x , v) = f0(x , v)δk,0

I Difference in non-intrusive and intrusive by using ~f ∈ `2σ and
hypocoercivity on `2

I Exponential decay in `2σ also not observed numerically
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Illustration of remark 2

∂t~f (t, x , v) + T~f (t, x , v) = L~f (t, x , v), ~fk(0, x , v) = f0(x , v)δk,0

Results on truncation error: E(‖~f K (t)− ~f (t)‖2) ≈ C−r t
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Decay of the mean squared error for truncated series

∂t~f (t, x , v) + T~f (t, x , v) = L~f (t, x , v), ~fk(0, x , v) = f0(x , v)δk,0

Expected decay rate of complete series is the black dashed line.
Deterministic toy example with two velocities leads to a system of
2K equations for ~f
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Summary and Outlook

I Extension of deterministic setting to parametric uncertainty in
the acoustic scaling

I Intrusive approach allows to get exponential decay
I Estimates on the sequence space use the properties of

probability density
I Decay rate is not explicit
I Derivation of boundary feedback control

Thank you for your attention!

Reference: S. Gerster, M. Herty and H. Yu, Hypocoercivity of stochastic
Galerkin formulations for stabilization of kinetic equations, Comm. Math.

Sci. 2021
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