Dynamical low-rank approximation for radiation transport

G. Ceruti, M. Frank, J. Kusch, C. Lubich, R.G. McClarren, Z. Peng | March 25, 2021

What is the Dynamical Low-Rank Approximation?

What is the Dynamical Low-Rank Approximation (DLRA)?

- 1D+1D kinetic equation

$$
\partial_{t} f(t, x, \mu)=-\mu \partial_{x} f(t, x, \mu)+\sigma_{s}(x) \phi(t, x)-\sigma_{t}(x) f(t, x, \mu)+\frac{1}{2} Q(x)
$$

- Notation: $\phi(t, x)=\frac{1}{2}\langle f\rangle_{\mu},\langle g\rangle_{x}=\int_{\mathbb{R}} g d x,\langle h\rangle_{\mu}=\int_{-1}^{1} h d \mu$
- Imagine we discretize f in space and angle in some way, e.g.

$$
f_{i j}(t)=f\left(t, x_{i}, \mu_{j}\right)
$$

- Matrix differential equation, written as

$$
\frac{d}{d t} Y(t)=F(t, Y(t))
$$

Low-Rank Matrices \& Projection

- Rank-r approximation of $m \times n$ matrix A by truncated SVD-like decomposition

$$
Y_{r}(t)=U(t) S(t) V(t)^{T}
$$

- Orthogonal matrices $U(t)(m \times r), V(t)(n \times r)$ and $r \times r$ matrix $S(t)$ (not necessarily diagonal)
- Different concept than sparsity
- Insert low-rank ansatz into matrix differential equation

$$
\frac{d}{d t} Y_{r}(t)=F\left(t, Y_{r}(t)\right)+\text { residual }
$$

- Project r.h.s. onto the tangent space of rank r matrices (nonlinear Galerkin-like projection)

$$
\frac{d}{d t} Y_{r}(t)=\mathcal{P}_{T_{r}\left(Y_{r}(t)\right)}\left(F\left(t, Y_{r}(t)\right)\right.
$$

Characterizing the Tangent Space

- SVD-like decomposition

$$
Y=U S V^{T}
$$

- Element in the tangent space

$$
\delta Y=\delta U S V^{T}+U \delta S V^{T}+U S \delta V^{T}
$$

- Orthogonality $U^{T} U=I$ implies $\delta U^{T} U+U^{T} \delta U=0$; same for V
- Factors can be retrieved by imposing $U^{\top} \delta U=0, V^{\top} \delta V=0$:

$$
\begin{aligned}
\delta S & =U^{T} \delta Y V \\
\delta U & =\left(I-U U^{T}\right) \delta Y V S^{-1} \\
\delta V & =\left(I-V V^{T}\right) \delta Y^{T} U S^{-T}
\end{aligned}
$$

Projection onto Tangent Space

- Matrix differential equation

$$
\frac{d}{d t} Y(t)=F(t, Y(t))
$$

- Low-rank ansatz

$$
Y_{r}(t)=U(t) S(t) V(t)^{T}
$$

- Projection onto tangent space leads to ODEs for the factors

$$
\begin{aligned}
& \dot{S}=U^{T} F\left(t, Y_{r}\right) V \\
& \dot{U}=\left(I-U U^{T}\right) F\left(t, Y_{r}\right) V S^{-1} \\
& \dot{V}=\left(I-V V^{T}\right) F\left(t, Y_{r}\right)^{\top} U S^{-T}
\end{aligned}
$$

- Memory footprint / computational effort

$$
\mathcal{O}\left(m r+n r+r^{2}\right) \text { instead of } \mathcal{O}(m n)
$$

Application to Radiation Transport

- Turns out this integrator is unstable, but a variant is stable ...
- 1D+1D kinetic equation

$$
\partial_{t} f=-\mu \partial_{x} f+\sigma_{s} \frac{1}{2}\langle f\rangle_{\mu}-\sigma_{t} f+\frac{1}{2} Q
$$

- Low-rank representation of f

$$
f(t, x, \mu) \approx \sum_{i, j=1}^{r} X_{i}(t, x) S_{i j}(t) W_{j}(t, \mu)
$$

- Orthogonal projections (nonlinear)

$$
P_{\bar{x}} g=\sum_{i=1}^{r} X_{i}\left\langle X_{i} g\right\rangle_{x}, \quad P_{\bar{w}} g=\sum_{j=1}^{r} W_{j}\left\langle W_{j} g\right\rangle_{\mu}
$$

- Projection onto tangent space of low-rank manifold

$$
P_{\bar{X}}-P_{\bar{X}} P_{\bar{W}}+P_{\bar{W}}
$$

Dynamical low-rank algorithm

- Step 1: $f_{l}(t, x, \mu)=\sum_{j=1}^{r} K_{j}(t, x) W_{j}(\mu)$ and

$$
\partial_{t} K_{j}=-\sum_{l}\left\langle\mu W_{l} W_{j}\right\rangle_{\mu} \partial_{x} K_{l}+\frac{\sigma_{s}}{2} \sum_{l}\left\langle W_{j}\right\rangle_{\mu}\left\langle W_{l}\right\rangle_{\mu} K_{l}-\sigma_{t} K_{j}+\frac{\left\langle W_{j}\right\rangle_{\mu}}{2} Q
$$

- Factorization (QR or SVD) $K_{j}=\sum_{j=1}^{r} X_{i} S_{i j}$
- Step 2: $f_{l /}(t, x, \mu)=\sum_{i, j=1}^{r} X_{i}(x) S_{i j}(t) W_{j}(\mu)$

$$
\begin{aligned}
\frac{d}{d t} s_{i j}= & \sum_{k, l=1}^{r}\left\langle\mu W_{j} W_{l}\right\rangle_{\mu}\left\langle\partial_{x} X_{i} X_{k}\right\rangle_{x} s_{k l}+\sum_{l} \frac{1}{2}\left\langle\sigma_{s} X_{i}\right\rangle_{x}\left\langle W_{j}\right\rangle_{\mu}\left\langle W_{l}\right\rangle_{\mu} s_{i l} \\
& -\left\langle\sigma_{t} X_{i}\right\rangle_{x} s_{i j}+\frac{1}{2}\left\langle Q X_{i}\right\rangle_{x}\left\langle W_{j}\right\rangle_{\mu}
\end{aligned}
$$

- Reduction $L_{i}=\sum_{j=1}^{r} S_{i j} W_{j}$ and
- Step 3: $f_{I I I}(t, x, \mu)=\sum_{i=1}^{r} X_{i}(x) L_{i}(t, \mu)$ and

$$
\partial_{t} L_{i}=-\sum_{k}\left\langle X_{i} \partial_{x} X_{k}\right\rangle_{x} \mu L_{k}+\frac{1}{2}\left\langle\sigma_{s} X_{i}\right\rangle_{x}\left\langle L_{i}\right\rangle_{\mu}-\left\langle\sigma_{t} X_{i}\right\rangle_{x} L_{i}+\frac{1}{2}\left\langle Q X_{i}\right\rangle_{x}
$$

- Factorization (QR or SVD) $L_{i}=\sum_{j=1}^{r} S_{i j} W_{j}$

Challenges

- Numerically represent abstract basis functions
- Find efficient ways to compute $\left\langle\mu W_{j} W_{l}\right\rangle_{\mu},\left\langle\partial_{x} X_{i} X_{l}\right\rangle_{x},\left\langle\sigma_{s} X_{i}\right\rangle_{x},\left\langle W_{j}\right\rangle_{\mu}$, ... not to destroy overall effort
- Spatial discretization of $\left\langle X_{i} \partial_{x} X_{k}\right\rangle_{x}$ with finite volume discretization requires numerical stabilization (artificial diffusion α)
- No positivity
- No conservation
- No entropy decay
- Asymptotic-preserving?

Why Should the Solution have Low Rank?

Why Should the Solution have Low Rank?

- Rank of the solution is hard to analyze
- Sparsity is easier because it is related to smoothness
- But...

$$
\varepsilon \partial_{t} f=-\mu \partial_{x} f(t, x, \mu)+\frac{1}{\varepsilon} \sigma_{s} \phi(t, x)-\frac{1}{\varepsilon} \sigma_{t} f(t, x, \mu)+\frac{\varepsilon}{2} Q(x)
$$

- As $\varepsilon \rightarrow 0$

$$
f(t, x, \mu) \rightarrow f_{0}(t, x)=X_{1}(t, x) \cdot S_{11}(t) \cdot 1
$$

we get rank 1

Literature Overview

- DLRA originates from the area of quantum dynamics (Dirac 1930)
- Stripped of the domain-specific language and mathematically analyzed (Lubich and co-workers, since 2007)
- Application to Vlasov-Poisson (Einkemmer \& Lubich '18)
- Low-rank for time-dependent transport (McClarren, Peng, F 2019)
- DLR for linear transport (Ding, Einkemmer, Li 2019)
- Conservation for Vlasov-Poisson (Einkemmer, Joseph 2021)

Numerical Results

Checkerboard Test

Computed with $m=250 \times 250$ spatial grid points and $n=820$ angular degrees of freedom (spherical harmonics P_{N} discretization of order 39)

Linesource Test

(a) Analytical solution

(c) Rank 210, P29

(b) Rank 210, P19

(d) Rank 210, P39

Conclusion

- DLRA seems well-suited for kinetic equations, even further away from the asymptotic limit
- Generalized to 3D+3D by hierarchical tensors
- Significantly reduces memory footprint (and computational cost)
- Lots of questions open
- Can be combined with lots of well-established techniques

Thank You!

Literature

- P.A.M. Dirac. Note on exchange phenomena in the Thomas atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26(3):376385, 1930.
- C. Lubich. From quantum to classical molecular dynamics: reduced models and numerical analysis. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
- L. Einkemmer and C. Lubich. A Low-Rank Projector-Splitting Integrator for the VlasovPoisson Equation. SIAM J. Sci. Comput., 40(5):B1330B1360, 2018.
- Z. Ding, L. Einkemmer, Q. Li. Dynamical low-rank integrator for the linear Boltzmann equation. arXiv:1907.04247 [math.NA]
- L. Einkemmer, J. Hu, Y Wang. An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation. arXiv:2005.06571 [math.NA]
- Z. Peng, R.G. McClarren, M. Frank. A low-rank method for time-dependent transport calculations. arXiv:1906.09940 [physics.comp-ph]
- Z. Peng, R.G. McClarren, M. Frank. A low-rank method for two-dimensional time-dependent radiation transport calculations. arXiv:1912.07522 [physics.comp-ph]

