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Quantum mechanics  
(Schrodinger)

Molecular dynamics 
(Newton’s equation)

Kinetic theory  
(Boltzmann)

Continuum theory 
(Euler, Navier-Stokes)

Rarefied gas: Boltzmann equation 
Plasma (Vlasov-Poisson, Landau, Fokker-Planck) 
Semiconductor device modeling

Applications:

Kinetic equations

 bridges atomistic and 
continuum models  

Nuclear reactor (neutron transport), radiative transfer 
Biology 
Collective behavior in biological and social sciences, etc. 

 A hierarchy of multiscale modeling  



UQ for kinetic equations

UQ: Quantifying the uncertainties is important to assess, validate and improve the 
underlying models.  
Most modeling of physical systems contain various sources of uncertainties. 
Kinetic equations: usually derived from N-body Newton’s second law, mean-field 
limit etc, the modeling itself is uncertain. 

Parametric uncertainty:
Collision kernels are often empirical, due to incomplete knowledge of the   
interaction mechanism; inaccurate measurement of the initial and boundary data, 
etc.  

Despite its popularity in solid mechanics, elliptic equations (Abgrall, Babuska, 
Ghanem, Gunzburger, Hesthaven, Karniadakis, Mishra, Xiu, Webster, Schwab 
etc), few efforts on UQ for kinetic equations have been done until recent years. 



Stochastic Collocation 

{(xj , fj)}
Np

j=1 ! ef(X) ⇡ f(X)

Stochastic Collocation

{zj , u(zj)}
Np

j=1 ! uN (Z) = u(Z)

expensive to obtain for large N

Interpolation/quadrature rule based 
on gPC expansion, 

 Non-intrusive 
 Fast convergence for smooth problems 

‣ The deterministic code is too computationally expensive 
‣ Curse of dimensionality when d >>1

However,

In general, this class of problem is challenging. There are attempts in: 

‣ Sparse grid, sparse wavelet 
basis, compressed sensing, 
….

 High cost: repetitive runs of deterministic solvers 



                                 Problem setup
8
<

:

ut(x, t, Z) = L(u), in D ⇥ (0, T ]⇥ IZ ,
B(u) = 0, on @D ⇥ [0, T ]⇥ IZ ,
u = u0, in D ⇥ {t = 0}⇥ IZ .

The goal: build a surrogate of       in a non-intrusive way 

Q1: How to choose        intelligently?zn

Q2: How to compute       without extensive sampling from the high-fidelity model?cn

uL

uH

: low fidelity solution (cheap)

v(x, t, z) =
mX

n=1

cn(z)u
H(x, t, zn), zn 2 IZ

6

: high fidelity solution (expensive)

A.Narayan, C.Gittelson, D.Xiu 14’

uH



Enrich the space by finding the furtherest point away from 
the space spanned by the existing set
The greedy choice is (almost) optimal (DeVore 13’). 

Key idea: Explore the parameter space by using the cheap low-fi 
model

 Search the space by the low-fi model via greedy algorithm:

� = {z1, . . . , zM}

zm = argmax
z2�

d(uL(z), UL
m�1)

We seek a solution,           , which is constrained 
through a linear parametrized PDE 

Problems of interest

u(x, µ)

L(x, µ)u(x, µ) = f(x, µ) x � �

u(x, µ) = g(x, µ) x � ��
µ ⇥ D � RM

The Reduced Basis Approach: A Motivation

The Main Idea: Reduce the Basis
We might expect a good approximation using a Galerkin approach
using solutions for “well chosen” sampling of parameters as base
functions.

X

M

u(µj ) u(µ)

Assumption:  The solution varies smoothly on a low-
dimensional manifold under parameter variation.

Choosing the samples well, 
we should be able to derive 
good approximations for all 
parameters

Wednesday, November 2, 11

uH(zj)
uH(z)

Low-fi approximation space:

UL
m�1(�) ={uL(z1), . . . , u

L(zm�1)}

Candidate set:

Point selection



Lifting procedure

Construct         as projection coefficients from low-fidelity model:

Using the same coefficients, construct the approximation rule for 
high-fidelity model

v(x, t, z)H =
mX

n=1

cn(z)u
H(zn)

{cn}

Justification: e.g., scalar scaling, coarse/fine mesh

v(z)L = PUL(�)u
L(z) =

mX

n=1

cn(z)u
L(zn)

8

This is in fact a lifting operator from low-fi space to high-fi space



Overview of Bi-fidelity algorithm

Run the high-fi models on those m points to get  

‣ Bi-fidelity approximation:      

Apply the same coefficients to            to get the bi-fi approximation 

This approximation quality depends on how well the low-fi model approximates 
the functional variation of high-fi model in the parameter space. 

uH(�)

uH(�)

‣ Run the low-fi models at each point of     to obtain � uL(�), UL(�)

 select the most “important” m points —   

For any given           , compute low-fi projection coefficients

v(z)L = PUL(�)u
L(z) =

mX

n=1

cn(z)u
L(zn)

v(z)H =
mX

n=1

cn(z)u
H(zn)

9

z 2 Iz

�

most expensive part 

Offline

Online



The Boltzmann equation

is the probability density distribution function, modeling the probability  
of finding a particle at time t, position x, velocity v

   is the Knudsen number that characterizes the degree of rarefiedness 
of the gas; ratio of mean free path and the characteristic length scale

Q is a quadratic integral operator modeling binary interaction  
between particles

kinetic regime;  hydrodynamic regime

Ludwig Boltzmann, 1872’



Boltzmann collision operator

non-linear double integral collision operator; high-dimensional in physical space

elastic collisions



Our choice of the low-fidelity model 

Liu-X.Zhu (JCP 19’)



MUSCL scheme in space, by using the same spatial and temporal resolutions as the

high-fidelity model,but with a di↵erent number of quadrature points N l

v
in velocity

discretization.

In all the examples, the spatial domain is chosen to be [0, 1] with Nx grid points,

and periodic boundary condition is assumed except for the shock tube tests. The

velocity domain is chosen as [�Lv, Lv]2 with Lv = 8.4 and Nv grid points in each

dimension. Without loss of generality, The d-dimensional random variable z is as-

sumed to follow the uniform distribution on [�1, 1]d. The training set � is chosen to

be M = 1000 random samples of z. We examine the error of bi-fidelity approxima-

tion with respect to the number of high-fidelity runs by computing the norm defined

in (5.1) (evaluated over an independent set of n = 1000 Monte Carlo samples).

5.1 A double-peak initial data test

We first consider the following initial data to mimic the Karhunen-Loeve expan-

sion of the random field:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇢0(x, z
⇢) =

1

3

 
2 + sin(2⇡x) + 0.2

d1X

k=1

sin[2⇡(k + 1)x]
z
⇢

k

2k

!
,

u0 = (0.2, 0),

T0(x, z
T ) =

1

4

 
3 + cos(2⇡x) + 0.2

d1X

k=1

cos[2⇡(k + 1)x]
z
T

k

2k

!
,

f0(x,v, z) =
⇢0

4⇡T0

✓
exp(�

|v � u0|
2

2T0
) + exp(�

|v + u0|
2

2T0
)

◆
.

(5.3)

The uncertain collisional cross section is given by

b(z) = 1 + 0.5zb1, (5.4)

Here z⇢ =
�
z
⇢

1 , · · · , z
⇢

d1

�
, zT =

�
z
T

1 , · · · , z
T

d1

�
, and zb = z

b

1 represent the random

variables in the collision kernel, initial density and temperature. Let the initial

distribution f0 follow a double-peak non-equilibrium initial data [26]. Set d1 = 7, thus

this is a d = 15 dimensional problem in the random space. We use the Boltzmann

equation as the high-fidelity model and the Euler system as the low-fidelity model,

set �x = 0.01, �t = 8⇥ 10�4 (in both the high- and low-fidelity models), Nh

v
= 16,

and the final time t = 0.1.

In Figure 1, we consider the fluid regime with " = 10�4. This figure shows the

mean L
2 errors of ⇢, u1, T between the high- and bi-fidelity solutions with di↵erent

quadrature points in velocity space. Here u1 in the figures below stands for the first

component of the two-dimensional bulk velocity u. It is clear that the error decays

fast with the number of high-fidelity runs. In addition, when N
l

v
increases, the error

between the high- and bi-fidelity solutions decreases. This is expected because the

Euler equation solved by more quadrature points in velocity space can capture more

information about the high-fidelity model.

In Figure 2, fluid regime is considered and we vary " from " = 10�2 to " =

10�4. The Euler equation is chosen as the low-fidelity model, solved by the same

17

space: 1d   velocity: 2d   random space: 15d

Example 1: double peak ini;al data test



The smaller Knudsen number is, the 
lower level errors saturate 

As epsilon approaches to zero, the Euler (low-fid)  
commits less modeling error, thus can  
capture more information of the high-fid model. 

Fluid regimes



Kinetic regime

forward Euler in time and second-order MUSCL scheme in space, and the same

spatial and temporal meshes as the Boltzmann equation in the high-fidelity model,

and with N
l

v
= 8 velocity quadrature points. One observes that the smaller " is,

the lower level the errors saturate. This is expected, because when the Knudsen

number " approaches to zero, the Euler equation as the low-fidelity model commits

less modeling error and can capture more information of the high-fidelity model.

In Figure 3, we investigate the performance of the bi-fidelity approximation for the

kinetic regime with " = 1. Fast convergence of the mean L
2 errors with respect to the

number of high-fidelity runs is observed. Even though " is relatively large compared

to the previous two tests, a satisfactory accuracy in characterizing behaviors of the

solution in the random space is achieved in both cases: N
l

v
= 8 and N

l

v
= 4; and

the errors with N
l

v
= 8 is smaller than that of N l

v
= 4. On the right column of

Figure 3, we plot the high-, low- and the corresponding bi-fidelity solutions (with

r = 20, N
l

v
= 8) for a particular sample point z. One observes that the high-

and bi-fidelity solutions match quite well, whereas the low-fidelity solutions appear

inaccurate at some spatial points. This example seems to indicate that although

in the kinetic regime, the fluid description breaks down in the physical space, the

bi-fidelity solution can still capture important variations of the high-fidelity model

(Boltzman equation) in the random space.

18

The fluid description breaks down in the 
physical space, yet the BF approximation 
can still capture important variations of 
the high-fidelity model in the random 
space



5.2 Sod shock tube test

We next consider a more challenging problem where the initial data is discontin-

uous. Assume the random collision kernel in the form

b(zb) = 1 + 0.5
d1+1X

k=1

z
b

k

2k
,

and the random initial distribution

f
0(x,v, z) =

⇢
0

2⇡T 0
e
� |v�u

0|2

2T0 ,

where the initial data for ⇢0, u0 and T
0 is given by

8
>>>><

>>>>:

⇢l = 1, ul = (0, 0), Tl(z
T ) = 1 + 0.4

d1X

k=1

z
T

k

2k
, x  0.5,

⇢r =
1

8
, ur = (0, 0), Tr(z

T ) =
1

8
(1 + 0.4

d1X

k=1

z
T

k

2k
), x > 0.5.

Here zb =
�
z
b

1, · · · , z
b

d1+1

�
and zT =

�
z
T

1 , · · · , z
T

d1

�
represent the random variables in

the collision kernel and initial temperature. Set d1 = 7, then the total dimension

d of the random space is 15. We use the Boltzmann equation as the high-fidelity

model, and solve it by �x = 0.01, �t = 8⇥ 10�4, and N
h

v
= 24, until the final time

t = 0.15. We shall employ the Euler equation as the low-fidelity model, and solve it

with the same spacial and temporal resolution with the high-fidelity model but with

N
l

v
= 12. We consider the fluid regime with " = 10�4 in this test.

From the left column of Figure 4, we see a fast convergence of L2 errors between

the high- and bi-fidelity solutions. With only 10 high-fidelity runs, the bi-fidelity

approximation can reach an accuracy level O(10�3) for a 15-dimensional problem in

random space, while the low-fidelity approximation is quite poor with an accuracy

level O(10�1). To further illustrate the performance of our bi-fidelity method, we

compared the high-, low- and the corresponding bi-fidelity solutions (with r = 10)

for a particular sample point z. One observes that the high- and bi-fidelity solutions

match really well, whereas the low-fidelity solutions seem to be quite inaccurate at

some points in the spatial domain. Even in this case, the bi-fidelity solutions can

approximate the high-fidelity solutions very well.

Figure 5 shows clearly that the mean and standard deviation of the bi-fidelity

approximation of ⇢, u1 and T agree well with the high-fidelity solutions by using

only 10 high-fidelity runs. The result is a bit surprising yet reasonable, suggesting

that even though the Euler model may be inaccurate in the physical space, it still can

capture the behaviors and characteristics of the solution to the Boltzmann equation

in the random space. Moreover, since the high-fidelity model (Boltzmann) with

N
h

v
= 24 costs approximately 43 times of the low-fidelity solver (Euler) with N

l

v
= 12

(the former takes 30.6 seconds, the latter takes 0.7 seconds for one single run), a

significant speedup is quite noticeable in this case.

22

Example 2: Sod Shock Tube Test

The collision kernel
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Figure 4: (Left) The mean L
2 errors between high-fidelity and low- or bi-fidelity solutions

with respect to the number of high-fidelity runs; (Right) Comparison of the low-fidelity

solution (N l
v = 12), high-fidelity solutions (N l

v = 24), and the corresponding bi-fidelity

approximations r = 10 for a fixed z.
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with respect to the number of high-fidelity runs; (Right) Comparison of the low-fidelity

solution (N l
v = 12), high-fidelity solutions (N l

v = 24), and the corresponding bi-fidelity

approximations r = 10 for a fixed z.
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Fluid regime

MUSCL scheme in space, by using the same spatial and temporal resolutions as the

high-fidelity model,but with a di↵erent number of quadrature points N l

v
in velocity

discretization.

In all the examples, the spatial domain is chosen to be [0, 1] with Nx grid points,

and periodic boundary condition is assumed except for the shock tube tests. The

velocity domain is chosen as [�Lv, Lv]2 with Lv = 8.4 and Nv grid points in each

dimension. Without loss of generality, The d-dimensional random variable z is as-

sumed to follow the uniform distribution on [�1, 1]d. The training set � is chosen to

be M = 1000 random samples of z. We examine the error of bi-fidelity approxima-

tion with respect to the number of high-fidelity runs by computing the norm defined

in (5.1) (evaluated over an independent set of n = 1000 Monte Carlo samples).

5.1 A double-peak initial data test

We first consider the following initial data to mimic the Karhunen-Loeve expan-

sion of the random field:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇢0(x, z
⇢) =

1

3

 
2 + sin(2⇡x) + 0.2

d1X

k=1

sin[2⇡(k + 1)x]
z
⇢

k

2k

!
,

u0 = (0.2, 0),

T0(x, z
T ) =

1

4

 
3 + cos(2⇡x) + 0.2

d1X

k=1

cos[2⇡(k + 1)x]
z
T

k

2k

!
,

f0(x,v, z) =
⇢0

4⇡T0

✓
exp(�

|v � u0|
2

2T0
) + exp(�

|v + u0|
2

2T0
)

◆
.

(5.3)

The uncertain collisional cross section is given by

b(z) = 1 + 0.5zb1, (5.4)

Here z⇢ =
�
z
⇢

1 , · · · , z
⇢

d1

�
, zT =

�
z
T

1 , · · · , z
T

d1

�
, and zb = z

b

1 represent the random

variables in the collision kernel, initial density and temperature. Let the initial

distribution f0 follow a double-peak non-equilibrium initial data [26]. Set d1 = 7, thus

this is a d = 15 dimensional problem in the random space. We use the Boltzmann

equation as the high-fidelity model and the Euler system as the low-fidelity model,

set �x = 0.01, �t = 8⇥ 10�4 (in both the high- and low-fidelity models), Nh

v
= 16,

and the final time t = 0.1.

In Figure 1, we consider the fluid regime with " = 10�4. This figure shows the

mean L
2 errors of ⇢, u1, T between the high- and bi-fidelity solutions with di↵erent

quadrature points in velocity space. Here u1 in the figures below stands for the first

component of the two-dimensional bulk velocity u. It is clear that the error decays

fast with the number of high-fidelity runs. In addition, when N
l

v
increases, the error

between the high- and bi-fidelity solutions decreases. This is expected because the

Euler equation solved by more quadrature points in velocity space can capture more

information about the high-fidelity model.

In Figure 2, fluid regime is considered and we vary " from " = 10�2 to " =

10�4. The Euler equation is chosen as the low-fidelity model, solved by the same
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Low-fid costs about 
0.01 computation time 
of high-fid solver

15-d random z needs only 10 
high-fidelity (Boltzmann) runs! 



Example 3: Mixed regime
Knudsen number " varying in space show in Figure. 6 and given by

"(x) = 10�3 +
1

2


tanh

✓
1�

11

2
(x� 0.5)

◆
+ tanh

✓
1 +

11

2
(x� 0.5)

◆�
. (5.5)

The random initial data and collision kernel are given by (5.3) and (5.4). The total

dimension of the random space is d = 15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: The distribution of "(x) in (5.5).

All the numerical parameters used in temporal and spatial discretizations are the

same as that in Section 5.1. We solve the Boltzmann equation (2.1) for the high-

fidelity solution with N
h

v
= 24, and the Euler system for the low-fidelity solution

with N
l

v
= 8.

From the left column of Figure 7, we observe a fast convergence of L2 errors be-

tween the high- and bi-fidelity solutions, where they saturate quickly when r reaches

about 25. It is worth noting that the dotted lines that represent the errors be-

tween the high- and low-fidelity solutions are much larger O(10�1) compared to that

between the high- and bi-fidelity solutions. This indicates that even though the low-

fidelity solutions alone are relatively not accurate in the spatial domain, it might be

still able to behave similarly in the random space, therefore the resulted bi-fidelity

approximation based on a small number of high-fidelity runs (say r = 25) can reach

a reasonable accuracy level up to O(10�3).

The right column of Figure 7 shows the high-, low- and bi-fidelity solutions at a

randomly chosen sample point z. One can see that the high- and bi-fidelity solutions

match really well, whereas the low-fidelity solutions are not accurate. In addition,

with N = 1000 low-fidelity runs of the Euler model, together with only 25 runs of the

AP solver to the Boltzmann model, one can get the bi-fidelity solutions which are able

to capture behavior of the solutions to the Boltzmann equation in the random space,

up to an accuracy of 10�3; on the other hand, using the low-fidelity model (Euler

equation) alone can not achieve this result, especially under the multiple scalings

where " ranges from 10�3 to 1 (since the errors between macroscopic quantities

calculated from the Boltzmann and Euler equation deteriorate when " becomes large).
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Knudsen number " varying in space show in Figure. 6 and given by

"(x) = 10�3 +
1

2


tanh

✓
1�

11

2
(x� 0.5)

◆
+ tanh

✓
1 +

11

2
(x� 0.5)

◆�
. (5.5)

The random initial data and collision kernel are given by (5.3) and (5.4). The total

dimension of the random space is d = 15.
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All the numerical parameters used in temporal and spatial discretizations are the

same as that in Section 5.1. We solve the Boltzmann equation (2.1) for the high-

fidelity solution with N
h

v
= 24, and the Euler system for the low-fidelity solution

with N
l

v
= 8.

From the left column of Figure 7, we observe a fast convergence of L2 errors be-

tween the high- and bi-fidelity solutions, where they saturate quickly when r reaches

about 25. It is worth noting that the dotted lines that represent the errors be-

tween the high- and low-fidelity solutions are much larger O(10�1) compared to that

between the high- and bi-fidelity solutions. This indicates that even though the low-

fidelity solutions alone are relatively not accurate in the spatial domain, it might be

still able to behave similarly in the random space, therefore the resulted bi-fidelity

approximation based on a small number of high-fidelity runs (say r = 25) can reach

a reasonable accuracy level up to O(10�3).

The right column of Figure 7 shows the high-, low- and bi-fidelity solutions at a

randomly chosen sample point z. One can see that the high- and bi-fidelity solutions

match really well, whereas the low-fidelity solutions are not accurate. In addition,

with N = 1000 low-fidelity runs of the Euler model, together with only 25 runs of the

AP solver to the Boltzmann model, one can get the bi-fidelity solutions which are able

to capture behavior of the solutions to the Boltzmann equation in the random space,

up to an accuracy of 10�3; on the other hand, using the low-fidelity model (Euler

equation) alone can not achieve this result, especially under the multiple scalings

where " ranges from 10�3 to 1 (since the errors between macroscopic quantities

calculated from the Boltzmann and Euler equation deteriorate when " becomes large).
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Macroscopic states



Bi-fidelity method for LTE
Linear transport equation (LTE) under diffusive scaling: 

Liu-Pareschi-X.Zhu (21’)

The Goldstein-Taylor (GT) 
model is: 

Let then GT model becomes



Random cross section 

We choose the GT equation as our low-fidelity model, which shares the same 
limiting diffusion equation as the LTE, by letting

Bi-fidelity method for LTE

Motivations:



Bi-fidelity approxima;ons



Error plots

Fast convergence, high accuracy, with low computational cost



Numerical Examples

A mixed regime test



Hypocoercivity analysis

Hypocoercivity theory: an important tool to study the stability and long-time 
behavior of the solution for kinetic equations  

 The study involves  
(i) a degenerate dissipative kinetic operator; 
(ii)  a conservative operator           , such that the combination of these operators 

leads to a convergence towards the global equilibrium state; 
and a Lyapunov functional (with mixed  x, v derivatives) is needed to get a quantitive 
convergence rate. 

Local parameter sensitivity analysis studies the long-time behavior of the solution; 
explore how the randomness of the “input” propagates in time and how it affects the 
solution in the long time. 

Many experts have contributed in this direction for deterministic models: 
Villani, Mouhot, Neumann, Guo, Duan, Briant, Arnold, Desvillettes, Dolbeault, 
Schmeiser, etc. 



Sensitivity analysis for the analytic solution

Liu-Jin (SIAM MMS 18’) 

E.Daus-Jin-Liu (KRM 19’): improvement on the assumptions for random collision kernel

Main results: 



Error analysis for bi-fidelity method

In Gamba-Jin-Liu 19’, we use projection error of the greedy algorithm (Cohen-DeVore, 
15’) and adapt the hypocoercivity analysis to conduct error analysis of bi-fidelity 
method for a general class of multiscale kinetic problems. 

Perturbative setting:

small

Splitting the error: 



Error analysis for bi-fidelity method

error estimate valid in both kinetic and hydrodynamic regimes 

uniform in the Knudsen number estimate

error decays algebraically with respect to N

convergence rate independent of the dimension of the random space 



Other relevant work in the multi-fidelity framework

Multi-fidelity moment method for the BGK model with uncertainties  
(with Wang-Li-Liang-Zhu 21’), ….. 

Dimarco-Pareschi (19’,20’) on multiscale control variate methods, 
Hu-Pareschi-Wang (20’) on MLMC method for the BGK model; 



Conclusions 

Bi-fidelity stochastic collocation method accelerate the computation of 
multiscale kinetic equations with high-dimensional random parameters;  

The hypocoercivity analysis for multiscale kinetic problems with uncertainty 
provides a tool to conduct error analysis for the bi-fidelity method; 

practical error bound, etc. 

Future work: 

build a hierarchy of fidelity models  
extend to higher dimensions with more complex random variables and collision 
kernels 
study sharper error estimates for control variate variance reduction MLMC method  
study kinetic equations using deep learning approaches (Chen-Liu-Mu 21’, Liu-
Zhang-Zeng 21’), etc. 



Thank you for your attention! 


