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Kinetic equations
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A hierarchy of multiscale modeling

Applications:

* Rarefied gas: Boltzmann equation * Nuclear reactor (neutron transport), radiative transfer
* Plasma (Vlasov-Poisson, Landau, Fokker-Planck) * Biology

*  Semiconductor device modeling *  Collective behavior in biological and social sciences, etc.



UQ for kinetic equations

*  UQ: Quantifying the uncertainties is important to the
underlying models.

* Most modeling of physical systems contain various sources of uncertainties.

* Kinetic equations: usually derived from N-body Newton’s second law, mean-field
limit etc, the modeling itself is uncertain.

* Parametric uncertainty:
Collision kernels are often , due to incomplete knowledge of the

interaction mechanism; inaccurate measurement of the initial and boundary data,
etc.

* Despite its popularity in solid mechanics, elliptic equations (Abgrall, Babuska,
Ghanem, Gunzburger, Hesthaven, Karniadakis, Mishra, Xiu, Webster, Schwab
etc),



Stochastic Collocation

(25 ulz)};21 = un(2) = u(2)

%

expenSive to obtain for large N

Interpolation/quadrature rule based
on gPC expansion,

™ Non-intrusive
M Fast convergence for smooth problems

However,

> The deterministic code is too computationally expensive
> when d >>1

In general, this class of problem is . There are attempts in:

Sparse grid, sparse wavelet  High cost: repetitive runs of deterministic solvers
basis, compressed sensing,

v



Problem setup

ug(z,t, Z2) = L(uw), inDx(0,T]x Iz,
B(u) = 0, on 0D x [0,T] X Iz,
U = ug, in D x{t=0}xIz.

uwh : low fidelity solution (cheap)
utl hlgh fldellty solution (expenswe)

The goal build a surrogate of uHm a non- mtruswe way v-

z) = Z cn(z)uH(x,t,Zn), 2n € 17

Q1: How to choose <n intelligently?

Q2: How to compute Cn without extensive sampling from the high-fidelity model?



Point selection

Key idea: Explore the parameter space by using the cheap low-fi
model

+ Search the space by the low-fi model via

[zm — arg max d(u”(z), U,nLl_l)]

zel

Candidate set: I' = {21,..., 25}

Low-fi approximation space:

Uk () ={ub (1), b ()} L

* Enrich the space by finding the away from
the space spanned by the existing set

* The greedy choice is (almost) optimal (DeVore 13’).



Lifting procedure

* Construct {c, }as from low-fidelity model:
™m

v(z) = PUL(,Y)UL(Z) = Z cn (2 0™ (2)

m—

GLC =1, f = (fk')lﬁkSNt Je = <uL(z)=uL(z’ik)>L7

where G* is the Gramian matrix of u”(yy), defined by

(GL)i-j - <uL(Z’ik)>uL(ij)>L: 1<k, <M
* Using , construct the approximation rule for
high-fidelity model .
H H
v(x,t,2)" = Z en(2)ut (2,)
n=1

+ This is in fact a lifting operator from low-fi space to high-fi space

+ Justification: e.g., scalar scaling, coarse/fine mesh



Overview of Bi- fldellty algorlthm

- Run the low- f| models at each pomt of Fto obtaln U (F), UL

N

select the most * points — 7Y

| Offline |

* Run the high-fi models on those m points to get ()

» Bi-fidelity approximation: most expensive part

* For any given z € 1., compute low-fi projection coefficients

m

U(Z)L — 7DUL('y)uL(Z) — Z Cn(z)uL(zn)
n=1
* Apply the same coefficients to " () to get the bi-fi approximation
= Z cn(2)u’?
n=1

* This approximation quality depends on how well the low-fi model approximates

the functional variation of high-fi model
9



The Boltzmann equation

f 1
('Tﬁ"'v"f: ~Q(f.f)(v), x€QCR? veR?
( -

* Tisthe probability density distribution function, modeling the probability
of finding a particle at time t, position x, velocity v

* € iIs the Knudsen number that characterizes
of the gas; ratio of mean free path and the characteristic length scale

e ~ O(1) kinetic regime; e < O(1) hydrodynamic regime

* Qisa modeling binary interaction
between particles

* Ludwig Boltzmann, 1872’



Boltzmann collision operator

« non-linear double integral collision operator; high-dimensional in physical space

Q(f . F)(v) = /R [, B = ve o)FV)F(v)) = F(0)F (v, )] .

(v.v,) and (v'.v)) are the velocity pairs

before and after collision: TN
v,_v+v*+|v—v,.] | Vs
2 2
, o vy vy /
V, = — o Uh
2 2

B(v—v..0) = B(|lv—v.|. "'("—v’))

V-V,

Variable hard sphere (VHS) model
B =byv—-v,)" =d<A<1

A = 1: hard sphere molecule elastic collisions
A = 0 Maxwell molecule

U /
V4V, =0 + 0,

o + Joaf? = v + o)



Our choice of the low-fidelity model

e Let (-) be the velocity averages of the argument,
(fy =1 [fv)dv.
Rd

e Multiply the equation

0f +v-Vaf = -Q

o\ T
by m(v) = (l,v, J%l—) and integrate on v, then

O(mf)+ V- (vmf) =0.

e When ¢ — 0, f — M(v),..r. Replace f by M(U), the above equation
becomes closed and reduces to the compressible Euler equations

p pu
O |pu|l +Ve- | pu@u+pl| =0,
E (E+pu

where E' is the total energy defined by

1 1 d
b= <§|’U|2f> = §,0|U|2 +5pT

* Liu-X.Zhu (JCP 19’)



Example 1: double peak initial data test

( d
1 ! P
po(x,z’) = 3 (2 + sin(27z) + 0.2 Z sin[27 (k + 1)z] Zk) |

2%k
k=1
uy = (0.2,0),
< dy - (5.3)
To(z.27) = = [ 3+ cos(2mz) + 0.2 S cosf2r(k + 1)a] 2k
| 1 £ 2%k |

~po v —up|? v +ul?
\ folz,v,z) = T (exp( 2T ) + exp( 2T ).

The uncertain collisional cross section is given by

b(z) =1+ 0.52%, (5.4)
Here z* = (2f,--- ,zdpl), z! = (z{,- ,zgl), and z° = 2% represent the random

variables in the collision kernel, initial density and temperature.

space: 1d velocity: 2d random space: 15d



Fluid regimes

T T T 1 1 1 1
= 1072
—%—e=10"3
—o—e=10"1*
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T

* The smaller Knudsen number is, the

lower level errors saturate

commits /ess modeling error, thus can
capture more information of the high-fid model.

* As epsilon approaches to zero, the Euler (low-fid)



Kinetic regime € =1
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* The fluid description breaks down in the
physical space, yet the BF approximation
can still capture important variations of
the high-fidelity model in the random
space
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Example 2: Sod Shock Tube Test

* The collision kernel

di+1
b(z’) =1+0.5 ];1 ox
and the random initial distribution
¥ v

0 _
f ($7V7 Z) T 27TTO € 270 Y

where the initial data for p¥, v and TV is given by

)
x < 0.5,

d1
pr =1, Uy = (070)7 Tl( Z
k—1

T
k.
2k’
1 D LT
pr=g, ur=(0,0) T, (z7) = 1+o Z—Z x> 0.5.




Fluid regime ¢ = 107"
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* 15-d random z needs only 10
high-fidelity (Boltzmann) runs!

1021

10° T 1 T

* |.ow-fid costs about
0.01 computation time

of high-fid solver




Example 3. Mixed regime

e(x) =107° + % [tanh (1 — 12—1(x — 0.5)) + tanh (1 + 12—1(:1: — 0.5))]

0.8

6(73)




Macroscopic states
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Bi-fidelity method for LTE

* Linear transport equation (LTE) under diffusive scaling:

1
Do f +v0,f = L) E / f(')dv’ — f] ,
€ —1

* The Goldstein-Taylor (GT)

- ( 1 o(x,z)
model is: < Oyu + g@mu = 0o (v —u),
1 _ o(z, 2)
\8,5’0 — gc’)mv = 5o (u —v).
Let p=u+v, s=-——  then GT model becomes

3

o(x,z)

{(%p + 0,8 = 0,

1
O s + g&;p = — S.

g2

In the diffusion limit ¢ — 0, system (3.2) can be approximated by the heat

equation to the leading order, with random diffusion coefficient o(x, z):

( 1
§=—

oz, z)axp’

1
o(x,z)

\

* Liu-Pareschi-X.Zhu (21°)



Bi-fidelity method for LTE

* \We choose the GT equation as our low-fidelity model, which shares the same
limiting diffusion equation as the LTE, by letting

OGT — [O0LTE

* Random cross section

d
1
o(z,z) =1+ az (in)? cos (2mix)z;,
i=1




Bi-fidelity approximations
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FiG. 5.1. The mean (left) and standard deviation (right) of 7 at ¢ = 10~% (first row), and
e = 1072 (second row), obtained by 12 high-fidelity runs and the sparse grid method with 2243
quadrature points (crosses).



Error plots
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Fi1G. 5.3. Errors of the bi-fidelity approximation mean (left) and standard deviation (right) of
7 for e = 10~8 (circle) , 10™2 (cross) with respect to the number of high-fidelity runs, with d = 5
dimensional random input.

* Fast convergence, high accuracy, with low computational cost



Fi1G. 6.10. Test 4. The mean (left) and standard deviation (right) of ¥, obtained by r = 8

Numerical Examples
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high-fidelity runs and the sparse grid method with 2243 quadrature points (crosses).

* A mixed regime test

10°

10°F

104 F

FiG. 6.11. Test 4. Errors of the bi-fidelity approximation mean (left) and standard deviation
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Hypocoercivity analysis

* Hypocoercivity theory: an important tool to study the stability and long-time
behavior of the solution for kinetic equations

The study involves
(i) a degenerate dissipative Kinetic operator;

(ii) a conservative operator v - V, , such that the combination of these operators
leads to a convergence towards the global equilibrium state;

and a Lyapunov functional (with mixed x, v derivatives) is needed to get a quantitive
convergence rate.

* Many experts have contributed in this direction for deterministic models:
Villani, Mouhot, Neumann, Guo, Duan, Briant, Arnold, Desvillettes, Dolbeauilt,
Schmeiser, etc.

* Local parameter sensitivity analysis studies the long-time behavior of the solution;
explore how the randomness of the “input” propagates in time and how it affects the
solution in the long time.



Sensitivity analysis for the analytic solution

Main results:

If the initial data and collision kernel are random (under suitable assumptions),
we have the following results on the convergence to global equilibrium:

(i) Under the incompressible Navier-Stokes scaling,

Hy iy < Cre ™.

i

enpee < Cre ™, Id

(ii) Under the acoustic scaling,

t

[|A| Hs Hy < Cre ™™,

enpee < Cre =™t Id

where (7, 7, are positive constants independent of €.

* Liu-din (SIAM MMS 18)

* E.Daus-Jin-Liu (KRM 19’): improvement on the assumptions for random collision kernel



Error analysis for bi-fidelity method

* |n Gamba-Jin-Liu 19°, we use projection error of the greedy algorithm (Cohen-DeVore,
15’) and adapt the hypocoercivity analysis to conduct
for a general class of multiscale kinetic problems.

*  Splitting the error:

= ut (2) — Z cn(2)ul? (2,)
_ uH(z) - uL(z) 4+ (uL(z) - Z Cn(Z) uL(Zn)) -+ ch(z) (UL(Zn) —_ uH(Zn))

Perturbative setting: f=M+Mh

v

small



Error analysis for bi-fidelity method

Under reasonable assumptions for the random collision kernel, if the initial
data satisfies

[| A

3 o < S
Hs LS 577
with n, sufficiently small, then for all ¢ > 0,

Ch

[uf () — wB ()| gsre < (N/2 1 1)o7

+C2 57

where N is the number of high-fidelity simulation runs.

error with respect to N
convergence rate independent of the dimension of the random space
uniform estimate

error estimate valid in both kinetic and hydrodynamic regimes



Other relevant work in the multi-fidelity framework

* Dimarco-Pareschi (19°,20°) on multiscale control variate methods,
Hu-Pareschi-Wang (20’) on MLMC method for the BGK model;

*  Multi-fidelity moment method for the BGK model with uncertainties
(with Wang-Li-Liang-Zhu 21°),



Conclusions

Bi-fidelity stochastic collocation method accelerate the computation of
multiscale kinetic equations with high-dimensional random parameters;

The hypocoercivity analysis for multiscale kinetic problems with uncertainty
provides a tool to conduct error analysis for the bi-fidelity method;

practical error bound, etc.

build a hierarchy of fidelity models

extend to higher dimensions with more complex random variables and collision
kernels

study sharper error estimates for control variate variance reduction MLMC method
study kinetic equations using deep learning approaches (Chen-Liu-Mu 21’, Liu-
Zhang-Zeng 21'), etc.
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