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The HMF model

The Hamiltonian mean field model (HMF) is a caricature of the Vlasov-Poisson
system. Particles in interaction, moving on the circle, are described by their
distribution function f(t, θ, v) which is solution of

∂tf + v∂θf − ∂θφf∂vf = 0, (t, θ, v) ∈ R+ × T× R
f(0, θ, v) = finit(θ, v)

where T = R/(2πZ) and the potential φf (t, θ) is given by

φf (t, θ) = −
∫ 2π

0

ρf (t, θ′) cos(θ − θ′)dθ′, ρf (t, θ) =

∫
R
f(t, θ, v)dv

The magnetization Mf is the vector

Mf =

(∫ 2π

0

ρf cos θdθ,

∫ 2π

0

ρf sin θdθ

)T
= (M1

f ,M
2
f )T

and we have
φf (t, θ) = −M1

f (t) cos θ −M2
f (t) sin θ
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Basic properties of the HMF model

ä The following quantities do not depend on time

à The Casimir functions ∫∫
G(f(t, θ, v))dθdv

à The nonlinear energy

H =
1

2

∫∫
v2f(t, θ, v)dθdv − 1

2
|Mf (t)|2

ä Galilean invariance: if f(t, θ, v) is solution, then so is f(t, θ + v0t, v + v0)

ä Any function of the form

f(θ, v) = F

(
v2

2
+ φf (θ)

)
(where φf depends on f) is a steady state of the system.
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Main results (more detailed statements later)

Let f0 = F
(
v2

2
+ φf0(θ)

)
be a steady state and consider the quantity

κ0 = −
∫ 2π

0

∫ +∞

−∞
F ′(e0(θ, v))


∫
D

(cos θ − cos θ′)(e0(θ, v)− φf0(θ′))−1/2dθ′∫
D

(e0(θ, v)− φf0(θ′))−1/2dθ′


2

dθdv

where

e0(θ, v) =
v2

2
+ φf0(θ) and D =

{
θ′ ∈ T : φf0(θ′) < e0(θ, v)

}
Then, we have the following alternative

ä if κ0 < 1 and F is decreasing, f0 is nonlinearly orbitally stable1

ä if κ0 > 1, f0 is linearly unstable and, under additional assumptions on its
support, f0 is nonlinearly unstable

1The same critierion, with a different expression, was found by Ogawa (PRE 2013) who proved
formally the linear stability
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Rearrangements

For all function f ∈ L1(T× R), let

µf (s) = meas {(θ, v) ∈ T× R : f(θ, v) > s} , for all s ≥ 0

and its pseudo-inverse

f ](s) = inf {t ≥ 0, µf (t) ≤ s} , for all s ≥ 0

The Schwarz rearrangement of f is the function

f∗(θ, v) = f ]
(

meas
{
B(0,

√
θ2 + v2) ∩ T× R

})
and is equimeasurable with f i.e., for all s ≥ 0,

meas {(θ, v) ∈ T× R : f(θ, v) > s} = meas {(θ, v) ∈ T× R : f∗(θ, v) > s}

Important fact. As a consequence of the conservation of the Casimir
functions, all these quantities are conserved by the HMF flow

µf(t) = µfinit , f(t)] = f ]init, f(t)∗ = f∗init
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The stability result

Theorem

Let (for simplicity) f0(θ, v) = F ( v
2

2
−m0 cos θ) be a compactly supported

steady state with F ∈ C1(R) decreasing. Assume that κ0 < 1. Then there
exists δ > 0 such that, for all f satisfying |Mf −Mf0(·−θf )| < δ, we have

‖f(θ, v)− f0(θ − θf , v)‖2L1 ≤ C (H(f)−H(f0)) + C(1 + ‖f‖L1)‖f∗ − f∗0 ‖L1

where θf is the angle such that Mf = |Mf |(cos θf , sin θf )T

Note that all the quantities in the right-hand side are conserved by the HMF
flow. Therefore, its solution f(t, θ, v) satisfies

‖f(t, θ, v)−f0(θ−θf (t), v)‖2L1 ≤ C (H(finit)−H(f0))+C(1+‖finit‖L1)‖f∗init−f∗0 ‖L1

Corollary (orbital stability)

Under the same assumptions, for all ε > 0, there exists η > 0 such that

‖(1 + v2)(finit− f0)‖L1 ≤ η =⇒ ∀t ≥ 0, ‖(1 + v2)(f(t)− f0(· − θf ))‖L1 ≤ ε



Introduction The stability result The linear instability result Nonlinear instability Conclusion

The main ingredients of the proof2

(i) Symmetric rearrangements with respect to the microscopic energy

à Generalization of the classical Schwarz symmetric rearrangement

(ii) Monotonicity of the Hamiltonian with respect to this rearrangement

à Reduced energy functional depending on the magnetization only

(iii) Coercivity of this new functional near m0 (the magnetization of f0)

(iv) Control of the whole distribution function

2Adaptation of techniques developed in Lemou-M.-Raphaël (Inventiones 2012)
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Symmetric rearrangement with respect to the microscopic energy

ä The standard Schwarz symmetization.

Let f ∈ L1(T× R), then f∗ ∈ L1(T× R) is the unique nonincreasing
spherically symmetric function such that f∗ is equimeasurable with f .

ä Generalization: rearrangement with respect to the microscopic energy.

Let φ(θ) be a potential.
Let f ∈ L1 ∩ L∞(T× R), then we may define its rearrangement f∗φ

which is:

à a nonincreasing function of v2

2
+ φ(θ)

à such that f∗φ is equimeasurable with f

ä Key fact: the ”fundamental identity of the steady state”

Our assumptions on f0 are enough to show that

f
∗φf0
0 = f0
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Explicit construction of f∗φ

We first define the Jacobian function

aφ(e) = meas

{
(x, v) ∈ T× R :

|v|2

2
+ φ(x) < e

}
= 2

√
2

∫ 2π

0

√
(e− φ(θ))+dθ

Then we have

f∗φ(θ, v) := f ]
(
aφ

(
v2

2
+ φ(θ)

))
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The key monotonicity property

Introduce the following reduced energy functional

J (m) =
m2

2
+

∫∫ (
v2

2
+ φ

)
f∗φ0 dθdv with φ = −m cos θ

Proposition

H(f)−H(f0) =J (|Mf |)− J (m0) +

∫∫ (
v2

2
+ φf

)(
f∗φf − f∗φf0

)
dθdv

+

∫∫ (
v2

2
+ φf

)(
f − f∗φf

)
dθdv

à The red term is bounded by C (1 + ‖f‖L1) ‖f∗ − f∗0 ‖L1

à The green term is nonnegative

The positivity of the green term is reminiscent from the following property of
the standard Schwarz symmetrization∫

R3

|x|f(x)dx ≥
∫
R3

|x|f∗(x)dx
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ä The next step is a Taylor expansion of J near m0, using the following
identities

Proposition

J ′(m0) = 0 and J ′′(m0) = 1− κ0

Hence, if 1− κ0 > 0, we can control locally

||Mf | −m0| ≤ C (H(f)−H(f0)) + C (1 + ‖f‖L1) ‖f∗ − f∗0 ‖L1

ä The last step is a functional inequality 3

Proposition

(‖f − f0‖L1 + ‖f0‖L1 − ‖f‖L1)2 ≤C |Mf −Mf0 |
+ C (H(f)−H(f0)) + C‖f∗ − f∗0 ‖L1

Hence we can control f − f0 (up to a translation shift) and conclude

3obtained in Lemou (CMP 2016)
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The linear instability result

Consider the linearized HMF operator near f0

Lf = −v∂θf + ∂θφf0∂vf + ∂θφf∂vf0

Theorem

Let f0 = F ( v
2

2
−m0 cos θ) be a steady state of the HMF system such that

F ′( v
2

2
−m0 cos θ) ∈ L1. Assume that κ0 > 1. Then there exists an eigenvalue

λ > 0 and an eigenfunction f ∈ L1 such that Lf = λf .

In particular, the function g(t, θ, v) = eλtf(θ, v) is a growing mode of the
equation ∂tg = Lg. We have exhibited an instability for the linearized HMF
equation

The method used to prove this theorem is inspired from the works of Strauss,
Guo, Lin4 for the Vlasov-Poisson system in the plasma case or in the
gravitational case

4Guo-Strauss (Ann. IHP 1995), Guo-Lin (CMP 2008)
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Sketch of the proof

ä We introduce the characteristics associated to the equation

∂tf + v∂θf − ∂θφf0∂vf = 0

dΘ

ds
= V,

dV

ds
= ∂θφf0(Θ(s)) = m0 sin Θ(s)

ä Assume that Lf = λf and that φf (θ) = −m cos θ, then

d

ds

(
eλsf (Θ(s), V (s))

)
= eλs (∂θφf∂vf0) (Θ(s), V (s))

= eλsm sin Θ(s)V (s)F ′(e(Θ(s), V (s)))

where e(Θ(s), V (s)) = V (s)2

2
−m cos Θ(s) is independent of s. Hence

after an integration between s = −∞ and s = 0,

f(θ, v) = mF ′(e)

∫ 0

−∞
eλs sin Θ(s)V (s)ds

= −mF ′(e) cos θ −mF ′(e)
∫ 0

−∞
λeλs cos Θ(s)ds
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ä Hence the equation of the magnetization m =
∫∫

f(θ, v) cos θdθdv yields
G(λ) = 0, with

G(λ) := 1+

∫∫
F ′(e) cos2 θdθdv+

∫∫
F ′(e) cos θ

∫ 0

−∞
λeλs cos Θ(s)dsdθdv

Conversely, if G(λ) = 0, one can see that λ is an eigenfunction of L

ä It is not difficult to see that limλ→+∞G(λ) = 1 by dominated
convergence

ä The crucial point is now to show that limλ→0G(λ) = 1− κ0. This
calculation uses the solution of the characteristics equations, which are
nothing but the equations of the pendulum

Θ̇(s) = V (s) = ±
√

2(e+m cos Θ(s))

ä Then, if κ0 > 1, by a continuity argument, G admits a zero on R∗+, i.e.
there exists an eigenvalue λ > 0 corresponding to a growing mode
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The nonlinear instability result

The nonlinear instability results relies on Grenier’s technique5, adapted to
kinetic equations by Han-Kwan and Hauray6

Theorem

Let f0 = F ( v
2

2
−m0 cos θ) be a steady state of the HMF system such that

F ∈ C∞ and such that F (e) = 0 for all e ≥ e∗, with e∗ < m0. Assume that
κ0 > 1. Then there exists δ0 > 0 such that for all δ > 0, there exists a
nonnegative solution of the HMF system satisfying

‖f(0)− f0‖L1 ≤ δ

and
‖f(tδ)− f0‖L1 ≥ δ0

for some tδ = O(| log δ|).

Remark: one can prove that the set of such steady states is not empty...

5Grenier CPAM 2000
6Han-Kwan, Hauray (CMP 2015)
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Sketch of the proof

ä Let f1 be an eigenfunction of L associated to the eigenvalue λ > 0. We
construct an ’almost’ solution of the nonlinear HMF equation of the form

fapp = f0 + δeλtf1(θ, v) +

N∑
k=2

δkfk(t, θ, v)

where δ is small. The fk are recursively defined by

(∂t − L)fk +

k−1∑
j=1

∂θφfj∂vfk−j = 0, fk(0, θ, v) = 0

ä To estimate the fk’s, we first use an estimate on the linearized semi-group

‖etLf‖Wk,1 ≤ Cetβ‖f‖Wk,1

for all β > max{Reµ : µ is an eigenvalue of L}
For this estimate, we use that the period of the characteristics is uniformly
bounded on the support of the considered functions, which is true with our
assumption on the support of F
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ä We prove that
‖fk‖WN−k+1,1 ≤ Cektλ

ä Then, if N is large enough,

‖f(t)− fapp(t)‖L1 ≤ C
(
δetλ

)N+1

ä And finally

‖f(t)− f0‖L1 ≥ ‖fapp(t)− f0‖L1 − ‖f(t)− fapp(t)‖L1

≥ δetλ‖f1‖L1 −
N∑
k=2

δk‖fk‖L1 − ‖f(t)− fapp(t)‖L1

≥ δetλ‖f1‖L1

(
1− C

‖f1‖L1

N∑
k=1

δkektλ
)

ä To conclude, it suffices to choose

δ0 = min

(
‖f1‖2

8C
,
‖f1‖L1

4

)
and δetδλ‖f1‖L1 = 2δ0
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Technicalities...

In practice, one has to face several technical difficulties, in particular

ä Since f0 is compactly supported, one has to truncate the function f1 to
guarantee that f(0) is nonnegative

ä In fact, it is not possible to use directly the function f1 constructed during
the linear instability proof. Instead, one has to use the eigenfunction f̃1
associated to an eigenvalue of maximal real part. Hence one has to deal
with complex-valued functions
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Conclusion

ä We have exhibited a sharp stability criterion for the HMF model

ä For the stability proof, our technique relies on nonincreasing
rearrangements and is specially adapted to deal with nonincreasing
functions F . An extension to more general profiles would probably require
another technique

ä The linear instability proof was done under quite general hypotheses

ä The nonlinear instability proof is the first one for non homogeneous steady
states in the kinetic context. It requires an assumption on the support of
the steady state

Thank you for your attention
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