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Motivation: Sheepdogs and sheep

Herding Problem: One or several sheepdogs steer a herd of sheep to a
final destination.

Objective: Guide the evaders in the right direction and confine them in a
given area.
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Motivation: "Guidance by repulsion" model

Drivers try to guide the evaders to a given final destination

One driver + one evader
2

The driver induces a repulsive force on the evader.
The driver is attracted by the evader.
The driver guides the evader combining elementary motions: stop,
move forward and rotate (left and right).
The driver (sheepdog) acts following the instructions of a shepherd
(control).

One driver + multiple evaders.

The single driver interacts with the center of the flock of evaders.
Evaders are mutually attracted.

Multiple drivers + multiple evaders
3

Each driver interacts with each evader.
The shepherd coordinates the motion of all drivers.

2R. Escobedo, A. Ibañez, E. Zuazua, 2016
3D. Ko, E. Zuazua, 2020.
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True herding
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Virtual herding
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Multiple drivers/evaders model

xi , vi : the position, velocity of the ith evader (i = 1, . . . ,N) in R2,
yj : the position of the jth driver (j = 1, . . . ,M) in R2.
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ẋi = vi , i = 1, . . . ,N,

v̇i =
1

N � 1

NX

k=1,k 6=i

a(xk � xi )(vk � vi )  velocity alignment

+
1

N � 1

NX

k=1,k 6=i

g(xk � xi )(xk � xi )  position flocking

� 1
M

MX

j=1

f (yj � xi )(yj � xi ), i = 1, . . . ,N,  evading from drivers

ẏj = uj(t), j = 1, . . . ,M  drivers are directly controlled
xi (0) = x

0
i , vi (0) = v

0
i , yj(0) = y

0
j .

Independent of how strongly the driver is attracted towards the evader,
the shepherd can control its instinct to steer the driver according to the
control strategy. This simplifies the equation for the driver.
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Optimal control

Goal: Simulate the locomotion of drivers controlling an ensemble of evaders?

MINIMISE!!!!

J(u) :=

Z T

0

2

4 1
N

NX

k=1

|xk � xf |2 +
10�4

M

MX

j=1

|uj |2 +
10�4

M

MX

j=1

|yj � xf |2
3

5 dt.

Note that we penalize the position of the drivers as well. This is known
to lead to less oscillatory control strategies (Turnpike)

Some (very few) references:
Problems on sheep gathering:
Well-posedness of optimal control [Burger, Pinnau, Roth, Totzeck,
Tse, 2016] and its simulations [Pinnau, Totzeck, 2018].
Repelling birds from airports: [Gade, Paranjape, Chung, 2015],
Hunting strategies: [Muro, Escobedo, Spector, Coppinger, 2011 and
2014],
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Simulation

A numerically simulated optimal control with 36 evaders and 2 drivers
toward the target (0.5, 0.5) in the time horizon [0, 4]:
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Figure: Left: trajectories in 2D space, Right: control function along time.

Two drivers starting from (0,�1) and (�1, 0).
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Dynamic simulation
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Accelerating simulations

The computational complexity increases rapidly when the number of
evaders N grows.
We propose an approximate control design combining:

1 Random Batch Methods (RBM) to approximate dynamics.4

2 Model Predictive Control (MPC) to correct the deviation
introduced by the RBM5.

4S. Jin, L. Li, J-G Liu, 2020.
5L. Grüne, J. Pannek, 2017.
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Approximative dynamics: Random Batch Methods (RBM)

Divide [0,T ] into subintervals

[0,T ] =
M[

m=1

[tm�1, tm], 0 = t0 < t1 < · · · < tM = T .

We split the set of particles into N/P small random subsets (batches)
with P particles:

{1, 2, . . . ,N} = Bm
1 [ Bm

2 [ . . . [ Bm
n , |Bm

i | = P for 8i .
The model is reduced considering only interactions within each

batch:

1
N � 1

NX

k=1,k 6=i

a(xk�xi )(vk�vi ) ! 1
P � 1

X

k2[i ]m,k 6=i

a(xk�xi )(vk�vi ),

where [i ]m denotes the batch containing i for t 2 [tm�1, tm],

We then control this reduced dynamics, which leads to a stochastic
mini-batch gradient descent method.
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Simulations using the RBM

Simulations show that the RBM properly approximates the distribution of
evaders (better than the trajectory of individual evaders). The
convergence analysis is to be done to a large extent.
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Figure: Simulation along t 2 [0, 4] (left) and at t = 10 (right). Red: positions
from original system, Blue: positions from RBM, Colored region: 95%
confidence region with 200 simulations.

An added tool is need to reduce the error in the control of the dynamics,
which increases in long time-horizons.
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Model Predictive Control (MPC)

MPC adapts the control obtained through the reduced dynamics to the
full system in an iterative manner. This is achieved by optimizing a finite

time-horizon, but only implementing the current timeslot and then
optimizing again, repeatedly.

MPC leads to a semi-feedback strategy.

Figure: Iterative control by MPC.
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Simulations: MPC + RBM

Results are almost as successful as when controlling the full system,
but at a lower computational cost.
We observe a more complex dynamics of the controllers at the final
time. This is due to the anticipative effect that MPC introduces.
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Failure of classical opren-loop control strategies in the

presence of noise

When an unexpected noise perturbs the dynamics of the system, the
classical open-loop strategy fails to regulate the system successfully.
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The optimal open-loop control is not able to compensate the
perturbation introduced by the noise.
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The cure of the combined MPC-RBM strategy

The combined MPC-RBM strategy is able to cope with unexpected noisy
events.
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More drivers are welcome
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Summary and perspectives

The algorithm combines MPC and RBM, to compute a reliable
control strategy reducing computational cost.

RBM reduces the computation cost on the forward and adjoint
dynamics, from order O(N2) to O(NP).

MPC allows to correct the control variations introduced by the
RBM.

In a computational experiment 36 evaders and 2 drivers, the
computation cost is reduced to 16%, while the performance of
control J differs only about 0.5%.

A rigorous analysis of the convergence of the whole process is
pending.

The error analysis of RBM has been developed mainly for contractive
systems [Jin, Li, Liu, 2020, JCP], though numerical simulations show
good performances [Carrillo, Jin, Li, Zhu, 2019], [Ha, Jin, Kim, 2019].
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More complex models

Interesting possible extensions for models in non-flat topographies and
3-d models.

Thank you for your kind invitation and attention!
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