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Summary

• We study quantitatively local regularity properties of solutions
f = f (t, x , v) to hypoelliptic divergence-form PDEs

∂t f + v · ∇x f = ∇v · (A∇v f ) + B · ∇v f + S (t ∈ R, x ∈ Rd , v ∈ Rd)

• Assumptions on A = A(t, x , v), B = B(t, x , v) and S = S(t, x , v):
A measurable symmetric real matrix field with eigenvalues in [λ,Λ]

B measurable vector field such that |B| ≤ Λ

S real scalar field in L∞

• This equation naturally appears in kinetic theory where it is called the
kinetic Fokker-Planck equation; it is related to the class considered by
Kolmogorov and Hörmander (see later) and to Langevin dynamics
• The coefficients are called rough because A and B are merely

measurable and no further regularity is assumed on them
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Historical detour: The 19th problem of Hilbert

• Hilbert 1900: existence of (analytic) minimizers of functional

min
u

ˆ
Ω
L(∇u) dx with Lagrangian L : Rd → R

satisfying conditions of growth, regularity and convexity
• Euler-Lagrange equations on the minimizer

∂i

[
(∂iL) (∇u)

]
= 0 i.e.

[
(∂ijL)(∇u)

]
︸ ︷︷ ︸

aij

∂iju = 0

• Dirichlet energy L(p) = |p|2, minimal surfaces L(p) =
√

1 + |p|2
• Under technical hypothesis on L and domain Ω, a priori pointwise

bound on ∇u already known at the time of Hilbert
• However to go to higher regularity (necessary for existence), one needs

more regularity than ∇u ∈ L∞ in Euler-Lagrange equations
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The result of De Giorgi and Nash (I)

• Another piece of the puzzle: Schauder 1934 proved that if coefficients
aij ∈ Cα (α > 0) then aij∂iju = 0 implies u ∈ C 2,α

• Iterating Schauder’s estimate then yield C∞ regularity, and finally
analytic regularity is obtained by studying the Taylor series
• Remaining missing piece of the puzzle: aij = (∂ijL)(∇u) ∈ Cα

• The equation on a partial derivative f := ∂ku is divergence-form

∂i

[
(∂ijL)(∇u)∂j f

]
= ∂i (aij∂j f ) = ∇ · (A∇f ) = 0

• De Giorgi 1956 – Nash 1958: if A = (aij) is measurable and

λId ≤ A ≤ ΛId

then ∇ · (A∇f ) = 0 implies f Hölder continuous
• This implies finally aij ∈ Cα and solves the problem
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The result of De Giorgi and Nash (II)

• Proof of De Giorgi 1956: (1) iterate gain of integrability by Sobolev
embedding (2) isoperimetric-type argument to control oscillations
• Proof of Nash 1958: based on the fundamental solutions and several

functional inequalities including what is now called ‘Nash inequality’
• Proof of Moser 1964: (1) iterate gain of integrability similarly to De

Giorgi but presented differently (2) control “integral” oscillations by an
argument using a Poincaré inequality on the logarithm of the solution
• The proof of Moser also obtained Harnack inequality for such

elliptic/parabolic equations, i.e. a universal inequality between upper
and lower bounds. This proof was later simplified by Krüzkhov 1963-4
• Later a non-divergent version of this result was obtained by

Krylov-Safonov 1981 through different methods: open problem to
extend Krylov-Safanov theory to the hypoelliptic case
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The theory of hypoellipticity of Hörmander (I)

• Theory associated with Hörmander 1967 but partial results by other
mathematicians as early as the 1950s
• Starting point of Hörmander: Kolmogorov’1934 and Lewy’1957
• Kolmogorov’1934 considers a kinetic transport equation with

drift-diffusion in velocity (i.e. kinetic Fokker-Planck equation)

∂t f + v · ∂x f = ∂2
v f whose fundamental solution from δ0,0

is G (t, x , v) =

(
3

4π2t4

) 1
2

exp

[
−

3|x − t
2v

2|
t3

− |v |
2

4t

]
(t > 0)

• As suggested by the German title, the motivation comes from the
study of the law of the Brownian motion (integrated in time)
• It shows that the solution is C∞ even though the diffusion is

degenerate in x , and Lewy’s example shows that even with polynomial
coefficients and smooth source term some PDEs have no solution
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The theory of hypoellipticity of Hörmander (II)

• Hörmander 1967: Identifies necessary and sufficient commutator
conditions between the vector fields in the equation for regularization
• Regularization Gevrey instead of analytic
• Two types of hypoelliptic equations to distinguish: “Type I” when no

term of order 1 in the equation and “Type 2” when a skew-symmetric
(conservative) operator is combined with a partial diffusion
• Simple commutator example for Kolmogorov’s equation

∂t f + Bf + A∗Af = 0, B = v · ∂x , A = ∂v

[A,B] = C = ∂x ,
d
dt
〈Af ,Cf 〉 = −‖Cf ‖2 + . . .
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Math-Physics motivation for extending De Giorgi theory

• In kinetic theory long-rang interactions means grazing collisions
dominate and lead to singular Boltzmann collision operators
• Coulomb interactions ill-defined for the Boltzmann collision operator

(cf. “fractional” Laplacian at order 2) but Landau 1936 derived

Q(f , f ) = ∇v ·
(ˆ

R3
P
(
f (v∗)∇v f (v)− f (v)∇v f (v∗)

)
|v − v∗|−1 dv∗

)
where P orthogonal projection on (v − v∗)

⊥

• Rewrites as a nonlinear non-local drift-diffusion operator

Q(f , f ) = ∇v ·
(
A[f ]∇v f + B[f ]f

)

A[f ](v) = a

ˆ
R3

(
I − w

|w |
⊗ w

|w |

)
|w |−1 f (t, x , v − w) dw

B[f ](v) = b

ˆ
R3
|w |−3 w f (t, x , v − w) dw

• Existence of global smooth solutions far from equilibrium opened
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Extension of De Giorgi theory to the hypoelliptic setting

Consider f a weak L2 solution to

∂t f + v · ∇x f = ∇v · (A∇v f ) + B · ∇v f + S (t ∈ R, x ∈ Rd , v ∈ Rd)
A measurable symmetric real matrix field with eigenvalues in [λ,Λ]

B measurable vector field such that |B| ≤ Λ

S real scalar field in L∞

Pascucci-Polidoro’04: Boundedness by Moser iteration
Wang-Zhang’11: Hölder continuity by Moser-Krüzkhov approach
Golse-Imbert-Mouhot-Vasseur’19: Hölder regularity and Harnack inequality
by De Giorgi approach (non-constructive)
Guerand-Imbert’21: Revisit approach of Wang-Zhang 2011

Theorems (Guerand-M’21)
Quantitative De Giorgi new argument for Hölder continuity and Harnack ≤
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Detailed main results (I) - Invariances

• Our class of equations is invariant under translations in t, x and under
Galilean translations, i.e. for z0 = (t0, x0, v0) and z = (t, x , v),

z 7→ z0 ◦ z = (t0 + t, x0 + x + tv0, v0 + v)

• For any r > 0 it is invariant under the scaling

z = (t, x , v)→ rz := (r2t, r3x , rv)

• Using the invariances, we write for z0 ∈ R1+2d and r > 0:

Qr (z0) := z0 ◦ [rQ1] = z0 ◦ Qr

=
{
− r2 < t − t0 ≤ 0, |x − x0 − (t − t0)v0| < r3, |v − v0| < r

}
and we simply write Qr (0) = Qr when z0 = 0
• We denote T = ∂t + v · ∇x the free transport operator
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Detailed main results (II) - Notion of solutions

• Given U = (a, b)× Ωx × Ωv with Ωx and Ωv open sets of Rd ,
f : U → R is a weak solution on U if it belongs to the energy space
E = L∞((a, b); L2(Ωx × Ωv )) ∩ L2((a, b)× Ωx ;H1(Ωv )) and the
equation is satisfied in the sense of distributions in U
• f is a weak sub-solution if f ∈ E and for all G ∈ C 2 with G ′ ≥ 0

bounded and G ′′ ≥ 0, and any non-negative ϕ ∈ C∞c (U)

−
ˆ
U
G (f )T ϕ dz ≤ −

ˆ
U
A∇vG (f )·∇vϕ dz+

ˆ
U

[
B · ∇vG (f ) + SG ′(f )

]
ϕ dz .

• It is a weak super-solution if −f is a weak sub-solution
• Equivalent to previous definitions in the case of solutions, but slightly

weaker in the case of sub- and super-solutions: extra assumptions
T f ∈ L2((a, b)× Ωx × Ωv ) or T f ∈ L2((a, b)× Ωx ;H−1(Ωv )) were
made before for energy estimates
• It allows to include important sub-solutions such as f = f (t) = 1t≤0

• Our definition is equivalent to that of De Giorgi in the elliptic case
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Detailed main results (III) - Figure

Q1

Q1
2

Qr0

Qr0
4

Qr0
2

Q−
r0

Q̃−
r0
2

Q̃−
r0
4

• Given invariances, we only state results in a unit centred cylinder
• f (sub/super)-solution in Q1
• r0 ∈ (0, 1

20) explicit from the proof
• Intermediate Value Lemma relates Q−r0 and Qr0

• Weak Harnack inequality relates Q̃−r0
2
and Q r0

2

• Harnack inequality relates Q̃−r0
4
and Q r0

4
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Detailed main results (IV) - Statements (with S = 0)

Intermediate Value Lemma. Given δ1, δ2 ∈ (0, 1), there are r0 = 1
20 ,

ν & (δ1δ2)5d+8 and θ & (δ1δ2)6d+15, such that any sub-solution f in Q1 so
that f ≤ 1 in Q 1

2
and |{f ≤ 0} ∩ Q−r0 | ≥ δ1|Q

−
r0 | and

|{f ≥ 1− θ} ∩ Qr0 | ≥ δ2|Qr0 | satisfies∣∣∣{0 < f < 1− θ} ∩ Q 1
2

∣∣∣ ≥ ν|Q 1
2
|

Weak Harnack Inequality. There is ζ > 0 depending only λ,Λ such that
any non-negative weak super-solution f in Q1 satisfies, for r0 = 1

20 ,ˆ
Q̃−r0

2

f ζ(z) dt dx dv

 1
ζ

.λ,Λ inf
Q r0

2

f + ‖S‖L∞(Q1)

Harnack inequality. Any non-negative weak solution f in Q1 satisfies

sup
Q̃−r0

4

f .λ,Λ inf
Q r0

4

f + ‖S‖L∞(Q1)

(Both IVL & Harnack ≤ imply Hölder continuity quantitatively)
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Structure of the method (for f sub/super sol. and S = 0)

f ∈ Lζ
(1)−−→ f ∈ L∞ ∩ L1

t,vW
1
3−0,1
x

(2)−−→ Weak L1-Poincaré inequality
(3)−−→ Intermediate Value Lemma

(4)−−→ Measure-to-pointwise estimate
(5)−−→ Weak log-Harnack estimate

(6)−−→ Weak Harnack estimate

[ Once these steps are proved, Harnack inequality follows (6)+(1) ]

Step (1) inspired by [PP’04] and uses Kolmogorov fundamental solutions
Step (2) is the most novel step and introduces an argument based on
trajectories and the previous Sobolev regularity to “noise” the x-dependency
Step (3) is novel and based on simple energy estimates
Step (4) is standard and only sketched for obtaining quantitative constants
Step (5) is semi-novel but immediate when constants are quantified
Step (6) is novel in the context of hypoelliptic equations but inspired from
a conceptually similar idea in elliptic equations; it uses an induction, Vitali’s
covering lemma and Step (5) at every scale
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Step 1: The L2 energy estimate

• Starting point of all methods
• Consider f non-negative sub-solution in an open set U ∈ R1+2d and
Qr (z0) ⊂ QR(z0) ⊂ U with 0 < r < R

• Integrate then the equation against f ϕ2 with an appropriate smooth
localisation function ϕ to get

sup
τ∈(−r2+t0,t0)

ˆ
Qτr (z0)

f 2+

ˆ
Qr (z0)

|∇v f |2 .λ,Λ,r ,R

ˆ
QR(z0)

f 2+‖S‖2L2(QR(z0))

where z0 = (t0, x0, v0), Qτ
r (z0) = {(x , v) ∈ R2d : (τ, x , v) ∈ Qr (z0)}

• Unlike the elliptic or parabolic case, the energy estimate does not yield
Sobolev regularity in all variables
• Addressed before by averaging lemma, here simpler systematic optimal

calculation based on Kolmogorov solutions inspired from [PP’04]
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Step 1: The L1 mass estimate

• Less well-known but simple and useful
• Consider again f non-negative sub-solution in an open set U ∈ R1+2d

and Qr (z0) ⊂ QR(z0) ⊂ U with 0 < r < R

• Write m ≥ 0 the defect measure:

∂t f + v · ∇x f = ∇v · (A∇v f ) + B · ∇v f + S −m

• Integrate then the equation against ϕ2 with an appropriate smooth
localisation function ϕ to get

‖m‖L1(Qr (z0) .λ,Λ,r ,R

ˆ
QR(z0)

f +

ˆ
QR(z0)

|∇v f |+
ˆ
QR(z0)

|S |

• Hence the mass of the defect measure is controlled, i.e. intuitively the
total amount of jump in discontinuities is constrained
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Step 1: Kolmogorov fundamental solutions (I)

• Consider f ≥ 0 locally integrable so that

Kf := ∂t + v · ∇x f −∆v f = ∇v · F1 + F2 −m

with F1,F2 ∈ L1 ∩ L2(R− × R2d), m ≥ 0 measure with finite mass on
R− × R2d , and F1,F2,m have compact support in time [−T , 0]

• Then for p ∈ [2, 2 + 1
d ) and σ ∈ [0, 1

3)

‖f ‖Lp(R−×R2d ) .λ,Λ,T ,p ‖F1‖L2(R−×R2d ) + ‖F2‖L2(R−×R2d )

‖f ‖
L1
t,vW

σ,1
x (R−×R2d )

.λ,Λ,T ,σ ‖F1‖L1(R−×R2d ) + ‖F2‖L1(R−×R2d )

+‖m‖M1(R−×R2d )

• Bounds on p and σ seem optimal & constants like inverse distance
• Note that defect measure appears in the second (regularity) estimate

but not in the first (integrability) estimate
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Step 1: Kolmogorov fundamental solutions (II)

• Localize the sub-solution f and write

Kf = ∇v · ((A− Id)∇v f ) + B · ∇v f + S −m = ∇v · F1 + F2 −m

• Use the L2 energy estimate and the L1 mass estimate to get L2

bounds on F1 and F2 and L1 bounds on F1, F2 and m
• Express solution f with the fundamental solution

f (t, x , v) =

ˆ
t′∈R

ˆ
x ′,v ′∈Rd

G (t − t ′, x − x ′ − (t − t ′)v ′, v − v ′)(Kf )(t ′, x ′, v ′)

G (t, x , v) :=


( 3

4π2t4

) d
2 exp

[
−3|x− t

2 v|
2

t3
− |v |

2

4t

]
if t > 0

0 if t ≤ 0

• Since G ≥ 0, drop the defect measure for the gain of integrability
• Use G ∈ Lq and ∇vG ∈ Lq and t∇xG ∈ Lq to gain L2 → Lp

• Since f
p
2 sub-solution, iteration gives L2 → L∞

• Additional iteration easily yields Lζ → L∞ for any ζ > 0
• Decompose G in t and use higher-order estimates to gain regularity
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Step 2: Weak Poincaré Inequality (with S = 0) (I)

• The key step to the Intermediate Value Lemma is to measure
variations above the mean in terms of ‖∇v f ‖L1

• Given ε ∈ (0, 1), σ ∈ (0, 1
3), and f non-negative sub-solution on Q5∥∥∥∥(f − 〈f 〉Q−1 )+

∥∥∥∥
L1(Q1)

.λ,Λ
1

εd+2 ‖∇v f ‖L1(Q5) + εσ ‖f ‖L2(Q5)

where Q−1 := Q1(−1, 0, 0) = (−3,−2]× B1 × B1 and

〈f 〉Q−1 :=

 
Q−1

f :=
1
|Q−1 |

ˆ
Q−1

f

• Such inequality is reminiscent of the Moser approach, however our
proof is a new simpler argument based on trajectories
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Step 2: Weak Poincaré Inequality (with S = 0) (II)∥∥∥∥(f − 〈f 〉Q−1 )+

∥∥∥∥
L1(Q+

1 )

.

∥∥∥∥(f − 〈f ϕε〉Q−1 )+

∥∥∥∥
L1(Q+

1 )

.
ˆ

(t,x ,v)∈Q+
1

[ 
(s,y ,w)∈Q−1

(f (t, x , v)− f (s, y ,w))ϕε(y ,w)

]
+

+ ε2d ‖f ‖L2(Q+
1 )

Q5

Q−
1

Q1

(t, x, v)

(s, y, w)
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Step 2: Weak Poincaré Inequality (with S = 0) (III)

• We decompose the trajectory (t, x , v)→ (s, y ,w) into four
sub-trajectories in Q5:
• a trajectory of length O(ε) along ∇x in the direction w
• two trajectories of length O(1) along ∇v

• one trajectory of length O(1) along T := ∂t + v · ∇x

• This yields the diagram

(t, x , v) −→
∇x

(t, x + εw , v) −→
∇v

(
t, x + εw ,

x + εw − y

t − s

)
−→
T

(
s, y ,

x + εw − y

t − s

)
−→
∇v

(s, y ,w)

• The first sub-trajectory is estimated by the integral regularity L1
t,vW

σ,1
x

• The other trajectories are estimated by the vector fields in the equation
• Note that we are implicitly using the Hörmander commutator

condition: ∇v , T , [∇v , T ] span all the vector fields on R2d+1
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Step 2: Weak Poincaré Inequality (with S = 0) (IV)

First sub-trajectory

I1 .
ˆ

(t,x ,v)∈Q1

|f (t, x , v)− f (t, x + εw , v)| . εσ‖f ‖
L1
t,vW

σ,1
x

Second and fourth trajectories

I2 + I4 .
ˆ
|∇v f |

Third and hardest trajectory

I3 .
ˆ

(t,x ,v)∈Q1

[ˆ
(s,y ,w)

ˆ
τ∈[0,1]

∇v · (A∇v f ) (s∗, y∗,w∗)ϕε(y ,w)

]
+

and the change of variable (s, y ,w)→ (s∗, y∗,w∗) has bounded Jacobian
thanks to the “noise” εw of the first trajectory, which allows to integrate by
parts the divergence on ϕε inside Q−1

22 / 30



Step 3: Proof of the intermediate value lemma (I)

Take S = 0 and f sub-solution on Q1 so that for δ1, δ2 > 0 and r0 = 1
20

|{f ≤ 0} ∩ Q−r0 | ≥ δ1|Q
−
r0 | and |{f ≥ 1− θ} ∩ Qr0 | ≥ δ2|Qr0 |

Then the Poincaré inequality implies 
Qr0

(
f+ − 〈f+〉Q−r0

)
+
.

1
εd+2

ˆ
Q5r0

|∇v f+|+ εσ

Since

〈f+〉Q−r0 ≤
∣∣{f > 0} ∩ Q−r0

∣∣
|Q−r0 |

≤ 1− δ1

the left hand side is bounded below: 
Qr0

(
f+ − 〈f+〉Q−r0

)
+
≥ 1
|Qr0 |

ˆ
(t,x ,v)∈Qr0

[
f (t, x , v)− (1− δ1)

]
+

≥ 1
|Qr0 |

ˆ
{f≥1−θ}∩Qr0

(δ1 − θ)+ ≥ δ2 (δ1 − θ)
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Step 3: Proof of the intermediate value lemma (II)

We now bound from above the right hand sideˆ
Q5r0

|∇v f+| ≤
ˆ
{f =0}∩Q5r0

· · ·︸ ︷︷ ︸
=0

+

ˆ
{0<f<1−θ}∩Q5r0

· · ·︸ ︷︷ ︸
I1

+

ˆ
{f≥1−θ}∩Q5r0

· · ·︸ ︷︷ ︸
I2

The first term takes advantage of the fact that Poincaré ≤ was in L1:

I1 ≤ |{0 < f < 1−θ}∩Q5r0 |
1
2

( 
Q5r0

|∇v f+|2
) 1

2

. |{0 < f < 1−θ}∩Q 1
2
|
1
2

The second term is small when θ is small:

I2 =

ˆ
Q5r0

∣∣∇v

[
(f − (1− θ))+ + (1− θ)

]∣∣ =

ˆ
Q5r0

∣∣∇v

[
f − (1− θ)

]
+

∣∣
.

(ˆ
Q5r0

∣∣∇v

[
f − (1− θ)

]
+

∣∣2) 1
2

.
ˆ
Q 1

2

[
f − (1− θ)

]2
+
. θ

The conclusion follows from taking ε and θ small enough
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Step 4: The measure-to-pointwise estimate (I)

Given S = 0, δ ∈ (0, 1) and r0 = 1
20 there is µ := µ(δ) ∼ δ2(1+δ−10d−16) > 0

such that any sub-solution f in Q1 so that f ≤ 1 in Q 1
2
and∣∣{f ≤ 0} ∩ Q−r0

∣∣ ≥ δ ∣∣Q−r0 ∣∣
satisfies f ≤ 1− µ in Q r0

2
Proof follows the standard De Giorgi argument, only more quantitative:
• There is δ′ > 0 universal such that for any r > 0, any sub-solution f

on Q2r so that
´
Qr

f 2
+ ≤ δ′|Qr | satisfies f ≤ 1

2 in Q r
2

• Define ν, θ > 0 as in the IVL with δ1 = δ and δ2 = δ′ and define the
sub-solutions fk := θ−k [f − (1− θk)] for k ≥ 0
• The sets {0 < fk < 1− θ} = {1− θk < f < 1− θk+1} are disjoints

and each fk satisfies the assumptions of the IVL
• If

´
Qr0

(fk)2
+ ≤ δ′|Qr0 | then fk ≤ 1

2 in Q r0
2
so f ≤ 1− µ with µ = θk

2
which concludes the proof
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Step 4: The measure-to-pointwise estimate (II)

• Consider 1 ≤ k0 ≤ 1 + ν−1 such that
´
Qr0

(fk)2
+ > δ′|Qr0 | for any

0 ≤ k ≤ k0. Then for 0 ≤ k ≤ k0 − 1

|{fk ≥ 1− θ} ∩ Qr0 | = |{fk+1 ≥ 0} ∩ Qr0 | ≥
ˆ
Q+

r0

(fk+1)2
+ > δ′|Qr0 |∣∣{fk ≤ 0} ∩ Q−r0

∣∣ ≥ ∣∣{f ≤ 0} ∩ Q−r0
∣∣ ≥ δ|Q−r0 |

IVL then implies ∣∣∣{0 < fk < 1− θ} ∩ Q 1
2

∣∣∣ ≥ ν|Q 1
2
|

• Summing these estimates we have

|Q 1
2
| ≥

k0−1∑
k=0

∣∣∣{0 < fk < 1− θ} ∩ Q 1
2

∣∣∣ ≥ k0ν|Q 1
2
|.

So k0 ≤ ν−1, and we deduce in Q 1
2

f ≤ 1− θk0+1

2
≤ 1− θ

1+ν
ν

2
=⇒ µ(δ) :=

θ1+ 1
ν

2
∼ δ2(1+δ−10d−16)
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Steps 5: Weak log-Harnack inequality (with S = 0)

• Given h non-negative super-solution, the contraposition on the
sub-solution g := 1− h

M of the measure-to-pointwise estimate implies
for any δ ∈ (0, 1), there is M ∼ δ−2(1+δ−10d−16) so that

|{h > M} ∩ Qr (z)|
|Qr (z)|

> δ =⇒ inf
Q+

r
2

(z)
h ≥ 1

where Qr (z) 7→ Q+
r
2

(z) is the inverse of the operation

Q r
2
(z) 7→ Q−r (z) in the previous statement

• Assuming infQ r0
2
h ≤ 1 and inverting the function δ 7→ M(δ), this

gives upper bounds on the upper level sets, and the layer-cake
representation finally yieldsˆ

Q−r0

[ln (1 + h)]
1

10d+18 . 1

• This logarithmic integrability is weaker than the usual weak Harnack
inequality but it can strenghtened by a simple iterative argument
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Step 6: The weak Harnack inequality (I)

• Consider as before S = 0 (the source term can be re-introduced in the
end of the proof anyway easily)
• We prove by induction on a sequence of cylinders Qk that satisfy
Q̃−r0

2
⊂ Qk ⊂ Q̄k ⊂ Q̊k−1 ⊂ Q−r0 for all k ≥ 1, that for δ0 > 0 small

enough, any non-negative super-solution h with infQ r0
2
h < 1 satisfies

∀ k ≥ 1,

∣∣{h ≥ Mk} ∩ Qk
∣∣

|Qk |
≤ δ0

210(4d+2)k

where M ∼ δ−2(1+δ−10d−16) with δ := δ0
2104d+2

• If the latter is true it implies
´
Q̃−r0

2

hζ . 1 for some ζ & δ10d+17
0 > 0

which concludes the proof
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Step 6: Weak Harnack inequality (II)

• To propagate the induction we cover Ak+1 := {h > Mk+1} ∩ Qk+1

with translations of centered cylinders of the form

Cr [z ] := z ◦ Q2r ((2r2, 0, 0)) = z ◦
(
−2r2, 2r2]× B(2r)3 × B2r

• We construct a sequence Cr` [z`], ` ≥ 1, so that:
1 r` ∈ (0, r0

30·7k−1 )
2 |Ak+1 ∩ C15r` [z`]| ≤ δ0|C15r` [z`]|
3 |Ak+1 ∩ Cr` [z`]| > δ0|Cr` [z`]|
4 the cylinders C3r` [z`] are disjoint
5 Ak+1 is covered by the family C15r` [z`]

• This construction is based on Vitali’s covering lemma and the
geometry of the cylinders
• The measure-to-pointwise estimate at every scale then implies that
Cr` [z`]

+ ⊂ Ak and since Cr` [z`]
+ ⊂ C3r` [z`], these “+” cylinders are

disjoint
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Step 6: Weak Harnack inequality (III)

• We deduce

|Ak+1| ≤
∑
`≥1

|Ak+1 ∩ C15r` [z`]| ≤ δ0
∑
`≥1

|C15r` [z`]|

≤ 154d+2δ0
∑
`≥1

|Cr` [z`]| ≤ 304d+2δ0
∑
`≥1

|Cr` [z`]
+|

≤ 304d+2δ0|Ak | ≤
304d+2δ20
210(4d+2)k

≤ δ0

210(4d+2)(k+1)

∣∣∣Qk+1
∣∣∣

for δ0 small enough which proves the induction claim and concludes
the whole proof
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