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e We study quantitatively local regularity properties of solutions
f = f(t,x,v) to hypoelliptic divergence-form PDEs

Of +v-Vif =V, (AV,f)+B-V,f+S (teR, xeRY veRY
® Assumptions on A = A(t,x,v), B= B(t,x,v) and S = 5(t,x, v):

A measurable symmetric real matrix field with eigenvalues in [\, A]
B measurable vector field such that |[B| <A
S real scalar field in L*>

® This equation naturally appears in kinetic theory where it is called the
kinetic Fokker-Planck equation; it is related to the class considered by
Kolmogorov and Hormander (see later) and to Langevin dynamics

® The coefficients are called rough because A and B are merely
measurable and no further regularity is assumed on them
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Historical detour: The 19th problem of Hilbert

. . existence of (analytic) minimizers of functional

min/ [(Vu)dx with Lagrangian L:R? - R
Q

u

satisfying conditions of growth, regularity and convexity

® Euler-Lagrange equations on the minimizer

a,-[(a,-L) (VU)} —0 ie [(a,-jL)(vu)} du =0
)

ajj

e Dirichlet energy L(p) = |p|?, minimal surfaces L(p) = /1 + |p|?
® Under technical hypothesis on L and domain Q, a priori pointwise

bound on Vu already known at the time of Hilbert
® However to go to higher regularity (necessary for existence), one needs
more regularity than Vu € L* in Euler-Lagrange equations
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The result of De Giorgi and Nash (I)

Another piece of the puzzle: proved that if coefficients
aj € C* (a > 0) then a;0jju = 0 implies u € C>

Iterating Schauder’s estimate then yield C*° regularity, and finally
analytic regularity is obtained by studying the Taylor series

Remaining missing piece of the puzzle: a; = (9;;L)(Vu) € C*

The equation on a partial derivative f := Jxu is divergence-form
0i[(0;iL)(Vu)o;f| = 0i (ajj0if) =V - (AVF) =0
. if A= (aj) is measurable and
Ald <A<AId

then V - (AVf) = 0 implies f Holder continuous

This implies finally a;j € C* and solves the problem
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The result of De Giorgi and Nash (II)

® Proof of : (1) iterate gain of integrability by Sobolev
embedding (2) isoperimetric-type argument to control oscillations

® Proof of : based on the fundamental solutions and several
functional inequalities including what is now called ‘Nash inequality’

® Proof of : (1) iterate gain of integrability similarly to De
Giorgi but presented differently (2) control “integral” oscillations by an
argument using a Poincaré inequality on the logarithm of the solution

® The proof of Moser also obtained Harnack inequality for such
elliptic/parabolic equations, i.e. a universal inequality between upper
and lower bounds. This proof was later simplified by
® Later a non-divergent version of this result was obtained by
through different methods: open problem to
extend Krylov-Safanov theory to the hypoelliptic case
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The theory of hypoellipticity of Hérmander (1)

® Theory associated with but partial results by other
mathematicians as early as the 1950s

e Starting point of Hérmander: and

° considers a kinetic transport equation with

drift-diffusion in velocity (i.e. kinetic Fokker-Planck equation)

O:f + v - Oxf = 92f  whose fundamental solution from 30,0

3 0\? Bx— £v2|  |vf?
is G(t,x,v):<> exp| — ——2————| (t>0)

42¢4 t3 4t

® As suggested by the German title, the motivation comes from the
study of the law of the Brownian motion (integrated in time)

® |t shows that the solution is C* even though the diffusion is
degenerate in x, and Lewy's example shows that even with polynomial
coefficients and smooth source term some PDEs have no solution
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The theory of hypoellipticity of Hérmander (I1)

° . ldentifies necessary and sufficient commutator
conditions between the vector fields in the equation for regularization

Regularization Gevrey instead of analytic

Two types of hypoelliptic equations to distinguish: “Type I when no
term of order 1 in the equation and “Type 2" when a skew-symmetric
(conservative) operator is combined with a partial diffusion

Simple commutator example for Kolmogorov's equation

Oif + Bf + A*Af =0, B=v-0y, A=0,

ABl=C=d, S(AFCH=—|CFP+ ...
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Math-Physics motivation for extending De Giorgi theory

® |n kinetic theory long-rang interactions means grazing collisions
dominate and lead to singular Boltzmann collision operators

® Coulomb interactions ill-defined for the Boltzmann collision operator
(cf. “fractional” Laplacian at order 2) but derived

Q(f, f) =V, - P(f(v)V,F(v) — f(v)va(v*)) v — v, "1,
R3

where P orthogonal projection on (v — v,)*

® Rewrites as a nonlinear non-local drift-diffusion operator

Q(f,f) =V, - (A[f]V.f + B[f]f)

A[f](v):a/Ra (/—%@@’:O w| "L F(t, x, v — w)dw
B[f](v) = b/R3 \w| 3w f(t,x,v—w)dw

e Existence of global smooth solutions far from equilibrium opened
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Extension of De Giorgi theory to the hypoelliptic setting

Consider f a weak L2 solution to

Of +v-Vif =V, (AV,f)+B-V,f+S (teR, xeRY veR9

A measurable symmetric real matrix field with eigenvalues in [\, A]
B measurable vector field such that |B| < A

S real scalar field in L®

: Boundedness by Moser iteration
: Hélder continuity by Moser-Kriizkhov approach
: Holder regularity and Harnack inequality
by De Giorgi approach (non-constructive)
. Revisit approach of Wang-Zhang 2011

Theorems (Guerand-M'21)

Quantitative De Giorgi new argument for Holder continuity and Harnack <
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Detailed main results (1) - Invariances

® Qur class of equations is invariant under translations in t, x and under
Galilean translations, i.e. for zg = (to, X0, W) and z = (t, x, v),

z—zgoz = (tg + t,x0 + x + tvo, vop + V)
® For any r > 0 it is invariant under the scaling
— (2 3
z=(t,x,v) = rz:=(rt,r’x,rv)
e Using the invariances, we write for zg € R*29 and r > 0:
Qr(z0) =290 [rQ1] = 200 Qr
:{—r2 <t—tg <0, |x—x0—(t—to)vo| < r3, |v— v <r}

and we simply write Q,(0) = Q, when z5 =0
e We denote 7 = 0; + v - V, the free transport operator
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Detailed main results (I1) - Notion of solutions

Given U = (a, b) x Q x Q, with Q, and Q, open sets of RY,

f U — R is a weak solution on U if it belongs to the energy space
E = L>((a, b); L2( x Q,)) N L%((a, b) x Qx; HY(Q,)) and the
equation is satisfied in the sense of distributions in U

f is a weak sub-solution if f € £ and for all G € C2 with G’ >0
bounded and G” > 0, and any non-negative ¢ € C2°(U)

—/ G(f)Tpdz < —/AVVG(f)-chpdz+/ [B'VVG(f)—i-SG’(f)}
u u u

It is a weak super-solution if —f is a weak sub-solution

Equivalent to previous definitions in the case of solutions, but slightly
weaker in the case of sub- and super-solutions: extra assumptions
Tf e L?((a,b) x Qu x Q) or Tf € L?((a, b) x Qu; H71(Q,)) were
made before for energy estimates

It allows to include important sub-solutions such as f = f(t) = 1;<o
Our definition is equivalent to that of De Giorgi in the elliptic case
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Detailed main results (1) - Figure

=R 1

Qy
@ny

[ |2
Qn

Given invariances, we only state results in a unit centred cylinder
f (sub/super)-solution in @

ro € (0, %) explicit from the proof

Intermediate Value Lemma relates @, and @

Weak Harnack inequality relates @% and Qn
> 2

Harnack inequality relates CN?; and Qn
4 4
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Detailed main results (V) - Statements (with S = 0)

Intermediate Value Lemma. Given 41,9, € (0,1), there are rp = 2—10,

v 2> (6162)°918 and 6 > (6162)%9715, such that any sub-solution f in @ so
that f < 1in Q% and [{f <0} NQ, | > d1|Q,| and

H{f > 1—0}N Q| > 92| Q| satisfies

‘{0<f<1—9}mQ% > 1|Qy|

Weak Harnack Inequality. There is ( > 0 depending only A, A such that

any non-negative weak super-solution f in @y satisfies, for rp = %,

1

¢
/~ f<(z) dtdxdv S)\7/\ (I?nf f+ HS”L*(Ql)
Jay, 3
2

Harnack inequality. Any non-negative weak solution f in @ satisfies
sup £ Sxa inf £+ | Sl (qy)
ax, Qo

rTO 4

(Both IVL & Harnack < imply Hélder continuity quantitatively) 15/30



Structure of the method (for f sub/super sol. and S = 0)

¢ @ o~ 1 30l (2 1 P o s .
fel> — fel®nl WS —>  Weak L*-Poincaré inequality

3 . 4 o .
u> Intermediate Value Lemma Q Measure-to-pointwise estimate

ﬂ Weak log-Harnack estimate ﬂ Weak Harnack estimate

[ Once these steps are proved, Harnack inequality follows (6)+(1) ]

Step (1) inspired by and uses Kolmogorov fundamental solutions
Step (2) is the most novel step and introduces an argument based on
trajectories and the previous Sobolev regularity to “noise” the x-dependency
Step (3) is novel and based on simple energy estimates

Step (4) is standard and only sketched for obtaining quantitative constants
Step (5) is semi-novel but immediate when constants are quantified

Step (6) is novel in the context of hypoelliptic equations but inspired from
a conceptually similar idea in elliptic equations; it uses an induction, Vitali's
covering lemma and Step (5) at every scale

14/30



Step 1: The L? energy estimate

® Starting point of all methods

e Consider f non-negative sub-solution in an open set I/ € R1*29 and
Qr(z0) C Qr(z0) CU With0O < r <R

e Integrate then the equation against f? with an appropriate smooth
localisation function ¢ to get

sup / f2—|—/ |va‘2 S,)\,/\,r,R / f2+||5H22 Z
re(—r2+o,t0) J Q7 (20) Qr(z0) Qr(z0) E(@r(z0))

where zy = (to, X0, v0), Q7 (20) = {(x,v) € R?*? : (1,x,v) € Q- (=)}
® Unlike the elliptic or parabolic case, the energy estimate does not yield
Sobolev regularity in all variables

e Addressed before by averaging lemma, here simpler systematic optimal
calculation based on Kolmogorov solutions inspired from
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Step 1: The L' mass estimate

® Less well-known but simple and useful

e Consider again f non-negative sub-solution in an open set If € R1t29
and Q;(z) C Qr(z0) CU wWithO<r <R

® Write m > 0 the defect measure:
hf+v-Vyf =V, - (AV,f)+B-V,f+S—m

® Integrate then the equation against ¢? with an appropriate smooth
localisation function ¢ to get

1m0, () Srrr / n / IV, + / 5|
Qr(20) Qr(20) Qr(20)

® Hence the mass of the defect measure is controlled, i.e. intuitively the
total amount of jump in discontinuities is constrained
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Step 1: Kolmogorov fundamental solutions (1)

e Consider f > 0 locally integrable so that
Kf =0t+v-Vyf—Af=V,-Fi+F,—m

with Fi, F> € L1 N L2(R_ x R??), m > 0 measure with finite mass on
R_ x R??, and Fy, F2, m have compact support in time [— T, 0]

® Thenfor pe[2,2+ 1) and o €0, 1)

||fHLP(1R,xR2d) SAAT,p ||F1\|L2(R,xR2d) + ||F2”L2(R,xR2d)

HfHL%YVWXU*l(Rix]R&i) S)\,/\,TJ HF1HL1(R,><R2") + HF2HL1(R_><R2d)
Ml pr e xr2e)

® Bounds on p and o seem optimal & constants like inverse distance

® Note that defect measure appears in the second (regularity) estimate
but not in the first (integrability) estimate
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Step 1: Kolmogorov fundamental solutions (I1)

® | ocalize the sub-solution f and write
Kf=V, - (A-1d)V,f)+B-V,f+S—m=V,-FL+F—-m

o Use the L? energy estimate and the L' mass estimate to get L2
bounds on F; and F» and L! bounds on Fi, F» and m
® Express solution f with the fundamental solution

f(t,x, v):/ / G(t—thx—x—(t=tW,v-V) KT X, V)
t’'eR J x/ v/ eR

d 3|x—ty|? 2 i
(47r2t4)2 exp {_ 1 t32V‘ B I‘;t] ift>0

0 ift<0

G(t,x,v):=

Since G > 0, drop the defect measure for the gain of integrability
Use G € L9 and V, G € L9 and tV, G € L9 to gain L% — LP
Since f2 sub-solution, iteration gives [2 — [

Additional iteration easily yields LS — L> for any ¢ > 0

Decompose G in t and use higher-order estimates to gain regularity
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Step 2: Weak Poincaré Inequality (with S = 0) (1)

® The key step to the Intermediate Value Lemma is to measure
variations above the mean in terms of ||V, f||;1

® Givene € (0,1), o € (0, 3), and f non-negative sub-solution on Qs

H (F=the),

where Q; := Q1(—1,0,0) = (—3,—-2] x By x B; and

1
f _::][ fi=—— f
Fo, Qr Q1 | /oy

® Such inequality is reminiscent of the Moser approach, however our
proof is a new simpler argument based on trajectories

1
S gz IVeFlligas) + 7 I1fll 2

L1(@1)
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Step 2: Weak Poincaré Inequality (with S = 0) (II)

|- e0),

S/ [][ (f(t,X, V)*f(S,y, W))@E(yv W)
(tx,v)EQT (s.y:w)eQy

H (F = tFeday ).,

LY(Q)) LY(Q)

+e2d 11l 2(p)
+

. (tz,v)

@

Q;
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Step 2: Weak Poincaré Inequality (with S = 0) (I11)

We decompose the trajectory (t, x,v) — (s,y, w) into four
sub-trajectories in @s:

® a trajectory of length O(g) along V, in the direction w

® two trajectories of length O(1) along V,

® one trajectory of length O(1) along 7 := 0y + v - V4

This yields the diagram

(t,x,v) - (t,x +ew,v) <7 <t,x+6w,

X v

H <S7y, )H_SVV__)/> 7 (s7y’ W)

X+ew-—y
t—s

t—s

v

The first sub-trajectory is estimated by the integral regularity L%yVWf’l
The other trajectories are estimated by the vector fields in the equation

Note that we are implicitly using the Hérmander commutator
condition: V,, T, [V, T] span all the vector fields on R29+1
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Step 2: Weak Poincaré Inequality (with S = 0) (1V)

First sub-trajectory
115/ [£(t,x,v) = f(t,x +ew, v)[ S €%l pyou
(t,x,v)EQ1 .

Second and fourth trajectories

12+I4§/]V\,f|

Third and hardest trajectory

h< / [ / / AV ) (5% v, w)pu(ys w)
t,x,v)EQ1 (s,y,w) J €0, 1]

and the change of variable (s,y, w) — (s*, y*, w*) has bounded Jacobian
thanks to the “noise” ew of the first trajectory, which allows to integrate by
parts the divergence on ¢, inside Q;

_l’_
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Step 3: Proof of the intermediate value lemma (1)

Take S = 0 and f sub-solution on @ so that for d1,0> > 0 and rp = %

{f <0}NQpl = a1lQ,| and  [{f>1—60}N Q| > d2[Qr

Then the Poincaré inequality implies

1
f—(f)oy), Savs | IVufil+e”
][Qro< Qr0)+ gd+? Qsrg
Since ‘{f 1n0Q ‘
>0tN Q-
(fi)o- < —— 2 <1-4;
@ | Q|
the left hand side is bounded below:
1
fr —(f)o-) > f(t,x,v)—(1—-9¢
ero (+ <+>Qfo)+ o ‘Qro‘ (t:x,v)EQy [ ( ) ( 1)]+
> 1

01 —0), >0,(01— 0
| Qo {le—e}moro( 1=6)y 2 & )
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Step 3: Proof of the intermediate value lemma (I1)

We now bound from above the right hand side
/ ]V\,f+]§/ +/ +/
Qsrg {f=0}NQs/, {0<f<1-0}N Qs {F>1-0}NQsrg

The first term takes advantage of the fact that Poincaré < was in L!:

=0 I I

NI=

h<|{0<f< 1—9}ﬂ05r0|% (][ \va+|2> SHHo<f< 1—9}(70%\%
QSro
The second term is small when 6 is small:

b= [, - a-o)= [ mlr-a-o)

5(/@ 0

\vv[f—(l—a)Lf) S/Q% [f—(1—9)]ige

The conclusion follows from taking e and 6 small enough

[}
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Step 4: The measure-to-pointwise estimate (I)

Given $ =0, € (0,1) and rp = % there is 11 1= p(8) ~ §2A14+57109710)
such that any sub-solution f in @ so that f <1 in Q% and

{F <0}NQy| >0|Qy]

satisfies f <1 — g in Q%o
Proof follows the standard De Giorgi argument, only more quantitative:
® There is 6’ > 0 universal such that for any r > 0, any sub-solution f
on @, so that er fz < 0'|Qr| satisfies f < 5 in Qé
e Define v,0 > 0 as in the IVL with §;1 = ¢ and d> = ¢’ and define the
sub-solutions f := 07K[f — (1 — 6%)] for k >0
® Thesets {0 < fr <1—60} ={1—0Kk<f<1—0k"} are disjoints
and each f; satisfies the assumptions of the IVL
* If fo ()3 < &'|Qu| then fi < 3 in Qo s0 f < 1— puwith = >
which concludes the proof
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Step 4: The measure-to-pointwise estimate (II)

e Consider 1 < kg <1+ v~! such that fQ (f)2 > &'|Qp| for any
(o}
0< k<ky Thenfor0< k< ky—1

[ 210} Qul = {2 20N Qu| = | (fisa)} > 10|

o
[{f < 01N Q| = [{f 01N Q| = 61Q]
IVL then implies

’{0<fk<1—9}ﬂQ%

> v|Q1|
2

® Summing these estimates we have
ko—1

Qs > ;J {0< fi<1-0}NQs| = korlQyl.
So ko < v~ 1, and we deduce in Q1
2
gko+1 9 ol+s

v ~ 52(1+5—10d—16)

fF<1-
2 26 /30
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Steps 5: Weak log-Harnack inequality (with S = 0)

® Given h non-negative super-solution, the contraposition on the
sub-solution g :=1 — % of the measure-to-pointwise estimate implies

for any 4 € (0,1), there is M ~ §—2(1H07%7%) ¢4 that

{h>MnQl s . f s
|Qr(2)] Q;;(z)

where Q,(z) — Q7 (z) is the inverse of the operation
2

Q: (z) = Q, (2) in the previous statement
Assuming infg, h <1 and inverting the function 0 — M(4), this

2
gives upper bounds on the upper level sets, and the layer-cake
representation finally yields

/ [In (1 + h)]mare <1
o
This logarithmic integrability is weaker than the usual weak Harnack

inequality but it can strenghtened by a simple iterative argument
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Step 6: The weak Harnack inequality (1)

® Consider as before S = 0 (the source term can be re-introduced in the
end of the proof anyway easily)

e \We prove by induction on a sequence of cylinders QX that satisfy
Q,O C @k c Ok c 9kt ¢ Q for all k > 1, that for & > 0 small

enough any non-negative super-solutlon h with infg, h <1 satisfies
2

{h=MYN Q4 _ b

>
vk —'L |Qk| —-210Md+@k

where M ~ §=2+672720) \yivh § .= 2104d+2
¢ |f the latter is true it implies féf h¢ < 1 for some ¢ > 530‘”17 >0
o

2
which concludes the proof
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Step 6: Weak Harnack inequality (I1)

¢ To propagate the induction we cover A, y; := {h > MKT1} 0 Qk+1
with translations of centered cylinders of the form

¢ [z] i= z o @ ((2r%,0,0)) = zo (—2r%,2r%] x B(arys x Bar

® We construct a sequence &€, [z], ¢ > 1, so that:
o re € (07 ﬁ)
@ A1 N sy, [ze]| < dol€1sr, [2]]
© [Aii1 N &y [z]| > 60|, [z]]
O the cylinders €3,,[z] are disjoint
@ A1 is covered by the family €;5,,[2z/]
® This construction is based on Vitali's covering lemma and the
geometry of the cylinders

® The measure-to-pointwise estimate at every scale then implies that
¢, [z]" C Ak and since €, [z]T C €3,,[z], these “+" cylinders are
disjoint
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Step 6: Weak Harnack inequality (111)

o \We deduce

A <D Ak N s 2] < 60 Y |€usy [
>1 >1
< 1547250 Y " (€, [z0]] < 30%250 Y (€, (2]
>1 >1
304d+25§ 50

4d+2
< 3077 0g| Akl < 210(4d+2)k = 210(4d+2)(k+1) ‘

k+1
Q+\

for g small enough which proves the induction claim and concludes
the whole proof
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